Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 100, pp. 1–10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

ROBIN BOUNDARY-VALUE PROBLEMS FOR QUASILINEAR ELLIPTIC EQUATIONS WITH SUBCRITICAL AND CRITICAL NONLINEARITIES

DIMITRIOS A. KANDILAKIS, MANOLIS MAGIROPOULOS

ABSTRACT. By using variational methods we study the existence of positive solutions for a class of quasilinear elliptic problems with Robin boundary conditions.

1. INTRODUCTION

Let Ω be a bounded domain in \mathbb{R}^N with a smooth boundary $\partial\Omega$. In this article we study the nonlinear Robin problem:

$$\begin{split} &-\Delta_p u = \lambda |u|^{p-2} u + a(x) |u|^{q-2} u \quad \text{in } \Omega, \\ &|\nabla u|^{p-2} \frac{\partial u}{\partial \eta} + b(x) |u|^{p-2} u = \mu \rho(x) |u|^{r-2} u \quad \text{on } \partial \Omega \end{split}$$

where $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u), 1 , denotes the$ *p* $-Laplace operator, <math>\frac{\partial u}{\partial \eta}(x)$ denotes the outward unit normal at $x \in \partial\Omega$, λ , μ are parameters, $\mu > 0, a : \Omega \to \mathbb{R}$, $b, \rho : \partial\Omega \to \mathbb{R}$ are essentially bounded functions, with $b(x) \ge 0$ and $mx \in \partial\Omega : b(\cdot) > 0$ > 0. Restrictions on q, r are given in the subsequent sections. With respect to the parameter μ , we notice that its role is crucial in the critical case examined in Section 3.

Quasilinear problems of the form $-\Delta_p u = f(x, u)$ with Dirichlet boundary conditions have received considerable attention; see [2, 8, 16, 20, 23]. This equation with Neumann boundary conditions (i.e. $b(\cdot) \equiv 0$ and $\rho(\cdot) \equiv 0$) and $a(\cdot)$ being a constant has been studied in [4], where existence of solutions has been provided for $\lambda \in (0, \lambda^*)$, for a suitable $\lambda^* > 0$. The same authors in [3] provide positive solutions to the aforementioned problem but with a critical term added to the right hand side of (1). In [5] the existence of solutions is proved for (1)-(1) when λ appears on the boundary condition, $a(\cdot) \equiv 0$, and r can be subcritical, critical or supercritical. Multiplicity of solutions is examined in [18] where the right hand side of (1) is a real Carathéodory function $f(x, u, \lambda)$ defined on $\Omega \times \mathbb{R} \times (0, +\infty)$ and the boundary condition is Neumann. Multiplicity of solutions is also proved in [17] for $\lambda > \lambda_2$,

²⁰¹⁰ Mathematics Subject Classification. 35J50, 35J65, 47J10.

Key words and phrases. Quasilinear elliptic problems; Robin boundary condition;

subcritical nonlinearities; critical nonlinearities; fibering method; mountain pass theorem. ©2016 Texas State University.

Submitted February 2, 2016. Published April 19, 2016.

for λ_2 being the second eigenvalue of the *p*-Laplacian operator with Robin boundary conditions, while in [19] existence of positive solutions is shown for $\lambda < \lambda_1$. Existence of solutions depending on the Fučik spectrum of the p-Laplace operator is examined in [24]. When Ω is an exterior domain, existence and nonexistence of solutions is examined in [10]. In case the potential is nonsmooth we refer to [11]. The fibering method, attributed to Pohozaev, is useful when the right hand sides of the equation and the boundary condition are power-like, see [7], [21]. For systems of equations the interested reader may see [6].

Our aim in this work is to provide existence results concerning positive solutions to (1)-(1) when q is either subcritical or critical, r is subcritical and $\lambda \leq \lambda_1$, where λ_1 is the first eigenvalue of the associated eigenvalue problem. When the exponents are subcritical, our proofs rely on the fibering method and the mountain pass theorem developed in Ambrosetti-Rabinowitz [1], while in the case of q being critical we use the concentration-compactness principle of Lions [13, 14]. A useful survey of results concerning the mountain pass theorem is provided in [22].

