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ROBIN BOUNDARY-VALUE PROBLEMS FOR QUASILINEAR
ELLIPTIC EQUATIONS WITH SUBCRITICAL AND CRITICAL

NONLINEARITIES

DIMITRIOS A. KANDILAKIS, MANOLIS MAGIROPOULOS

Abstract. By using variational methods we study the existence of positive

solutions for a class of quasilinear elliptic problems with Robin boundary con-
ditions.

1. Introduction

Let Ω be a bounded domain in RN with a smooth boundary ∂Ω. In this article
we study the nonlinear Robin problem:

−∆pu = λ|u|p−2u+ a(x)|u|q−2u in Ω,

|∇u|p−2 ∂u

∂η
+ b(x)|u|p−2u = µρ(x)|u|r−2u on ∂Ω,

where ∆pu := div(|∇u|p−2∇u), 1 < p < N , denotes the p-Laplace operator, ∂u
∂η (x)

denotes the outward unit normal at x ∈ ∂Ω, λ, µ are parameters, µ > 0, a : Ω→ R,
b, ρ : ∂Ω → R are essentially bounded functions, with b(x) ≥ 0 and mx ∈ ∂Ω :
b(·) > 0} > 0. Restrictions on q, r are given in the subsequent sections. With
respect to the parameter µ, we notice that its role is crucial in the critical case
examined in Section 3.

Quasilinear problems of the form −∆pu = f(x, u) with Dirichlet boundary con-
ditions have received considerable attention; see [2, 8, 16, 20, 23]. This equation
with Neumann boundary conditions (i.e. b(·) ≡ 0 and ρ(·) ≡ 0) and a(·) being a
constant has been studied in [4], where existence of solutions has been provided for
λ ∈ (0, λ∗), for a suitable λ∗ > 0. The same authors in [3] provide positive solutions
to the aforementioned problem but with a critical term added to the right hand
side of (1). In [5] the existence of solutions is proved for (1)-(1) when λ appears on
the boundary condition, a(·) ≡ 0, and r can be subcritical, critical or supercritical.
Multiplicity of solutions is examined in [18] where the right hand side of (1) is a
real Carathéodory function f(x, u, λ) defined on Ω×R×(0,+∞) and the boundary
condition is Neumann. Multiplicity of solutions is also proved in [17] for λ > λ2,
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for λ2 being the second eigenvalue of the p-Laplacian operator with Robin bound-
ary conditions, while in [19] existence of positive solutions is shown for λ < λ1.
Existence of solutions depending on the Fuc̆ik spectrum of the p-Laplace operator
is examined in [24]. When Ω is an exterior domain, existence and nonexistence of
solutions is examined in [10]. In case the potential is nonsmooth we refer to [11].
The fibering method, attributed to Pohozaev, is useful when the right hand sides of
the equation and the boundary condition are power-like, see [7], [21]. For systems
of equations the interested reader may see [6].

Our aim in this work is to provide existence results concerning positive solutions
to (1)-(1) when q is either subcritical or critical, r is subcritical and λ ≤ λ1,
where λ1 is the first eigenvalue of the associated eigenvalue problem. When the
exponents are subcritical, our proofs rely on the fibering method and the mountain
pass theorem developed in Ambrosetti-Rabinowitz [1], while in the case of q being
critical we use the concentration-compactness principle of Lions [13, 14]. A useful
survey of results concerning the mountain pass theorem is provided in [22].

As usual X := W 1,p(Ω) is equipped with the norm

‖u‖1,p =
(∫

Ω

|∇u|pdx+
∫

Ω

|u|pdx
)1/p

.

The action functional I(·) corresponding to problem (1)-(1) is defined on X by

Iλ(u) =
1
p

[ ∫
Ω

|∇u|pdx− λ
∫

Ω

|u|pdx+
∫
∂Ω

b(x)|u|pdσ
]
− 1
q
A(u)− µ

r
P (u),

where P (u) :=
∫
∂Ω
ρ(x)|u|rdσ and A(u) :=

∫
Ω
a(x)|u|qdx.

