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RELAXATION IN CONTROLLED SYSTEMS DESCRIBED BY
FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS WITH

NONLOCAL CONTROL CONDITIONS

AMAR DEBBOUCHE, JUAN J. NIETO

Abstract. A control system described by fractional evolution integro-differ-

ential equations and fractional integral nonlocal control conditions is investi-
gated. This posed system is subjected to mixed multivalued control constraints

whose values are nonconvex closed sets. Along with the original system, we

consider the system in which the constraints on the controls are the closed
convex hulls of the original constraints. More precisely, existence results for

the mentioned nonlocal control systems are proved. Furthermore, we study

relations between the solution sets of both two systems.

1. Introduction

We are interested with the following fractional nonlocal control abstract evolu-
tion systems

CDα
t x(t) +Ax(t) = f(t, x(t)) +

∫ t

0

g(t, s, x(s), B1(s)u1(s))ds, (1.1)

x(0) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1h(x(s), B2(s)u2(s))ds, (1.2)

with the mixed nonconvex constraint on the controls

u1(t), u2(t) ∈ U(t, x(t)) a.e. on J, (1.3)

where CDα
t is the Caputo fractional derivative of order α, 0 < α < 1 and t ∈ J =

[0, b]. Let −A be the infinitesimal generator of a strongly continuous semigroup
{Q(t), t ≥ 0} in a separable reflexive Banach space X, the operators B1, B2 : J →
L(Y,X) are linear continuous from Y into X. We assume that f : J ×X → X, g :
∆×X2 → X and h : C(J : X,X)→ X are given abstract functions to be specified
later. It is also assumed that U : J×X → 2Y \{∅} is a multivalued map with closed
values (not necessarily convex). Here, ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b},Γ is the classical
gamma function and Y is a separable reflexive Banach space modeling the control
space.
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Along with the constraint (1.3) on the controls, we also consider the constraint

u1(t), u2(t) ∈ coU(t, x(t)) a.e. on J (1.4)

on the controls, where co stands for the closed convex hull of a set. We denote by
RU , T rU (RcoU , T rcoU ) the sets of all solutions, all admissible trajectories of the
control system (1.1)–(1.3) (the control system (1.1)–(1.2), (1.4), respectively).

The main results obtained in this paper are to show that: T rcoU is a compact
set in C(J,X) and the relaxation property

T rcoU = T rU (1.5)

holds, where the bar stands for the closure in C(J,X).
The applied sciences confirmed that fractional differential equations play an

important role in many fields, including viscoelasticity, electrochemistry, control,
porous media, electromagnetic and so on. Some works have done on the qualita-
tive properties of solutions for these equations; see [2, 12, 15, 21] and the references
therein. The existence of solutions for fractional semilinear differential or integro-
differential equations is one of the theoretical fields being investigated by many
authors. There has been a significant development in nonlocal problems for frac-
tional differential equations or inclusions (see for instance [3, 5, 6, 7, 8, 9, 20,28,29]).

Relaxation property, such as (1.5), has important ramifications in control theory,
since it implies that every trajectory of the convexified (full) system can be approx-
imated in C(J,X) norm, with arbitrary degree of accuracy, by trajectories of the
original system. There are many papers dealing with the verification of the relax-
ation property for various classes of control systems, for instance, Tolstonogov [22]
of control systems of subdifferential type, Migórski [18, 19], Tolstonogov [23], Tol-
stonogov et al [24], Denkowski et al [10] (c.f. Section 7.4) of nonlinear evolution
inclusions or equations.

In recent publications, X. Liu et al [16, 17] studied the relaxation properties in
both control systems and nonconvex optimal control problems described by frac-
tional differential equations. Debbouche and Torres [7] and [8] introduced the no-
tions of fractional nonlocal condition and nonlocal control condition, respectively,
and then investigated the approximate controllability question for both differential
equations and inclusions.

Motivated by the above facts, we extend the results, with the same schemes
of proof, of [16] for studying a relaxation property in control systems described by
fractional integrodifferential equations, and under a comparison between [7] and [8],
we also introduce a new concept called fractional integral nonlocal control condition,
so that our new complex considered system appears in terms of two controls. The
control systems established here are closed-loop systems (feedback control systems)
while the ones considered in papers related to this work cited above were concerned
with open-loop systems.

The article is organized as follows: In section 2, we introduce some preliminary
results and give the assumptions on the data of our problems which will be used
throughout the paper. Auxiliary results required to realize our investigation are
addressed in section 3. Section 4 deals with the existence of solutions for the
considered control systems. The main results are presented in section 5.
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2. Preliminaries and assumptions

We start by recalling some well-known facts in fractional calculus, in particular
we give the notions of fractional integral and derivative that can be found in [15,21].

Definition 2.1. The fractional integral of order α > 0 of $ ∈ L1([a, b],R+) is

Iαa$(t) =
1

Γ(α)

∫ t

a

(t− s)α−1$(s)ds,

where Γ is the classical gamma function. If a = 0, we can write Iα$(t) = (gα∗$)(t),
where

gα(t) :=

{
1

Γ(α) t
α−1, t > 0,

0, t ≤ 0,

and as usual, ∗ denotes the convolution of functions. Moreover, limα→0 gα(t) = δ(t),
with δ the delta Dirac function.

Definition 2.2. The Riemann-Liouville fractional derivative of order α > 0, n−1 <
α < n, n ∈ N, is

LDα$(t) =
1

Γ(n− α)
dn

dtn

∫ t

0

$(s)
(t− s)α+1−n ds, t > 0,

where the function $ has absolutely continuous derivatives up to order (n− 1).

Definition 2.3. The Caputo fractional derivative of order α > 0, n− 1 < α < n,
n ∈ N, is

CDα$(t) = LDα
(
$(t)−

n−1∑
k=0

tk

k!
$(k)(0)

)
, t > 0,

where the function $ has absolutely continuous derivatives up to order (n− 1).

Remark 2.4. The following properties hold. Let n− 1 < α < n, n ∈ N.
(i) If $ ∈ Cn([0,∞)), then

CDα$(t) =
1

Γ(n− α)

∫ t

0

$(n)(s)
(t− s)α+1−n ds = In−α$(n)(t), t > 0.

(ii) The Caputo derivative of a constant function is equal to zero.
(iii) The Riemann-Liouville derivative of a constant function is given by

LDα
a+C =

C

Γ(1− α)
(x− a)−α.

(v) If $ is an abstract function with values in X, then the previous integrals
are taken in Bochner’s sense.