As usual $X := W^{1,p}(\Omega)$ is equipped with the norm

$$\|u\|_{1,p} = \left(\int_{\Omega} |\nabla u|^p dx + \int_{\Omega} |u|^p dx\right)^{1/p}$$

The action functional $I(\cdot)$ corresponding to problem (1)-(1) is defined on X by

$$I_{\lambda}(u) = \frac{1}{p} \Big[\int_{\Omega} |\nabla u|^{p} dx - \lambda \int_{\Omega} |u|^{p} dx + \int_{\partial \Omega} b(x) |u|^{p} d\sigma \Big] - \frac{1}{q} A(u) - \frac{\mu}{r} P(u),$$

where $P(u) := \int_{\partial \Omega} \rho(x) |u|^r d\sigma$ and $A(u) := \int_{\Omega} a(x) |u|^q dx$.

Consider the eigenvalue problem

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = \lambda |u|^{p-2}u \quad \text{in }\Omega,$$
(1.1)

$$|\nabla u|^{p-2}\frac{\partial u}{\partial \eta} + b(x)|u|^{p-2}u = 0 \quad \text{on } \partial\Omega.$$
(1.2)

It is known that the smallest eigenvalue λ_1 is isolated and positive with corresponding normalized eigenvector $u_1 \in C^1(\Omega)$ (that is, $||u_1|| = 1$) which is positive in Ω , [12, Lemma 5.3]. Furthermore,

$$\lambda_1 = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p dx + \int_{\partial \Omega} b(x)|u|^p d\sigma}{\int_{\Omega} |u|^p dx} : u \in W^{1,p}(\Omega) \setminus \{0\} \right\}.$$
 (1.3)

2. Subcritical exponents

In what follows we assume that $1 < q < p^* := \frac{Np}{N-p}$ and $1 < r < \hat{p}^* := \frac{p(N-1)}{N-p}$.

2.1. Existence of solutions when $\lambda < \lambda_1$.

Lemma 2.1. The expression

$$[u] = \left[\int_{\Omega} |\nabla u|^p dx - \lambda \int_{\Omega} |u|^p dx + \int_{\partial \Omega} b(x) |u|^p d\sigma\right]^{1/p}$$

is a norm on X and is equivalent to $\|\cdot\|_{1,p}$.

The proof of the above lemma follows from [4, Proposition 2].

Depending on the relative ordering of the exponents p, q, r, we distinguish the following four cases.

Case 1. $p < \min\{q, r\}$. We assume

 $\mathrm{EJDE}\text{-}2016/100$

 $({\rm H1}) \ a(\cdot) \geq 0 \ {\rm and} \ m\{x \in \Omega: a(\cdot) > 0\} > 0.$

(H2) $\rho(\cdot) \ge 0$ on $\partial\Omega$ and $m\{x \in \partial\Omega : \rho(\cdot) > 0\} > 0$.

Let Y be an Banach space and $\Sigma := \{A \subseteq X \setminus \{0\} : A \text{ is closed and } A = -A\}$. The genus of a set $A \in \Sigma$ is defined by

$$\gamma(A) := \min\{n \in \mathbb{N} : \exists \varphi \in C(A, \mathbb{R}^n \setminus \{0\}) \text{ with } \varphi(x) = -\varphi(-x)\}.$$

Theorem 2.2. Suppose that $I: Y \to \mathbb{R}$ is an even $C^1(Y, \mathbb{R})$ function such that:

- (i) I satisfies the Palais-Smale condition.
- (ii) I(u) > 0 if 0 < ||u|| < r and $I(u) \ge c > 0$ if ||u|| = r, for some r > 0.
- (iii) There exists a subspace Y_m ⊆ E of dimension m and a compact subset A_m ⊆ Y_m with I < 0 on A_m such that 0 lies in a bounded component (in Y_m) of Y_m\A.