Consider the eigenvalue problem

−div(|∇u|p−2∇u) = λ|u|p−2u in Ω, (1.1)

|∇u|p−2 ∂u

∂η
+ b(x)|u|p−2u = 0 on ∂Ω. (1.2)

It is known that the smallest eigenvalue λ1 is isolated and positive with correspond-
ing normalized eigenvector u1 ∈ C1(Ω) (that is, ‖u1‖ = 1) which is positive in Ω,
[12, Lemma 5.3]. Furthermore,

λ1 = inf
{∫

Ω
|∇u|pdx+

∫
∂Ω
b(x)|u|pdσ∫

Ω
|u|pdx

: u ∈W 1,p(Ω)\{0}
}
. (1.3)

2. Subcritical exponents

In what follows we assume that 1 < q < p∗ := Np
N−p and 1 < r < p̂∗ := p(N−1)

N−p .

2.1. Existence of solutions when λ < λ1.

Lemma 2.1. The expression

[u] =
[∫

Ω

|∇u|pdx− λ
∫

Ω

|u|pdx+
∫
∂Ω

b(x)|u|pdσ
]1/p

is a norm on X and is equivalent to ‖ · ‖1,p.

The proof of the above lemma follows from [4, Proposition 2].
Depending on the relative ordering of the exponents p, q, r, we distinguish the

following four cases.
Case 1. p < min{q, r}. We assume
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(H1) a(·) ≥ 0 and m{x ∈ Ω : a(·) > 0} > 0.
(H2) ρ(·) ≥ 0 on ∂Ω and m{x ∈ ∂Ω : ρ(·) > 0} > 0.

Let Y be an Banach space and Σ := {A ⊆ X\{0} : A is closed and A = −A}. The
genus of a set A ∈ Σ is defined by

γ(A) := min{n ∈ N : ∃ϕ ∈ C(A,Rn\{0}) with ϕ(x) = −ϕ(−x)}.

Theorem 2.2. Suppose that I : Y → R is an even C1(Y,R) function such that:
(i) I satisfies the Palais-Smale condition.

(ii) I(u) > 0 if 0 < ‖u‖ < r and I(u) ≥ c > 0 if ‖u‖ = r, for some r > 0.
(iii) There exists a subspace Ym ⊆ E of dimension m and a compact subset

Am ⊆ Ym with I < 0 on Am such that 0 lies in a bounded component (in
Ym) of Ym\A.

Let Γ := {h ∈ C(Y, Y ) : h(0) = 0, h is an odd homeomorhism, I(h(B1)) ≥ 0},
Km := {K ⊆ Y : K is compact,K = −K, γ(K ∩ h(∂B1)) ≥ m for every h ∈ Γ},
where B1 denotes the unit ball of Y . Then

cm := inf
K∈Km

max
u∈K

I(u)

is a critical value of I with 0 < c < cm ≤ cm+1 < +∞. Furthermore, if cm =
cm+1 = · · · = cm+n, then γ(Kcm) ≥ n + 1, where Kcm := {u ∈ X : I ′(u) = 0,
I(u) = cm}.

For the proof of the above Theorem we refer the reader to [1].

Theorem 2.3. Assume that (H1) and (H2) hold. Then (1)-(1) admits infinitely
many solutions.

Proof. We will show first that I satisfies the Palais-Smale condition. So let {un}n∈N
be a sequence in X such that |I(un)| ≤M and I ′(un)→ 0. For k ∈ (p, min{q, r})
we have

−M + on(1)[un] ≤ I(un)− 1
k
I ′(un)un ≤M + on(1)[un],

and so

−M + on(1)[un] ≤
(1
p
− 1
k

)
[un]p +

(1
k
− 1
q

)
A(un) + µ

(1
k
− 1
r

)
P (un)

≤M + on(1)[un],
(2.1)

which implies {un}n∈N is bounded in X. Without loss of generality we may assume
that un → u weakly in X and strongly in Lp(Ω), Lq(Ω), Lp(∂Ω) and Lr(∂Ω).
Therefore, ∫

Ω

|∇u|p−2∇u∇(un − u)dx→ 0, (2.2)∫
Ω

a(|un|q−2un − |u|q−2u)(un − u)dx→ 0, (2.3)∫
∂Ω

b(|un|p−2un − |u|p−2u)(un − u)dσ → 0, (2.4)∫
∂Ω

ρ(|un|r−2un − |u|r−2u)(un − u)dσ → 0 (2.5)

as n→ +∞. Since I ′(un)→ 0, (2.3)-(2.5) imply that

〈I ′(un)− I ′(u), un − u〉 → 0 as n→ +∞. (2.6)
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Thus, ∫
Ω

[
|∇un|p−2∇un − |∇u|p−2∇u

]
(∇un −∇u) dx

− λ
∫

Ω

(|un|p−2un − |u|p−2u)(un − u)dx

+
∫
∂Ω

b(|un|p−2un − |u|p−2u)(un − u)dσ

−
∫

Ω

a(|un|q−2un − |u|q−2u)(un − u)dx

− µ
∫
∂Ω

ρ(|un|r−2un − |u|r−2u)(un − u)dσ → 0 as n→ +∞.