According to previous definitions, it is suitable to rewrite problem (1.1)–(1.2) as
the equivalent integral equation

x(t) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1h(x(s), B2(s)u2(s))ds

+
1

Γ(α)

∫ t

0

(t− s)α−1
[
−Ax(s) + f(s, x(s))

+
∫ s

0

g(s, η, x(η), B1(η)u1(η))dη
]
ds,

(2.1)
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provided the integrals exist.
Let J = [0, b] be the closed interval of the real line with the Lebesgue measure

µ and the σ-algebra Σ of µ measurable sets. The norm of the space X (or Y ) will
be denoted by ‖ · ‖X (or ‖ · ‖Y ). We denote by C(J,X) the space of all continuous
functions from J into X with the supremum norm given by ‖x‖C = supt∈J ‖x(t)‖X
for x ∈ C(J,X). For any Banach space V , the symbol ω-V stands for V equipped
with the weak topology σ(V, V ∗). The same notation will be used for subsets of V .
In all other cases, we assume that V and its subsets are equipped with the strong
(normed) topology.

We now proceed to some basic definitions and results from multivalued analysis.
For more details on multivalued analysis, see the books [1, 14].

We use the following symbols: Pf (Y ) is the set of all nonempty closed subsets
of Y , Pbf (Y ) is the set of all nonempty, closed and bounded subsets of Y .

On Pbf (Y ), we have a metric known as the “Hausdorff metric” and defined by

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}
,

where d(x,C) is the distance from a point x to a set C. We say a multivalued map
is H-continuous if it is continuous in the Hausdorff metric H(·, ·).

We say that a multi-valued map F : J → Pf (Y ) is measurable if F−1(E) = {t ∈
J : F (t)∩E 6= ∅} ∈ Σ for every closed set E ⊆ Y . If F : J ×X → Pf (Y ), then the
measurability of F means that F−1(E) ∈ Σ⊗ BX , where Σ⊗ BX is the σ-algebra
of subsets in J ×X generated by the sets A × B, A ∈ Σ, B ∈ BX , and BX is the
σ-algebra of the Borel sets in X.

Suppose V , Z are two Hausdorff topological spaces and F : V → 2Z\{∅}. We
say that F is lower semicontinuous in the sense of Vietoris (l.s.c. for short) at a
point x0 ∈ V , if for any open set W ⊆ Z, F (x0) ∩W 6= ∅, there is a neighborhood
O(x0) of x0 such that F (x) ∩ W 6= ∅ for all x ∈ O(x0). F is said to be upper
semicontinuous in the sense of Vietoris (u.s.c. for short) at a point x0 ∈ V , if for
any open set W ⊆ Z, F (x0) ⊆ W , there is a neighborhood O(x0) of x0 such that
F (x) ⊆ W for all x ∈ O(x0). For more properties of l.s.c and u.s.c, readers may
refer to the book [14].

Besides the standard norm on Lq(J, Y ) (here Y is a separable, reflexive Banach
space), 1 < q <∞, we also consider the so called weak norm

‖ui(·)‖ω = sup
0≤t1≤t2≤b

∥∥∫ t2

t1

ui(s)ds
∥∥
Y
, for ui ∈ Lq(J, Y ), i = 1, 2. (2.2)

The space Lq(J, Y ) furnished with this norm will be denoted by Lqω(J, Y ). The
following result establishes a relation between convergence in ω-Lq(J, Y ) and con-
vergence in Lqω(J, Y ).

Lemma 2.5 ( [23]). If sequences {u1,n}n≥1, {u2,n}n≥1 ⊆ Lq(J, Y ) are bounded
and converge to u1, u2 in Lqω(J, Y ), respectively, then they converge to u1, u2 in
ω-Lq(J, Y ), respectively.

We use the following assumptions on the data of our problems.
(H1) The operator −A generates a strongly continuous semigroup Q(t), t ≥ 0 in

X, and there exists a constant M0 ≥ 1 such that supt∈[0,∞) ‖Q(t)‖ ≤ M0.
For any t > 0, Q(t) is compact.

(H2) The operators Bi : J → L(Y,X), i = 1, 2, are such that:
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(1) the maps t→ B1(t)u1 and t→ B2(t)u2 are measurable for any u1, u2 ∈
Y ;

(2) for a.e. t ∈ J ,

‖B1(t)‖L(Y,X) ≤ d1, ‖B2(t)‖L(Y,X) ≤ d2, with d1, d2 > 0.

(H3) The function f : J ×X → X satisfies the following:
(1) t→ f(t, x) is measurable for all x ∈ X;
(2) there exists a function l1 ∈ L∞(J,R+) such that for a.e. t ∈ J and all

x, y ∈ X,

‖f(t, x)− f(t, y)‖X ≤ l1(t)‖x− y‖X ;

(3) there exists a constant 0 < β1 < α such that for a.e. t ∈ J , and all
x ∈ X,

‖f(t, x)‖X ≤ a1(t) + c1‖x‖X ,

where a1 ∈ L1/β1(J,R+) and c1 > 0.
(H4) The function g : ∆×X2 → X satisfies the following:

(1) t→ g(t, s, x, y) is measurable for all x, y ∈ X;
(2) there exists a function l2 ∈ L∞(∆,R+) such that for a.e. (t, s) ∈ ∆

and all x1, x2, y1, y2 ∈ X,

‖g(t, s, x1, y1)− g(t, s, x2, y2)‖X ≤ l2(t, s){‖x1 − x2‖X + ‖y1 − y2‖X};

(3) there exists a constant 0 < β2 < α such that for a.e. (t, s) ∈ ∆, and
all x, y ∈ X,

‖g(t, s, x, y)‖X ≤ a2(t, s) + c2{‖x‖X + ‖y‖X},

where a2 ∈ L1/β2(∆,R+) and c2 > 0.
(H5) The function h : C(J : X,X)→ X satisfies the following:

(1) t→ h(x, y) is measurable for all x, y ∈ X;
(2) there exists a function l3 ∈ L∞(R+) such that for all x1, x2, y1, y2 ∈ X,

‖h(x1, y1)− h(x2, y2)‖X ≤ l3{‖x1 − x2‖X + ‖y1 − y2‖X};

(3) there exists a constant 0 < β3 < α such that for all x, y ∈ X,

‖h(x, y)‖X ≤ a3 + c3{‖x‖X + ‖y‖X},

where a3 ∈ L1/β3(R+) and c3 > 0.
(H6) The multivalued map U : J ×X → Pf (Y ) is such that:

(1) t→ U(t, x) is measurable for all x ∈ X;
(2) there exists a function l4 ∈ L∞(J,R+) such that for a.e. t ∈ J and all

x, y ∈ X,

H(U(t, x), U(t, y)) ≤ l4(t)‖x− y‖X ,

(3) there exists a constant 0 < β4 < α such that for a.e. t ∈ J , and all
x ∈ X,

‖U(t, x)‖Y = sup{‖v‖Y : v ∈ U(t, x)} ≤ a4(t) + c4‖x‖X ,

where a4 ∈ L1/β4(J,R+) and c4 > 0.
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Definition 2.6 ( [4, 28, 29]). A triple of functions (x, u1, u2) is a mild solution of
the control system (1.1)–(1.3), if x ∈ C(J,X) and there exist u1, u2 ∈ L1(J, Y ) such
that u1(t), u2(t) ∈ U(t, x(t)) a.e. t ∈ J ,

x(0) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1h(x(s), B2(s)u2(s))ds,

and the following integral equation is satisfied

x(t) = Sα(t)
[
x0 +

1
Γ(α)

∫ t

0

(t− s)α−1h(x(s), B2(s)u2(s))ds
]

+
∫ t

0

(t− s)α−1Tα(t− s)
[
f(s, x(s)) +

∫ s

0

g(s, η, x(η), B1(η)u1(η))dη
]
ds,

(2.3)
where

Sα(t) =
∫ ∞

0

ξα(θ)Q(tαθ)dθ, Tα(t) = α

∫ ∞
0

θξα(θ)Q(tαθ)dθ,

ξα(θ) =
1
α
θ−1− 1

α$α

(
θ−

1
α

)
≥ 0,

$α(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nα−1 Γ(nα+ 1)
n!

sin(nπα),

with ξα is a probability density function defined on (0,∞); that is, ξα(θ) ≥ 0, θ ∈
(0,∞) and

∫∞
0
ξα(θ)dθ = 1.

A similar definition can be introduced for the control system (1.1)–(1.2),(1.4).

Remark 2.7 ( [29]). It is not difficult to verify that∫ ∞
0

θξα(θ)dθ =
1

Γ(1 + α)
.

Lemma 2.8 ( [29]). Let (H1) hold. Then the operators Sα and Tα have the fol-
lowing properties:

(1) For any fixed t ≥ 0, Sα(t) and Tα(t) are linear and bounded operators, i.e.,
for any x ∈ X,

‖Sα(t)x‖X ≤M0‖x‖X , ‖Tα(t)x‖X ≤
M0

Γ(α)
‖x‖X ;

(2) {Sα(t), t ≥ 0} and {Tα(t), t ≥ 0} are strongly continuous;
(3) For every t > 0, Sα(t) and Tα(t) are compact operators.

The proof of the above lemma can be found in [29].

3. Auxiliary results

In this section, we shall give some auxiliary results needed in the proof of the
main results. We begin with the a prior estimation of the trajectory of the control
systems.

Lemma 3.1. For any admissible trajectory x of control system (1.1)–(1.2), (1.4);
i.e., x ∈ T rcoU , there is a constant L such that

‖x‖C ≤ L. (3.1)
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Proof. From Definition 2.6, we have for any x ∈ T rcoU , there exist u1(t), u2(t) ∈
coU(t, x(t)) a.e. t ∈ J and

x(t) =α (t)
[
x0 +

1
Γ(α)

∫ t

0

(t− s)α−1h(x(s), B2(s)u2(s))ds
]

+
∫ t

0

(t− s)α−1Tα(t− s)
[
f(s, x(s)) +

∫ s

0

g(s, η, x(η), B1(η)u1(η))dη
]
ds.

Then by Lemma 2.8, we obtain

‖x(t)‖X ≤M0

[
‖x0‖X +

1
Γ(α)

∫ t

0

(t− s)α−1‖h(x(s), B2(s)u2(s))‖Xds
]

+
M0

Γ(α)

∫ t

0

(t− s)α−1
[
‖f(s, x(s))‖X

+
∫ s

0

‖g(s, η, x(η), B1(η)u1(η))‖Xdη
]
ds.

(3.2)

From (H3.2), (H3.3) and Hölder’s inequality, we have∫ t

0

(t− s)α−1‖f(s, x(s))‖Xds

≤
∫ t

0

(t− s)α−1‖f(s, x(s))− f(s, 0)‖Xds+
∫ t

0

(t− s)α−1‖f(s, 0)‖Xds

≤
∫ t

0

(t− s)α−1l1(s)‖x(s)‖Xds+
∫ t

0

(t− s)α−1a1(s)ds

≤
[ 1− β1

α− β1
b
α−β1
1−β1

]1−β1

‖a1‖L1/β1 (J,R+) + ‖l1‖L∞(J,R+)

∫ t

0

(t− s)α−1‖x(s)‖Xds.

(3.3)
Also, we use (H4.2), (H4.3) and Hölder’s inequality to obtain∫ t

0

(t− s)α−1

∫ s

0

‖g(s, η, x(η), B1(η)u1(η))‖Xdηds

≤
∫ t

0

(t− s)α−1

∫ s

0

‖g(s, η, x(η), B1(η)u1(η))− g(s, η, 0, 0)‖Xdηds

+
∫ t

0

(t− s)α−1

∫ s

0

‖g(s, η, 0, 0)‖Xdηds

≤
∫ t

0

(t− s)α−1

∫ s

0

l2(s, η){‖x(η)‖X + ‖B1(η)u1(η)‖X}dηds

+
∫ t

0

(t− s)α−1

∫ s

0

a2(s, η)dηds

≤
[ 1− β2

α− β2
b
α−β2
1−β2

]1−β2

b‖a2‖L1/β2 (∆,R+)

+ b‖l2‖L∞(∆,R+)

∫ t

0

(t− s)α−1‖x(s)‖Xds

+ b‖l2‖L∞(∆,R+)

∫ t

0

(t− s)α−1‖B1(s)u1(s)‖Xds,

(3.4)
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applying (H2.2), (H6.3) and Hölder’s inequality for the above integral,∫ t

0

(t− s)α−1‖B1(s)u1(s)‖Xds

≤ d1

∫ t

0

(t− s)α−1
(
a4(s) + c4‖x(s)‖X

)
ds

≤ d1

[ 1− β4

α− β4
b
α−β4
1−β4

]1−β4

‖a4‖L1/β4 (J,R+) + d1c4

∫ t

0

(t− s)α−1‖x(s)‖Xds.