Let $\Gamma := \{h \in C(Y,Y) : h(0) = 0, h \text{ is an odd homeomorhism, } I(h(B_1)) \ge 0\}, K_m := \{K \subseteq Y : K \text{ is compact}, K = -K, \gamma(K \cap h(\partial B_1)) \ge m \text{ for every } h \in \Gamma\}, where B_1 denotes the unit ball of Y. Then$

$$c_m := \inf_{K \in K_m} \max_{u \in K} I(u)$$

is a critical value of I with $0 < c < c_m \le c_{m+1} < +\infty$. Furthermore, if $c_m = c_{m+1} = \cdots = c_{m+n}$, then $\gamma(K_{c_m}) \ge n+1$, where $K_{c_m} := \{u \in X : I'(u) = 0, I(u) = c_m\}$.

For the proof of the above Theorem we refer the reader to [1].

Theorem 2.3. Assume that (H1) and (H2) hold. Then (1)-(1) admits infinitely many solutions.

Proof. We will show first that I satisfies the Palais-Smale condition. So let $\{u_n\}_{n\in\mathbb{N}}$ be a sequence in X such that $|I(u_n)| \leq M$ and $I'(u_n) \to 0$. For $k \in (p, \min\{q, r\})$ we have

$$-M + o_n(1)[u_n] \le I(u_n) - \frac{1}{k}I'(u_n)u_n \le M + o_n(1)[u_n],$$

and so

$$-M + o_n(1)[u_n] \le \left(\frac{1}{p} - \frac{1}{k}\right)[u_n]^p + \left(\frac{1}{k} - \frac{1}{q}\right)A(u_n) + \mu\left(\frac{1}{k} - \frac{1}{r}\right)P(u_n)$$

$$\le M + o_n(1)[u_n],$$
(2.1)

which implies $\{u_n\}_{n\in\mathbb{N}}$ is bounded in X. Without loss of generality we may assume that $u_n \to u$ weakly in X and strongly in $L^p(\Omega)$, $L^q(\Omega)$, $L^p(\partial\Omega)$ and $L^r(\partial\Omega)$. Therefore,

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla (u_n - u) dx \to 0, \qquad (2.2)$$

$$\int_{\Omega} a(|u_n|^{q-2}u_n - |u|^{q-2}u)(u_n - u)dx \to 0,$$
(2.3)

$$\int_{\partial\Omega} b(|u_n|^{p-2}u_n - |u|^{p-2}u)(u_n - u)d\sigma \to 0, \qquad (2.4)$$

$$\int_{\partial\Omega} \rho(|u_n|^{r-2}u_n - |u|^{r-2}u)(u_n - u)d\sigma \to 0$$
(2.5)

as $n \to +\infty$. Since $I'(u_n) \to 0$, (2.3)-(2.5) imply that

$$\langle I'(u_n) - I'(u), u_n - u \rangle \to 0 \quad \text{as } n \to +\infty.$$
 (2.6)

Thus,

$$\begin{split} &\int_{\Omega} \left[|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u \right] (\nabla u_n - \nabla u) \, dx \\ &- \lambda \int_{\Omega} (|u_n|^{p-2} u_n - |u|^{p-2} u) (u_n - u) \, dx \\ &+ \int_{\partial \Omega} b(|u_n|^{p-2} u_n - |u|^{p-2} u) (u_n - u) \, d\sigma \\ &- \int_{\Omega} a(|u_n|^{q-2} u_n - |u|^{q-2} u) (u_n - u) \, dx \\ &- \mu \int_{\partial \Omega} \rho(|u_n|^{r-2} u_n - |u|^{r-2} u) (u_n - u) \, d\sigma \to 0 \quad \text{as } n \to +\infty. \end{split}$$

Consequently,

$$\int_{\Omega} [|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u] (\nabla u_n - \nabla u) dx \to 0 \quad \text{as } n \to +\infty.$$

As a consequence of Holder's inequality we have

$$\int_{\Omega} [|\nabla u_n|^{p-2} \nabla u_n - |\nabla u|^{p-2} \nabla u] (\nabla u_n - \nabla u) dx$$

$$\geq \left[\left(\int_{\Omega} |\nabla u_n|^p dx \right)^{(p-1)/p} - \left(\int_{\Omega} |\nabla u|^p dx \right)^{(p-1)/p} \right] \qquad (2.7)$$

$$\times \left[\left(\int_{\Omega} |\nabla u_n|^p dx \right)^{1/p} - \left(\int_{\Omega} |\nabla u|^p dx \right)^{1/p} \right].$$