Consequently,∫
Ω

[|∇un|p−2∇un − |∇u|p−2∇u](∇un −∇u)dx→ 0 as n→ +∞.

As a consequence of Holder’s inequality we have∫
Ω

[|∇un|p−2∇un − |∇u|p−2∇u](∇un −∇u)dx

≥
[( ∫

Ω

|∇un|pdx
)(p−1)/p

−
(∫

Ω

|∇u|pdx
)(p−1)/p]

×
[( ∫

Ω

|∇un|pdx
)1/p

−
(∫

Ω

|∇u|pdx
)1/p]

.

(2.7)

Therefore, ‖un‖1,p → ‖u‖1,p. The uniform convexity of X implies that un → u in
X. Note that

I(u) =
1
p

[u]p − 1
q
A(u)− µ

r
P (u) ≥ 1

p
[u]p − c1[u]q − c2[u]r,

by the Sobolev embedding, and so I(u) > 0 for ‖u‖ = ρ and I(u) ≥ c3 > 0 for
‖u‖ < ρ, provided ρ is sufficiently small. Suppose that {Xn}n∈N is a sequence of
subspaces of X with dimension dim(Xn) = n such that ∂u

∂η 6= 0 if u ∈ Xn\{0}.
Then, for u ∈ Bn1 := {v ∈ Xn : [v] = 1} and ζ sufficiently large

I(ζu) =
ζp

p
[u]p − ζq

q
A(u)− µζr

r
P (u) <

ζp

p
− ζq

q
min
u∈Bn1

A(u)− µζr

r
min
u∈Bn1

P (u) < 0.

We can now apply Theorem 2.2 to complete the proof. �

Case 2. 1 < r < q < p We assume
(H1’) a(·) ≥ 0 or a(·) ≤ 0 in Ω and m{x ∈ Ω : a(·) 6= 0} > 0.

Theorem 2.4. If 1 < r < q < p and (H1’), H(2) hold, then (1)-(1) admits a
positive solution.

Proof. Assume first that a(·) ≥ 0. We consider the open set Z := {u ∈ X : A(u) >
0 or P (u) > 0}. �

For u ∈ Z, t ≥ 0, one forms

I(tu) =
tp

p
Hλ(u)− tq

q
A(u)− µtr

r
P (u),

where Hλ(u) := [u]p.
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For t > 0, let

It(tu) = tp−1Hλ(u)− tq−1A(u)− µtr−1P (u).

For critical points, we obtain

tpHλ(u)− tqA(u)− µtrP (u) = 0, (2.8)

that has always a unique solution t = t(u). Let Sλ = Z ∩ {u ∈ X : Hλ(u) = 1}.
We notice that {t(u) : u ∈ Sλ} is bounded.

For u ∈ Z, we define Î(u) := I(t(u)u). In view of (2.8),

Î(u) =
(1
p
− 1
q

)
t(u)pHλ(u) +

(1
q
− 1
r

)
µt(u)rP (u) < 0. (2.9)

Notice that Î(·) is bounded below in Sλ. Let M = infu∈Sλ Î(u). Let {un}n∈N ⊆ Sλ
be a minimizing sequence for Î/Sλ. Since {un}n∈N is bounded in X, we may assume
that un ⇀ u in X. At the same time, t(un) → t̂ in R. Thus t(un)un ⇀ t̂u in X.
By weak lower semicontinuity of I(·), we have

I(t̂u) ≤ lim inf
n→+∞

I(t(un)un) = M.

Thus t̂u 6= 0. Because of the corresponding compact Sobolev embeddings, A(un)→
A(u) and P (un)→ P (u). Exploiting (2.8) for each n, one has

t(un)p−r = t(un)q−rA(un) + µP (un).