(3.5)

Again, assumption (H5.3) and Hölder inequality, give∫ t

0

(t− s)α−1‖h(x(s), B2(s)u2(s))‖Xds

≤
∫ t

0

(t− s)α−1[a3 + c3{‖x(t)‖X + ‖B2(t)u2(t))‖X}]ds

≤
[ 1− β3

α− β3
b
α−β3
1−β3

]1−β3

‖a3‖L1/β3 (R+) + c3

∫ t

0

(t− s)α−1‖x(s)‖Xds

+ c3

∫ t

0

(t− s)α−1‖B2(t)u2(t))‖Xds,

(3.6)

by applying (H2.2), (H6.3) and Hölder’s inequality for the above integral,∫ t

0

(t− s)α−1‖B2(s)u2(s)‖Xds

≤ d2

∫ t

0

(t− s)α−1
(
a4(s) + c4‖x(s)‖X

)
ds

≤ d2

[ 1− β4

α− β4
b
α−β4
1−β4

]1−β4

‖a4‖L1/β4 (J,R+) + d2c4

∫ t

0

(t− s)α−1‖x(s)‖Xds.

(3.7)

Combining (3.3)–(3.7) with (3.2), we obtain

‖x(t)‖X ≤M0

[
‖x0‖X +

1
Γ(α)

[ 1− β3

α− β3
b
α−β3
1−β3

]1−β3

‖a3‖L1/β3 (R+)

+ c3d2

[ 1− β4

α− β4
b
α−β4
1−β4

]1−β4

‖a4‖L1/β4 (J,R+)

+ c3(1 + d2c4)
∫ t

0

(t− s)α−1‖x(s)‖Xds
]

+
M0

Γ(α)

[[ 1− β1

α− β1
b
α−β1
1−β1

]1−β1

‖a1‖L1/β1 (J,R+)

+
[ 1− β2

α− β2
b
α−β2
1−β2

]1−β2

b‖a2‖L1/β2 (∆,R+)

+ b‖l2‖L∞(∆,R+)d1

[ 1− β4

α− β4
b
α−β4
1−β4

]1−β4

‖a4‖L1/β4 (J,R+)

+ {‖l1‖L∞(J,R+) + b‖l2‖L∞(∆,R+) + d1c4b‖l2‖L∞(∆,R+)}

×
∫ t

0

(t− s)α−1‖x(s)‖Xds
]
.
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From the above inequality, using the well-known singular-version Gronwall’s in-
equality (see [11, Theorem 3.1]), we can deduce that the inequality (3.1) is satisfied,
i.e., there exists a constant L > 0 such that ‖x‖C ≤ L. �

Let prL : X → X be the L-radial retraction; i.e.,

prL(x) =

{
x, ‖x‖X ≤ L,
Lx
‖x‖X , ‖x‖X > L.

This map is Lipschitz continuous. We define U1(t, x) = U(t,prL x). Evidently, U1

satisfies (H6.1) and (H6.2). Moreover, by the properties of prL, we have, for a.e.
t ∈ J , all x ∈ X and all u1, u2 ∈ U1(t, x) such that

sup{‖u1‖Y , ‖u2‖Y } ≤ a4(t) + c4L and sup{‖u1‖Y , ‖u2‖Y } ≤ a4(t) + c4‖x‖X .
Hence, Lemma 3.1 is still valid with U(t, x) substituted by U1(t, x). Consequently,
without loss of generality, we assume that, for a.e. t ∈ J and all x ∈ X,

sup{‖v‖Y : v ∈ U(t, x)} ≤ ϕ(t) = a4(t) + c4L, with ϕ ∈ L1/β4(J,R+). (3.8)

Let ϕ be defined by (3.8), we put

Yϕ =
{

(u1, u2) : u1 ∈ L1/β4(J, Y ) : ‖u1(t)‖Y ≤ ϕ(t) a.e. t ∈ J,

u2 ∈ L1/β4(J, Y ) : ‖u2(t)‖Y ≤ ϕ(t) a.e. t ∈ J
}
.

(3.9)

Xϕ =
{

(K1,K2,K3) : K1 ∈ L1/β1(J,X) : ‖K1‖X ≤ a1(t) + c1L a.e. t ∈ J,

K2 ∈ L1/β2(∆, X) : ‖K2‖X ≤ a2(t, s) + c2{L+ d1ϕ} a.e. t, s ∈ J,

K3 ∈ L1/β3(J,X) : ‖K3‖X ≤ a3 + c3{L+ d2ϕ} a.e. t ∈ J.
} (3.10)

According to (H2)–(H5), for any x ∈ C(J,X) and u1, u2 ∈ L1/β4(J, Y ), the func-
tions f, g and h are elements of the spaces L1/β1(J,X), L1/β2(J,X) and L1/β3(J,X),
respectively. Hence, we can consider operators A1,A2 : C(J,X) × L1/β4(J, Y ) →
L1/β4(J,X) defined by

A1(x, u1)(t) = f(t, x(t)) +
∫ t

0

g(t, s, x(s), B1(s)u1(s))ds,

A2(x, u2)(t) =
∫ t

0

(t− s)α−1h(x(s), B2(t)u2(s))ds.
(3.11)

Lemma 3.2. The maps A1(x, u1) and A2(x, u2) are sequentially continuous from
C(J,X)× ω-L1/β4(J, Y ) to ω-L1/β4(J,X).

Proof. Suppose that xn → x in C(J,X), u1,n → u1 in ω-L1/β4(J, Y ) and u2,n →
u2 in ω-L1/β4(J, Y ). Let f ∈ L1/(1−β1)(J,X∗), g ∈ L1/(1−β2)(∆, X∗) and h ∈
L1/(1−β3)(X∗) be fixed. Now we may assume that ‖xn‖C ≤ M for some constant
M > 0 and n ≥ 1. Then from (H2)–(H5), we can have the following facts

f(t, xn(t))→ f(t, x(t)) in X a.e. t ∈ J, ‖f(t, xn(t))‖X ≤ a1(t) + c1M, (3.12)

g(t, s, xn(t), ·)→ g(t, s, x(t), ·) in X a.e. (t, s) ∈ ∆,

‖g(t, s, xn(t), ·)‖X ≤ a2(t, s) + c2M,
(3.13)

h(xn(t), ·)→ h(x(t), ·) in X, ‖h(xn(t), ·)‖X ≤ a3 + c3M, (3.14)∫
J

〈B∗1(t)g(t), u1,n(t)〉dt→
∫
J

〈B∗1(t)g(t), u1(t)〉dt, (3.15)
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J