Therefore, $||u_n||_{1,p} \to ||u||_{1,p}$. The uniform convexity of X implies that $u_n \to u$ in X. Note that

$$I(u) = \frac{1}{p}[u]^p - \frac{1}{q}A(u) - \frac{\mu}{r}P(u) \ge \frac{1}{p}[u]^p - c_1[u]^q - c_2[u]^r,$$

by the Sobolev embedding, and so I(u) > 0 for $||u|| = \rho$ and $I(u) \ge c_3 > 0$ for $||u|| < \rho$, provided ρ is sufficiently small. Suppose that $\{X_n\}_{n \in \mathbb{N}}$ is a sequence of subspaces of X with dimension $\dim(X_n) = n$ such that $\frac{\partial u}{\partial \eta} \neq 0$ if $u \in X_n \setminus \{0\}$. Then, for $u \in B_1^n := \{v \in X_n : [v] = 1\}$ and ζ sufficiently large

$$I(\zeta u) = \frac{\zeta^p}{p} [u]^p - \frac{\zeta^q}{q} A(u) - \frac{\mu \zeta^r}{r} P(u) < \frac{\zeta^p}{p} - \frac{\zeta^q}{q} \min_{u \in B_1^n} A(u) - \frac{\mu \zeta^r}{r} \min_{u \in B_1^n} P(u) < 0.$$

We can now apply Theorem 2.2 to complete the proof.

We can now apply Theorem 2.2 to complete the proof.

Case 2. 1 < r < q < p We assume

(H1') $a(\cdot) \ge 0$ or $a(\cdot) \le 0$ in Ω and $m\{x \in \Omega : a(\cdot) \ne 0\} > 0$.

Theorem 2.4. If 1 < r < q < p and (H1'), H(2) hold, then (1)-(1) admits a positive solution.

Proof. Assume first that $a(\cdot) \ge 0$. We consider the open set $Z := \{u \in X : A(u) > u \le 0\}$ $0 \text{ or } P(u) > 0 \}.$

For $u \in Z$, $t \ge 0$, one forms

$$I(tu) = \frac{t^p}{p} H_{\lambda}(u) - \frac{t^q}{q} A(u) - \frac{\mu t^r}{r} P(u),$$

where $H_{\lambda}(u) := [u]^p$.

EJDE-2016/100

For t > 0, let

$$I_t(tu) = t^{p-1} H_{\lambda}(u) - t^{q-1} A(u) - \mu t^{r-1} P(u).$$

For critical points, we obtain

$$t^{p}H_{\lambda}(u) - t^{q}A(u) - \mu t^{r}P(u) = 0, \qquad (2.8)$$

that has always a unique solution t = t(u). Let $S_{\lambda} = Z \cap \{u \in X : H_{\lambda}(u) = 1\}$. We notice that $\{t(u) : u \in S_{\lambda}\}$ is bounded.

For $u \in Z$, we define $\widehat{I}(u) := I(t(u)u)$. In view of (2.8),

$$\widehat{I}(u) = \left(\frac{1}{p} - \frac{1}{q}\right) t(u)^p H_{\lambda}(u) + \left(\frac{1}{q} - \frac{1}{r}\right) \mu t(u)^r P(u) < 0.$$
(2.9)

Notice that $\widehat{I}(\cdot)$ is bounded below in S_{λ} . Let $M = \inf_{u \in S_{\lambda}} \widehat{I}(u)$. Let $\{u_n\}_{n \in \mathbb{N}} \subseteq S_{\lambda}$ be a minimizing sequence for \widehat{I}/S_{λ} . Since $\{u_n\}_{n \in \mathbb{N}}$ is bounded in X, we may assume that $u_n \rightharpoonup u$ in X. At the same time, $t(u_n) \rightarrow \widehat{t}$ in \mathbb{R} . Thus $t(u_n)u_n \rightharpoonup \widehat{t}u$ in X. By weak lower semicontinuity of $I(\cdot)$, we have

$$I(\widehat{t}u) \le \liminf_{n \to +\infty} I(t(u_n)u_n) = M.$$

Thus $\hat{t}u \neq 0$. Because of the corresponding compact Sobolev embeddings, $A(u_n) \rightarrow A(u)$ and $P(u_n) \rightarrow P(u)$. Exploiting (2.8) for each n, one has

$$t(u_n)^{p-r} = t(u_n)^{q-r}A(u_n) + \mu P(u_n)$$

Letting $n \to +\infty$, we obtain

$$\hat{t}^{p-r} = \hat{t}^{q-r}A(u) + \mu P(u).$$
 (2.10)