Letting n→ +∞, we obtain

t̂p−r = t̂q−rA(u) + µP (u). (2.10)

Since t̂ > 0, either A(u) > 0 or P (u) > 0, thus u ∈ Z, and t(u) is well defined. The
weak lower semicontinuity of the norm applies to give

t̂p−rHλ(u) ≤ t̂q−rA(u) + µP (u) (2.11)

or
Hλ(u) ≤ t̂q−pA(u) + t̂r−pµP (u).

At the same time,

Hλ(u) = t(u)q−pA(u) + t(u)r−pµP (u).

Since the map f(t) = tq−pA(u)+tr−pµP (u), t > 0 is strictly decreasing, the last two
relations imply t̂ ≤ t(u). Let us assume that t̂ < t(u). We set F (y) := I(yu), y ≥
0. For y ∈ [t̂, t(u)], one has F ′(y) = yp−1Hλ(u) − yq−1A(u) − yr−1µP (u) =
yr−1[yp−rHλ(u)−yq−rA(u)−µP (u)], which is negative everywhere but at y = t(u),
since (2.8) has a unique solution. Thus F (y) is strictly decreasing in [t̂, t(u)], so

I(t(u)u) < I(t̂u) ≤M.

We take k > 0 such that ku ∈ Sλ (actually, combining (2.10) and (2.11) one sees
that k ≥ 1). We have

t(ku)p = t(ku)qA(ku) + t(ku)rµP (ku)

or (
kt(ku)

)p
Hλ(u) =

(
kt(ku)

)q
A(u) +

(
kt(ku)

)r
µP (u),

thus kt(ku) = t(u). Then

I(t(ku)ku) = I(t(u)u) < I(t̂u) ≤M,
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which is a contradiction. Thus t̂ = t(u), Hλ(u) = 1, and t(u)u is a nontrivial solu-
tion of our problem. Since |t(u)u| will also be a minimizer, by Harnack’s inequality
we may assume that t(u)u is positive.

If a(·) ≤ 0 in Ω, we define Ẑ := {u ∈ X : P (u) > 0}. It is clear that (2.8)
has a unique positive solution and M < 0. Furthermore, since the limit u of a
minimizing sequence satisfies (2.10), we have that P (u) > 0. Thus u ∈ Ẑ and
|t(u)u| is a positive solution of (1),1.
Case 3. 1 < q < r < p.

Theorem 2.5. Suppose that 1 < q < r < p and (H1), (H2) hold. Then (1)-(1)
admits a positive solution.

Proof. Note that for every u ∈ Z (2.8) has a unique positive solution t := t(u).
Furthermore, the set {t(u) : u ∈ Z} is bounded. Let Î(u) := I(t(u)u). Then, in
view of (2.8),

Î(u) = tp
(1
p
− 1
q

)
+ µtr

(1
q
− 1
r

)
P (u)

≤ tp
(1
p
− 1
q

)
+ tp

(1
q
− 1
r

)
= tp

(1
p
− 1
r

)
< 0.

(2.12)

We can now proceed as in case 2. �

Case 4. 1 < r < p < q. We assumpe
(H3) a(·) ≤ 0 and m{x ∈ Ω : a(·) < 0} > 0.

Theorem 2.6. If 1 < r < p < q and (H2), (H3) hold, then (1)-(1) admits a positive
solution.

Proof. Once more, (2.8) has a unique positive solution t := t(u) for every u ∈ Ẑ.
Furthermore, the set {t(u) : u ∈ Ẑ} is bounded and Î(u) < 0 in Ẑ. We proceed as
in case 2. �

2.1.1. Existence of solutions when λ = λ1. In this section we assume that (H2) and
(H3) hold.
Case 5. 1 < r < q < p.

Theorem 2.7. Assume that 1 < r < q < p and (H2), (H3) hold. then (1)-(1)
admits a positive solution.

Proof. Let HP
λ (u) := [u]p − A(u) and SPλ := {u ∈ X : P (u) > 0 and HP

λ (u) =
1}. If u ∈ SPλ , then (2.8) has a unique solution t(u) with Î(u) < 0. Define
M = infu∈SPλ Î(u) and assume that un ∈ SPλ is such that Î(un) → M . We claim
that ‖un‖1,p, n ∈ N, is bounded. Indeed, let us assume that it is not, that is,
‖un‖1,p → +∞. Define zn := un

dn
, where dn = ‖un‖1,p. Then

dpn[zn]p − dqnA(zn) = 1.