〈B∗2(t)h(t), u2,n(t)〉dt→
∫
J

〈B∗2(t)h(t), u2(t)〉dt, (3.16)

where B∗1(t) and B∗2(t) are the operators adjoint to B1(t) and B2(t), respectively.
From (3.12)–(3.14), using Lebesgue’s dominated convergence theorem, we obtain

f(t, xn(t))→ f(t, x(t)) in L1/β1(J,X), (3.17)

g(t, s, xn(t), ·)→ g(t, s, x(t), ·) in L1/β2(∆, X), (3.18)

h(xn(t), ·)→ h(x(t), ·) in L1/β3(X). (3.19)

Since

〈g(t), B1(t)u1(t)〉 = 〈B∗1(t)g(t), u1(t)〉 and 〈h(t), B2(t)u2(t)〉 = 〈B∗2(t)h(t), u2(t)〉

for some arbitrary g ∈ L1/(1−β2)(∆, X∗) and h ∈ L1/(1−β3)(X∗), by (3.15) and
(3.16), we deduce that

B1(t)u1,n(t)→ B1(t)u1(t), B2(t)u2,n(t)→ B2(t)u2(t) in ω-L1/β4(J,X).

Together with (3.17)–(3.19) imply

A1(xn, u1,n)→ A1(x, u1), A2(xn, u2,n)→ A2(x, u2) in ω-L1/β4(J,X).

�

Now we consider the nonlocal auxiliary problem
CDα

t x(t) = −Ax(t) + f(t), t ∈ J = [0, b],

x(0) = x0 +
1

Γ(α)

∫ t

0

(t− s)α−1h(x(s))ds,
(3.20)

where f(t) and h(x(t)) reduce f(t, x(t)) +
∫ t

0
g(t, s, x(s), ·)ds and h(x(s), ·), respec-

tively.
It is clear that, for every f ∈ L1/β(J,X), h ∈ L1/β(J : X,X), 0 < β < α, the

problem (3.20) has a unique mild solution H(f, h) ∈ C(J,X) which is given by

H(f, h)(t) = Sα(t)
[
x0+

1
Γ(α)

∫ t

0

(t−s)α−1h(x(s))ds
]
+
∫ t

0

(t−s)α−1Tα(t−s)f(s)ds.

The following lemma concerns with the property of the solution map H which is
crucial in our investigation.

Lemma 3.3. The solution map H : Xϕ → C(J,X) is continuous from ω-Xϕ into
C(J,X).

Proof. We already know thatH is linear and continuous from L1/β(J,X) to C(J,X),
hence H is also continuous from ω-L1/β(J,X) to ω-C(J,X).

Let C ∈ Pb(L1/β(J,X)) and suppose that for any f, h ∈ C, ‖f‖L1/β(J,X) ≤ K1

and ‖h‖L1/β(J:X,X) ≤ K2 (K1,K2 > 0 are constants). Next we will show that H is
completely continuous.
Step 1: From Lemma 3.1, we have that the map ‖H(f, h)(t)‖X is uniformly
bounded.
Step 2: H is equicontinuous on C. Let 0 ≤ t1 < t2 ≤ b. For any f, h ∈ C, we
obtain

‖H(f, h)(t2)−H(f, h)(t1)‖X



EJDE-2015/89 RELAXATION IN CONTROLLED SYSTEMS 11

≤ ‖ 1
Γ(α)

Sα(t2)
∫ t2

t1

(t2 − s)α−1h(x(s))ds‖X

+ ‖ 1
Γ(α)

Sα(t2)
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
h(x(s))ds‖X

+ ‖ 1
Γ(α)

[
Sα(t2)− Sα(t1)

] ∫ t1

0

(t1 − s)α−1h(x(s))ds‖X

+ ‖
∫ t2

t1

(t2 − s)α−1Tα(t2 − s)f(s)ds‖X

+ ‖
∫ t1

0

[
(t2 − s)α−1 − (t1 − s)α−1

]
Tα(t2 − s)f(s)ds‖X

+ ‖
∫ t1

0

(t1 − s)α−1
[
Tα(t2 − s)− Tα(t1 − s)

]
f(s)ds‖X

=: I1 + I2 + I3 + I4 + I5 + I6.

By using analogous arguments as in Lemma 3.1, we have

I1 ≤
M0

Γ(α)

[ 1− β
α− β

]1−β
K2(t2 − t1)α−β ,

I2 ≤
M0

Γ(α)

(∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)1/(1−β)
ds
)1−β

K2

≤ M0

Γ(α)

(∫ t1

0

(
(t1 − s)

α−1
1−β − (t2 − s)

α−1
1−β
)
ds
)1−β

K2

=
M0

Γ(α)

[ 1− β
α− β

]1−β(
t
α−β
1−β
1 − t

α−β
1−β
2 + (t2 − t1)

α−β
1−β

)1−β
K2

≤ 2M0

Γ(α)

[ 1− β
α− β

]1−β(
t2 − t1

)α−β
K2,

I4 ≤
M0

Γ(α)

[ 1− β
α− β

]1−β
K1(t2 − t1)α−β ,

I5 ≤
M0

Γ(α)

(∫ t1

0

(
(t1 − s)α−1 − (t2 − s)α−1

)1/(1−β)
ds
)1−β

K1

≤ M0

Γ(α)

(∫ t1

0

(
(t1 − s)

α−1
1−β − (t2 − s)

α−1
1−β
)
ds
)1−β

K1

=
M0

Γ(α)

[ 1− β
α− β

]1−β(
t
α−β
1−β
1 − t

α−β
1−β
2 + (t2 − t1)

α−β
1−β

)1−β
K1

≤ 2M0

Γ(α)

[ 1− β
α− β

]1−β(
t2 − t1

)α−β
K1.