Since $\hat{t} > 0$, either A(u) > 0 or P(u) > 0, thus $u \in Z$, and t(u) is well defined. The weak lower semicontinuity of the norm applies to give

$$\widehat{t}^{p-r}H_{\lambda}(u) \le \widehat{t}^{q-r}A(u) + \mu P(u)$$
(2.11)

or

$$H_{\lambda}(u) \le \hat{t}^{q-p} A(u) + \hat{t}^{r-p} \mu P(u).$$

At the same time,

$$H_{\lambda}(u) = t(u)^{q-p}A(u) + t(u)^{r-p}\mu P(u)$$

Since the map $f(t) = t^{q-p}A(u) + t^{r-p}\mu P(u), t > 0$ is strictly decreasing, the last two relations imply $\hat{t} \leq t(u)$. Let us assume that $\hat{t} < t(u)$. We set $F(y) := I(yu), y \geq 0$. For $y \in [\hat{t}, t(u)]$, one has $F'(y) = y^{p-1}H_{\lambda}(u) - y^{q-1}A(u) - y^{r-1}\mu P(u) = y^{r-1}[y^{p-r}H_{\lambda}(u) - y^{q-r}A(u) - \mu P(u)]$, which is negative everywhere but at y = t(u), since (2.8) has a unique solution. Thus F(y) is strictly decreasing in $[\hat{t}, t(u)]$, so

$$I(t(u)u) < I(\widehat{t}u) \le M$$

We take k > 0 such that $ku \in S_{\lambda}$ (actually, combining (2.10) and (2.11) one sees that $k \ge 1$). We have

$$t(ku)^p = t(ku)^q A(ku) + t(ku)^r \mu P(ku)$$

or

$$\left(kt(ku)\right)^{p}H_{\lambda}(u) = \left(kt(ku)\right)^{q}A(u) + \left(kt(ku)\right)^{r}\mu P(u),$$

thus kt(ku) = t(u). Then

$$I(t(ku)ku) = I(t(u)u) < I(\widehat{t}u) \le M,$$

which is a contradiction. Thus $\hat{t} = t(u)$, $H_{\lambda}(u) = 1$, and t(u)u is a nontrivial solution of our problem. Since |t(u)u| will also be a minimizer, by Harnack's inequality we may assume that t(u)u is positive.

If $a(\cdot) \leq 0$ in Ω , we define $\hat{Z} := \{u \in X : P(u) > 0\}$. It is clear that (2.8) has a unique positive solution and M < 0. Furthermore, since the limit u of a minimizing sequence satisfies (2.10), we have that P(u) > 0. Thus $u \in \hat{Z}$ and |t(u)u| is a positive solution of (1),1.

Case 3. 1 < q < r < p.

Theorem 2.5. Suppose that 1 < q < r < p and (H1), (H2) hold. Then (1)-(1) admits a positive solution.

Proof. Note that for every $u \in Z$ (2.8) has a unique positive solution t := t(u). Furthermore, the set $\{t(u) : u \in Z\}$ is bounded. Let $\widehat{I}(u) := I(t(u)u)$. Then, in view of (2.8),

$$\widehat{I}(u) = t^{p} \left(\frac{1}{p} - \frac{1}{q}\right) + \mu t^{r} \left(\frac{1}{q} - \frac{1}{r}\right) P(u)$$

$$\leq t^{p} \left(\frac{1}{p} - \frac{1}{q}\right) + t^{p} \left(\frac{1}{q} - \frac{1}{r}\right) = t^{p} \left(\frac{1}{p} - \frac{1}{r}\right) < 0.$$
(2.12)

We can now proceed as in case 2.

Case 4. 1 < r < p < q. We assume

(H3) $a(\cdot) \leq 0$ and $m\{x \in \Omega : a(\cdot) < 0\} > 0$.