Consequently,

[zn]p ≤ 1
dpn
→ 0, 0 ≤ −A(zn) ≤ 1

dqn
→ 0. (2.13)

Thus
λ1

∫
Ω

|zn|pdx→ 1. (2.14)
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Since ‖zn‖1,p = 1, we may assume that zn → z weakly in X. Therefore, (2.14)
implies that

λ1

∫
Ω

|z|pdx = 1, (2.15)

and so z 6= 0. By (2.14) and (2.15) we see that [z] = 0, that is, z is an eigenvector
corresponding to λ1. On the other hand, since A(zn)→ A(z), (2.14) yields A(z) =
0, contradicting the fact z > 0 in Ω. Thus, ‖un‖1,p, n ∈ N, is indeed bounded.
So we may assume that un → u weakly in X. Note that, for an infinite number
of n′s, either [un]p ≥ 1

2 , or −A(un) ≥ 1
2 . In either case, (2.8) implies that r(un)

is bounded. Since (2.8) implies that P (u) > 0, we see that u ∈ SPλ . We can now
proceed as in case 1 to get a solution. �

Case 6. 1 < r < p < q.

Theorem 2.8. Assume that 1 < r < p < q and (H2), (H3) hold. Then (1)-(1)
admits a positive solution.

Proof. We use the inequality

Î(u) = tp
(1
p
− 1
q

)
+ µtr

(1
q
− 1
r

)
P (u)

≤ µtr
(1
p
− 1
q

)
P (u) + µtr

(1
q
− 1
r

)
P (u)

= µtr
(1
p
− 1
r

)
P (u) < 0,

to show that inf
u∈SPλ

Î(u) < 0 and by following the same steps as in case 5 we obtain

a positive solution. �

3. The critical case q = p∗

In this section we study the critical problem q = p∗ := Np
N−p . with p < r < p(N−1)

N−p.
and λ < λ1. The proof follows closely the lines of [9, Theorem 1.4]. Since the
embedding X ↪→ Lp

∗
(Ω) is no longer compact we do not expect that the Palais-

Smale condition holds. So we prove a local Palais-Smale condition which is true if
I(·) lies below a certain energy value.

In what follows we assume that a(·) ≡ 1 and (H2) holds. Consider the problem

−div(|∇u|p−2∇u) = λ|u|p−2u+ |u|q−2u in Ω, (3.1)

|∇u|p−2 ∂u

∂η
+ b(x)|u|p−2u = µρ(x)h(u) on ∂Ω. (3.2)

Let

S = inf
u∈D1,p(RN )\{0}

∫
Ω
|∇u|pdx∫

Ω
|u|p∗dx

,

be the best Sobolev constant, where u ∈ D1,p(RN ) is the completion of C∞0 (RN )
under the gradient norm.

Lemma 3.1. Suppose that {un}n∈N is a sequence in X satisfying the Palais-Smale
condition with energy level c < 1

N S
N
p , that is

I(un)→ c and I ′(un)→ 0.

Then {un}n∈N has a convergent subsequence in X.
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Proof. The boundedness of {un}n∈N is a consequence of (2.1). Thus, {un}n∈N has
a subsequence, still denoted by {un}n∈N, which converges weakly to u ∈ X. By
[15, Lemma 3.6] there exists a set of points {xj}j∈J ⊆ Ω, J at most countable, and
nonnegative numbers µj , νj satisfying

|∇un|p → µ ≥ |∇u|p +
∑
j∈J

µjδxj ,

|un|p
∗
→ ν = |u|p

∗
+
∑
j∈J

νjδxj ,

Sν
p
p∗

j ≤ µj if xj ∈ Ω,

Sν
p
p∗

j ≤ 2
p
N µj if xj ∈ ∂Ω.

Let k ∈ N, ε > 0 and take ϕ ∈ C∞(Ω) such that

ϕ ≡ 1 in B(xk, ε), ϕ ≡ 0 in X\B(xk, 2ε), |∇ϕ| ≤ 2
ε
.

Since I ′(un)(ϕun)→ 0 an n→ +∞, we obtain

lim
n→+∞

[ ∫
Ω

|∇un|p−2∇un∇ϕundx+
∫

Ω

|∇un|pϕdx
]

= λ

∫
Ω

|u|pϕdx−
∫
∂Ω

b(x)|u|pϕdσ + lim
n→+∞

∫
Ω

|un|p
∗
ϕdx+ µ

∫
∂Ω

ρ(x)|u|rϕdσ

= λ

∫
Ω

|u|pϕdx−
∫
∂Ω

|u|pϕdσ +
∫

Ω

ϕdν + µ

∫
∂Ω

ρ(x)|u|rϕdσ.