For t1 = 0, 0 < t2 ≤ b, it is easy to see that I3 = I6 = 0. For t1 > 0 and ε > 0 be
small enough, we have

I3 ≤ ‖
(
Sα(t2)− Sα(t1)

) 1
Γ(α)

∫ t1−ε

0

(t1 − s)α−1h(x(s))ds‖X

+ ‖
(
Sα(t2)− Sα(t1)

) 1
Γ(α)

∫ t1

t1−ε
(t1 − s)α−1h(x(s))ds‖X
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≤ sup ‖Sα(t2)− Sα(t1)‖ 1
Γ(α)

[ 1− β
α− β

]1−β(
t
α−β
1−β
1 − ε

α−β
1−β
)1−β

K2

+
2M0

Γ(α)

[ 1− β
α− β

]1−β
εα−βK2,

I6 ≤ ‖
∫ t1−ε

0

(t1 − s)α−1
(
Tα(t2 − s)− Tα(t1 − s)

)
f(s)ds‖X

+ ‖
∫ t1

t1−ε
(t1 − s)α−1

(
Tα(t2 − s)− Tα(t1 − s)

)
f(s)ds‖X

≤ sup
s∈[0,t1−ε]

‖Tα(t2 − s)− Tα(t1 − s)‖
[ 1− β
α− β

]1−β(
t
α−β
1−β
1 − ε

α−β
1−β
)1−β

K1

+
2M0

Γ(α)

[ 1− β
α− β

]1−β
εα−βK1.

Combining the estimations for I1, I2, I3, I4, I5, I6 and letting t2 → t1, and ε→ 0 in
I3, I6, we conclude that H is equicontinuous.
Step 3: The set Π(t) = {H(f, h)(t) : f, h ∈ C} is relatively compact in X. Clearly,
Π(0) = {0} is compact, and hence, it is only necessary to consider t > 0. For each
g ∈ (0, t), t ∈ (0, b], f, h ∈ C, and δ > 0 being arbitrary, we define

Πg,δ(t) = {Hg,δ(f, h)(t) : f, h ∈ C},

where

Hg,δ(f, h)(t)

=
∫ ∞
δ

ξα(θ)Q(tαθ)
[
x0 +

1
Γ(α)

∫ t−g

0

(t− s)α−1h(x(s))ds
]
dθ

+ α

∫ t−g

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)Q((t− s)αθ)f(s)dθds

= Q(gαδ)
∫ ∞
δ

ξα(θ)Q(tαθ − gαδ)
[
x0 +

1
Γ(α)

∫ t−g

0

(t− s)α−1h(x(s))ds
]
dθ

+ αQ(gαδ)
∫ t−g

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)Q
(
(t− s)αθ − gαδ

)
f(s)dθds

:= Q(gαδ)y(t, g).

Because Q(gαδ) is compact and y(t, g) is bounded, we obtain that the set Πg,δ(t)
is relatively compact in X for any g ∈ (0, t) and δ > 0. Moreover, we have

‖H(f, h)(t)−Hg,δ(f, h)(t)‖X

=
∥∥∥∫ δ

0

ξα(θ)Q(tαθ)
[
x0 +

1
Γ(α)

∫ t

0

(t− s)α−1h(x(s))ds
]
dθ

+
∫ ∞
δ

ξα(θ)Q(tαθ)
[
x0 +

1
Γ(α)

∫ t

0

(t− s)α−1h(x(s))ds
]
dθ

−
∫ ∞
δ

ξα(θ)Q(tαθ)
[
x0 +

1
Γ(α)

∫ t−g

0

(t− s)α−1h(x(s))ds
]
dθ

+ α

∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)Q((t− s)αθ)f(s)dθds
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+
∫ t

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)Q((t− s)αθ)f(s)dθds

−
∫ t−g

0

∫ ∞
δ

θ(t− s)α−1ξα(θ)Q((t− s)αθ)f(s)dθds
∥∥∥
X

≤ ‖
∫ δ

0

ξα(θ)Q(tαθ)
[
x0 +

1
Γ(α)

∫ t

0

(t− s)α−1h(x(s))ds
]
dθ‖X

+ ‖
∫ ∞
δ

ξα(θ)Q(tαθ)
[

1
Γ(α)

∫ t

t−g
(t− s)α−1h(x(s))ds

]
dθ‖X

+ α‖
∫ t

0

∫ δ

0

θ(t− s)α−1ξα(θ)Q((t− s)αθ)f(s)dθds‖X

+ α‖
∫ t

t−g

∫ ∞
δ

θ(t− s)α−1ξα(θ)Q((t− s)αθ)f(s)dθds‖X

≤M0

∫ δ

0

ξα(θ)dθ
[
‖x0‖X +

1
Γ(α)

(∫ t

0

(t− s)
α−1
1−β ds

)1−β
‖h(x)‖L1/β(J:X,X)

]
+

M0

Γ(α)

∫ ∞
δ

ξα(θ)dθ
[( ∫ t

t−g
(t− s)

α−1
1−β ds

)1−β
‖h(x)‖L1/β(J:X,X)

]
+M0α

(∫ t

0

(t− s)
α−1
1−β ds

)1−β
‖f‖L1/β(J,X)

∫ δ

0

θξα(θ)dθ

+M0α
(∫ t

t−g
(t− s)

α−1
1−β ds

)1−β
‖f‖L1/β(J,X)

∫ ∞
δ

θξα(θ)dθ

≤M0

{∫ δ

0

ξα(θ)dθ
[
‖x0‖X +

K2

Γ(α)

[ 1− β
α− β

]1−β
bα−β

]
+
[ K2

Γ(α)
[ 1− β
α− β

]1−β
gα−β

]}
+M0K1α

[ 1− β
α− β

]1−β(
bα−β

∫ δ

0

θξα(θ)dθ +
1

Γ(1 + α)
gα−β

)
.

By Definition 2.6 and Remark 2.7, we deduce that the Right hand side of the
above inequality tends to zero as g → 0 and δ → 0. Therefore, there are relatively
compact sets arbitrarily close to the set Π(t), t > 0. Hence the set Π(t), t > 0 is
also relatively compact in X.

Since Xϕ is a convex compact metrizable subset of ω-L1/β(J,X), it suffices to
prove the sequential continuity of the map H. Now let {fn}n≥1, {hn}n≥1 ⊆ Xϕ

such that
fn → f and hn → h in ω-L1/β(J,X), f, h ∈ Xϕ.

By the properties of the operator H, we have H(fn, hn) → H(f, h) in ω-C(J,X).
Since {fn}n≥1 and {hn}n≥1 are bounded, there are subsequences {fnk}k≥1 and
{hnk}k≥1 of {fn}n≥1 and {fn}n≥1, respectively, such that H(fnk , hnk) → z in
C(J,X) for some z ∈ C(J,X). From the facts that

H(fn, hn)→ H(f, h) in ω-C(J,X), and H(fnk , hnk)→ z in C(J,X),

we obtain that z = H(f, h) and H(fn, hn)→ H(f, h) in C(J,X). �

4. Existence results for control systems

In this section, we shall prove the existence of solutions for the control systems
(1.1)–(1.3) and (1.1)–(1.2), (1.4).
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Let Λ = H(Xϕ). From Lemma 3.3, we have Λ is a compact subset of C(J,X). It
follows from (3.8) and (3.10) that T rU ⊆ T rcoU ⊆ Λ. Let U : C(J,X)→ 2L

1/β(J,Y )

be defined by

U(x) = {θ : J → Y measurable : θ(t) ∈ U(t, x(t)) a.e.}, x ∈ C(J,X). (4.1)

Theorem 4.1. The set RU is nonempty and the set RcoU is a compact subset of
the space C(J,X)× ω-L1/β(J, Y ).