Theorem 2.6. If 1 < r < p < q and (H2), (H3) hold, then (1)-(1) admits a positive solution.

Proof. Once more, (2.8) has a unique positive solution t := t(u) for every $u \in \hat{Z}$. Furthermore, the set $\{t(u) : u \in \hat{Z}\}$ is bounded and $\hat{I}(u) < 0$ in \hat{Z} . We proceed as in case 2.

2.1.1. Existence of solutions when $\lambda = \lambda_1$. In this section we assume that (H2) and (H3) hold.

Case 5. 1 < r < q < p.

Theorem 2.7. Assume that 1 < r < q < p and (H2), (H3) hold. then (1)-(1) admits a positive solution.

Proof. Let $H_{\lambda}^{P}(u) := [u]^{p} - A(u)$ and $S_{\lambda}^{P} := \{u \in X : P(u) > 0 \text{ and } H_{\lambda}^{P}(u) = 1\}$. If $u \in S_{\lambda}^{P}$, then (2.8) has a unique solution t(u) with $\widehat{I}(u) < 0$. Define $M = \inf_{u \in S_{\lambda}^{P}} \widehat{I}(u)$ and assume that $u_{n} \in S_{\lambda}^{P}$ is such that $\widehat{I}(u_{n}) \to M$. We claim that $||u_{n}||_{1,p}$, $n \in \mathbb{N}$, is bounded. Indeed, let us assume that it is not, that is, $||u_{n}||_{1,p} \to +\infty$. Define $z_{n} := \frac{u_{n}}{d_{n}}$, where $d_{n} = ||u_{n}||_{1,p}$. Then

$$d_n^p [z_n]^p - d_n^q A(z_n) = 1.$$

Consequently,

$$[z_n]^p \le \frac{1}{d_n^p} \to 0, \quad 0 \le -A(z_n) \le \frac{1}{d_n^q} \to 0.$$
 (2.13)

Thus

$$\lambda_1 \int_{\Omega} |z_n|^p dx \to 1. \tag{2.14}$$

EJDE-2016/100

Since $||z_n||_{1,p} = 1$, we may assume that $z_n \to z$ weakly in X. Therefore, (2.14) implies that

$$\lambda_1 \int_{\Omega} |z|^p dx = 1, \qquad (2.15)$$

and so $z \neq 0$. By (2.14) and (2.15) we see that [z] = 0, that is, z is an eigenvector corresponding to λ_1 . On the other hand, since $A(z_n) \to A(z)$, (2.14) yields A(z) = 0, contradicting the fact z > 0 in Ω . Thus, $||u_n||_{1,p}$, $n \in \mathbb{N}$, is indeed bounded. So we may assume that $u_n \to u$ weakly in X. Note that, for an infinite number of n's, either $[u_n]^p \geq \frac{1}{2}$, or $-A(u_n) \geq \frac{1}{2}$. In either case, (2.8) implies that $r(u_n)$ is bounded. Since (2.8) implies that P(u) > 0, we see that $u \in S^P_{\lambda}$. We can now proceed as in case 1 to get a solution.

Case 6.
$$1 < r < p < q$$
.

Theorem 2.8. Assume that 1 < r < p < q and (H2), (H3) hold. Then (1)-(1) admits a positive solution.

Proof. We use the inequality

$$\begin{split} \widehat{I}(u) &= t^{p} \Big(\frac{1}{p} - \frac{1}{q} \Big) + \mu t^{r} \Big(\frac{1}{q} - \frac{1}{r} \Big) P(u) \\ &\leq \mu t^{r} \Big(\frac{1}{p} - \frac{1}{q} \Big) P(u) + \mu t^{r} \Big(\frac{1}{q} - \frac{1}{r} \Big) P(u) \\ &= \mu t^{r} \Big(\frac{1}{p} - \frac{1}{r} \Big) P(u) < 0, \end{split}$$

to show that $\inf_{u \in S_{\lambda}^{P}} \widehat{I}(u) < 0$ and by following the same steps as in case 5 we obtain a positive solution.