Note that, by the Holder inequality,

lim
n→+∞

∣∣ ∫
Ω

|∇un|p−2∇un∇ϕun dx
∣∣

≤ lim
n→+∞

(∫
Ω

|un|pϕdx
) p−1

p

lim
n→+∞

(∫
Ω

|∇ϕ|p|un|pdx
)1/p

≤ C
(∫

B(xk,2ε)∩Ω

|∇ϕ|p|u|pdx
)1/p

≤ C
(∫

B(xk,2ε)∩Ω

|∇ϕ|Ndx
)1/N(∫

B(xk,2ε)∩Ω

|u|p
∗
dx
)1/p∗

≤ C ′
∫
B(xk,2ε)∩Ω

|u|p
∗
dx→ 0 as ε→ 0,

and so

lim
ε→0

[ ∫
Ω

ϕdµ− λ
∫

Ω

|u|pϕdx+
∫
∂Ω

b(x)|u|pϕdσ −
∫

Ω

ϕdν − µ
∫
∂Ω

ρ(x)|u|rϕdσ
]

= µk − νk = 0.

Consequently, Sν
p
p∗

k ≤ νk if xk ∈ Ω or 2−
p
N Sν

p
p∗

k ≤ νk if xk ∈ ∂Ω, implying that
S
N
p ≤ νk if xk ∈ Ω or 1

2S
N
p ≤ νk if xk ∈ ∂Ω. On the other hand,

c = lim
n→+∞

I(un) = lim
n→+∞

I(un)− lim
n→+∞

1
p
I ′(un)(un)
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=
(1
p
− 1
p∗
) ∫

Ω

|u|p
∗

+
(1
p
− 1
p∗
) ∫

Ω

∑
j∈J

νjδxj + µ
(1
p
− 1
r

) ∫
∂Ω

ρ(x)|u|rdσ

≥
(1
p
− 1
p∗
)
νk =

1
N
SN/p.

Thus νk = 0 for every k ∈ J , implying that
∫

Ω
|un|p

∗
dx →

∫
Ω
|u|p∗dx. The result

follows by exploiting the continuity of the inverse p-Laplace operator. �

Theorem 3.2. There exists µ0 > 0 such that for µ ≥ µ0 problem (1)-(1) admits a
solution.

Proof. We will first verify the requirements for the mountain pass theorem. By the
Sobolev embedding and trace theorems we see that

I(u) =
1
p

[u]p − 1
p∗
A(u)− µ

r
P (u)

≥ 1
p

[u]p − C1[u]p
∗
− C2[u]r,

for some C1, C2 > 0,and so for a sufficiently small positive number β there exists
a > 0 such that I(u) > a > 0 for [u] = β. We now take v ∈ X\{0}. It is easy to
see that lims→+∞ I(sv) = −∞. Thus, I(s0v) < 0 for sufficiently large s0.

Let c := infγ∈Γ supt∈[0,1] I(γ(t)), where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) =

s0v}. We will show that c < 1
N S

N
p for large enough µ. Take z ∈ X such that

‖z‖p∗ = 1. The maximum value of η → I(ηz), η > 0, is assumed at the point ηµ
satisfying d

dη I(ηµz) = 0, that is

ηpµ[z]p = ηp
∗

µ ‖z‖
p∗

p∗ + µηrµP (z) = ηp
∗

µ + µηrµP (z). (3.3)

Therefore,
ηµ ≤ [z]

p
p∗−p ,

which, in view of (3.3), yields limµ→+∞ ηµ = 0. On the other hand,

I(ηµz) = ηpµ
(1
p
− 1
p∗
)
[z]p + µηrµ

( 1
p∗
− 1
r

)
P (z) ≤ ηpµ

(1
p
− 1
p∗
)
[z]p,

implying that limµ→+∞ I(ηµz) = 0. Thus, for large enough µ, say µ ≥ µ0, I(ηµz) <
1
N S

N
p . By Lemma 3.1, I(·) satisfies the Palais-Smale condition and the mountain

pass theorem provides a solution. �
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