Proof. By the hypotheses (H6.1) and (H6.2), we have that for any measurable
function x : J → X, the map t→ U(t, x(t)) is measurable and has closed values [14,
Proposition 2.7.9]. Therefore it has measurable selectors [13]. So the operator U is
well defined and its values are closed decomposable subsets of L1/β(J, Y ). We claim
that x → U(x) is l.s.c. Let x∗ ∈ C(J,X), θ∗ ∈ U(x∗) and let {xn}n≥1 ⊆ C(J,X)
be a sequence converging to x∗. It follows from [30, Lemma 3.2] that there is a
sequence θn ∈ U(xn) such that

‖θ∗(t)− θn(t)‖Y ≤ dY (θ∗(t), U(t, xn(t))) +
1
n
, a.e. t ∈ J. (4.2)

Since the map y → U(t, y) is H-continuous a.e. t ∈ J (by (H6.2)), then for a.e.
t ∈ J , the map y → U(t, y) is l.s.c. [14, Proposition 1.2.66]. Hence by Proposition
1.2.26 in [14], the function y → dY (θ∗(t), U(t, y)) is u.s.c. for a.e. t ∈ J . It follows
from (4.2) that, for a.e. t ∈ J ,

lim
n→∞

‖θ∗(t)− θn(t)‖Y ≤ lim sup
n→∞

dY (θ∗(t), U(t, xn(t)))

≤ dY (θ∗(t), U(t, x∗(t))) = 0.

This, together with (3.8), implies that θn → θ∗ in L1/β(J, Y ). Therefore the map
x → U(x) is l.s.c. By [25, Proposition 2.2] (also see [14, Theorem 2.8.7]), there
exists a continuous function m : Λ→ L1/β(J, Y ) such that

m(x) ∈ U(x), for all x ∈ Λ. (4.3)

Consider the map P : L1/β(J,X) → L1/β(J, Y ) defined by P(f, h) = m(H(f, h)).
Due to Lemma 3.3 and the continuity of m, the map P is continuous from ω-Xϕ into
L1/β(J, Y ). Then by Lemma 3.2, we deduce that the maps f → A1(H(f),P(f)) and
h → A2(H(h),P(h)) are continuous from ω-Xϕ into ω-L1/β(J,X). For short, we
denote g → A(H(g),P(g)), where g = (f, h). It follows from (3.8), (3.10) and (3.11)
that A(H(g),P(g)) ∈ Xϕ for every g ∈ Xϕ. Therefore, the map g → A(H(g),P(g))
is continuous from ω-Xϕ into ω-Xϕ. Since ω-Xϕ is a convex metrizable compact set
in ω-L1/β(J,X), Schauder’s fixed point theorem implies that this map has a fixed
point g∗ ∈ Xϕ; i.e., g∗ = A(H(g∗),P(g∗)). Let (u1,∗, u2,∗) = P(g∗) and x∗ = H(g∗),
then we have (u1,∗, u2,∗) = m(x∗), f∗ = A1(x∗, u1,∗) and h∗ = A2(x∗, u2,∗). That
is to say we have

x∗(t)

= H(g∗)(t)

= Sα(t)
[
x0 +

1
Γ(α)

∫ t

0

(t− s)α−1h(x∗(s), B2(s)u2,∗(s))ds
]

+
∫ t

0

(t− s)α−1Tα(t− s)
[
f(s, x∗(s)) +

∫ s

0

g(s, η, x∗(η), B1(η)u1,∗(η))dη
]
ds,
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u1,∗, u2,∗ ∈ U(t, x∗(t)) a.e. t ∈ J.

Which imply that (x∗(·), u1,∗(·), u2,∗(·)) is a solution of the control system (1.1)–
(1.3). Hence RU is nonempty.

It is easy to see that RcoU ⊆ Λ × Yϕ. Since Λ is compact in C(J,X) and
Yϕ is metrizable convex compact in ω-L1/β(J, Y ), we have that RcoU is relatively
compact in C(J,X)× ω-L1/β(J, Y ). Hence to complete the proof of this theorem,
it is sufficient to prove that RcoU is sequentially closed in C(J,X)× ω-L1/β(J, Y ).

Let {(xn(·), u1,n(·), u2,n(·))}n≥1 ⊆ RcoU be a sequence converging to the a func-
tion (x(·), u1(·), u2(·)) in the space C(J,X)× ω-L1/β(J, Y ). Denote

fn(t) = f(t, xn(t)) +
∫ t

0

g(t, s, xn(s), B1(s)u1,n(s))ds,

f(t) = f(t, x(t)) +
∫ t

0

g(t, s, x(s), B1(s)u1(s))ds,

hn(t) =
∫ t

0

(t− s)α−1h(xn(s), B2(t)u2,n(s))ds,

h(t) =
∫ t

0

(t− s)α−1h(x(s), B2(t)u2(s))ds

According to Lemma 3.2, fn → f, hn → h in ω-L1/β(J,X). Since fn, hn ∈ Xϕ and
xn = H(fn, hn), n ≥ 1, Lemma 3.3 implies that

x = H(f, h).

Hence, to prove that (x(·), u1(·), u2(·)) ∈ RcoU , we only need to verify that u1(t)
and u2(t) belong to coU(t, x(t)) a.e. t ∈ J .

Since u1,n → u1, u2,n → u2 in ω-L1/β(J, Y ), by Mazur’s theorem, we have

u1(t), u2(t) ∈ ∩∞n=1co
(
∪∞k=n uk(t)

)
, for a.e. t ∈ J. (4.4)

By (H6.2) and the fact that H(coA, coB) ≤ h(A,B) for sets A,B, the map x →
coU(t, x) is H-continuous. Then from [14, Proposition 1.2.86], the map x →
coU(t, x) has property Q. Therefore we have

∩∞n=1 co
(
∪∞k=n coU(t, xk(t))

)
⊆ coU(t, x(t)), for a.e. t ∈ J. (4.5)

By (4.4) and (4.5), we obtain that u1(t), u2(t) ∈ coU(t, x(t)) a.e. t ∈ J . This means
that RcoU is compact in C(J,X)× ω-L1/β(J, Y ). �

5. Main results

Now we are in a position to state and prove the main results of this work.

Theorem 5.1. For any (x∗(·), u1,∗(·), u2,∗(·)) ∈ RcoU , we have that there exists a
sequence (xn(·), u1,n(·), u2,n(·)) ∈ RU , n ≥ 1, such that

xn → x∗ in C(J,X), (5.1)

u1,n → u1,∗; u2,n → u2,∗ in L1/β
ω (J, Y ) and in ω-L1/β(J, Y ). (5.2)

Moreover, we have
T rU = T rcoU , (5.3)

where the bar stands for the closure in the space C(J,X).
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Proof. Let (x∗(·), u1,∗(·), u2,∗(·)) ∈ RcoU , then u1,∗(t), u2,∗(t) ∈ coU(t, x∗(t)) a.e.
t ∈ J . It follows from (H6.1), (H6.2) and (3.8) that the map t → U(t, x∗(t)) is
measurable and integrally bounded. Hence by using [26, Theorem 2.2], we have
that, for any n ≥ 1, there exist measurable selections v1,n(t) and v1,n(t) of the
multivalued map t→ U(t, x∗(t)) such that

sup
0≤t1≤t2≤b

∥∥∫ t2

t1

(ui,∗(s)− vi,n(s))ds
∥∥
Y
≤ 1
n
, i = 1, 2. (5.4)

For each fixed n ≥ 1, by (H6.2), we have that, for any x ∈ X and a.e. t ∈ J , there
exist vi ∈ U(t, x), i = 1, 2, such that

‖vi,n(t)− vi‖Y < ki(t)‖x∗(t)− x‖X +
1
n
, i = 1, 2. (5.5)

Let a map Υn : J ×X → 2Y be defined by

Υn(t, x) = {vi ∈ Y : vi, i = 1, 2, satisfy inequality (5.5)}. (5.6)

It follows from (5.5) that Υn(t, x) is well defined for a.e. on J and all x ∈ X, and its
values are open sets. Using [27, Corollary 2.1] (since we can assume without loss of
generality that U(t, x) is Σ⊗BX measurable, see [14, Proposition 2.7.9]), we obtain
that, for any ε > 0, there is a compact set Jε ⊆ J with µ(J\Jε) ≤ ε, such that the
restriction of U(t, x) to Jε×X is l.s.c and the restrictions of v1,n(t), v2,n(t), k1(t) and
k2(t) to Jε are continuous. So (5.5) and (5.6) imply that the graph of the restriction
of Υn(t, x) to Jε ×X is an open set in Jε ×X × Y . Let a map Υ : J ×X → 2Y be
defined by

Υ(t, x) = Υn(t, x) ∩ U(t, x). (5.7)

It is obvious that, for a.e. t ∈ J and all x ∈ X, Υ(t, x) 6= ∅. Due to the arguments
above and Proposition 1.2.47 in [14], we know that the restriction of Υ(t, x) to
Jε ×X is l.s.c. and so does Υ(t, x) = Υ(t, x), here the bar stands for the closure of
a set in Y .

Now we consider the system (1.1), (1.2) with the constraint on the controls

u1(t), u2(t) ∈ Υ(t, x(t)) a.e. on J. (5.8)

Since Υ(t, x) ⊆ U(t, x), then a priori estimate Lemma 3.1 also holds in this sit-
uation. Repeating the proof of Theorem 4.1, we obtain that there is a solution
(xn(·), u1,n(·), u2,n(·)) of the control system (1.1),(1.2), (5.8). The definition of Υ
implies that (xn(·), u1,n(·), u2,n(·)) ∈ RU and

‖vi,n(t)− ui,n(t)‖Y ≤ ki(t)‖x∗(t)− xn(t)‖X +
1
n
, i = 1, 2. (5.9)

Since (xn(·), u1,n(·), u2,n(·)) ∈ RU , n ≥ 1, and (x∗(·), u1,∗(·), u2,∗(·)) ∈ RcoU , we
have

x∗(t) = Sα(t)
[
x0 +

1
Γ(α)

∫ t

0

(t− s)α−1h(x∗(s), B2(s)u2,∗(s))ds
]

+
∫ t

0

(t− s)α−1Tα(t− s)
[
f(s, x∗(s))

+
∫ s

0

g(s, η, x∗(η), B1(η)u1,∗(η))dη
]
ds,

(5.10)
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and

xn(t) = Sα(t)
[
x0 +

1
Γ(α)

∫ t

0

(t− s)α−1h(xn(s), B2(s)u2,n(s))ds
]

+
∫ t

0

(t− s)α−1Tα(t− s)
[
f(s, xn(s))

+
∫ s

0

g(s, η, xn(η), B1(η)u1,n(η))dη
]
ds.

(5.11)

Theorem 4.1 and {(xn(·), u1,n(·)), u1,n(·))}n≥1 ⊆ RU ⊆ RcoU imply that we can
assume, possibly up to a subsequence, that the sequence (xn(·), u1,n(·), u2,n(·)) →
(x(·), u1(·), u2(·)) ∈ RcoU in C(J,X)×ω-L1/β(J, Y ). Subtracting (5.11) from (5.10),
using (H2.2), (H3.2),(H4.2), (H5.2) and (5.9), and according to previous estimations
of our sufficient set of conditions, it is easy to get

‖x∗(t)− x(t)‖X ≤ τ
∫ t

0

(t− s)α−1‖x∗(s)− x(s)‖Xds,

where τ is a positive constant. Then by [11, Theorem 3.1], we obtain x∗ = x;
i.e., we have xn → x∗ in C(J,X). Hence from (5.9), we have (v1,n − u1,n) →
0, (v2,n−u2,n)→ 0 in L1/β(J, Y ). Therefore, u1,n = u1,n−v1,n+v1,n → u1,∗, u2,n =
u2,n − v2,n + v2,n → u2,∗ in ω-L1/β(J, Y ) and L1/β

ω (J, Y ), i.e., (5.1) and (5.2) hold.
Since it is clear that T rU ⊆ T rcoU and T rcoU is compact in C(J,X) by Theorem

4.1, then from the proof of the first part of this theorem, we have

T rU = T rcoU ,

where the bar stands for the closure in C(J,X). �
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