3. The critical case $q = p^*$

In this section we study the critical problem $q = p^* := \frac{Np}{N-p}$. with $p < r < \frac{p(N-1)}{N-p}$. and $\lambda < \lambda_1$. The proof follows closely the lines of [9, Theorem 1.4]. Since the embedding $X \hookrightarrow L^{p^*}(\Omega)$ is no longer compact we do not expect that the Palais-Smale condition holds. So we prove a local Palais-Smale condition which is true if $I(\cdot)$ lies below a certain energy value.

In what follows we assume that $a(\cdot) \equiv 1$ and (H2) holds. Consider the problem

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = \lambda |u|^{p-2}u + |u|^{q-2}u \quad \text{in } \Omega,$$
(3.1)

$$|\nabla u|^{p-2}\frac{\partial u}{\partial \eta} + b(x)|u|^{p-2}u = \mu\rho(x)h(u) \quad \text{on } \partial\Omega.$$
(3.2)

Let

$$S = \inf_{u \in D^{1,p}(\mathbb{R}^N) \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^p dx}{\int_{\Omega} |u|^{p^*} dx},$$

be the best Sobolev constant, where $u \in D^{1,p}(\mathbb{R}^N)$ is the completion of $C_0^{\infty}(\mathbb{R}^N)$ under the gradient norm.

Lemma 3.1. Suppose that $\{u_n\}_{n\in\mathbb{N}}$ is a sequence in X satisfying the Palais-Smale condition with energy level $c < \frac{1}{N}S^{\frac{N}{p}}$, that is

$$I(u_n) \to c \quad and \quad I'(u_n) \to 0.$$

Then $\{u_n\}_{n\in\mathbb{N}}$ has a convergent subsequence in X.

Proof. The boundedness of $\{u_n\}_{n\in\mathbb{N}}$ is a consequence of (2.1). Thus, $\{u_n\}_{n\in\mathbb{N}}$ has a subsequence, still denoted by $\{u_n\}_{n\in\mathbb{N}}$, which converges weakly to $u \in X$. By [15, Lemma 3.6] there exists a set of points $\{x_j\}_{j\in J} \subseteq \overline{\Omega}$, J at most countable, and nonnegative numbers μ_j, ν_j satisfying

$$\begin{split} |\nabla u_n|^p &\to \mu \ge |\nabla u|^p + \sum_{j \in J} \mu_j \delta_{x_j} ,\\ |u_n|^{p^*} &\to \nu = |u|^{p^*} + \sum_{j \in J} \nu_j \delta_{x_j} ,\\ S\nu_j^{\frac{p}{p^*}} &\le \mu_j \quad \text{if } x_j \in \Omega,\\ S\nu_j^{\frac{p}{p^*}} &\le 2^{\frac{p}{N}} \mu_j \text{ if } x_j \in \partial\Omega. \end{split}$$

Let $k \in \mathbb{N}$, $\varepsilon > 0$ and take $\varphi \in C^{\infty}(\Omega)$ such that

$$\varphi \equiv 1 \text{ in } B(x_k, \varepsilon), \quad \varphi \equiv 0 \quad \text{in } X \setminus B(x_k, 2\varepsilon), \quad |\nabla \varphi| \le \frac{2}{\varepsilon}.$$

Since $I'(u_n)(\varphi u_n) \to 0$ an $n \to +\infty$, we obtain

$$\begin{split} \lim_{n \to +\infty} \left[\int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla \varphi u_n dx + \int_{\Omega} |\nabla u_n|^p \varphi dx \right] \\ &= \lambda \int_{\Omega} |u|^p \varphi dx - \int_{\partial \Omega} b(x) |u|^p \varphi d\sigma + \lim_{n \to +\infty} \int_{\Omega} |u_n|^{p^*} \varphi dx + \mu \int_{\partial \Omega} \rho(x) |u|^r \varphi d\sigma \\ &= \lambda \int_{\Omega} |u|^p \varphi dx - \int_{\partial \Omega} |u|^p \varphi d\sigma + \int_{\Omega} \varphi d\nu + \mu \int_{\partial \Omega} \rho(x) |u|^r \varphi d\sigma. \end{split}$$

Note that, by the Holder inequality,

$$\begin{split} \lim_{n \to +\infty} \left| \int_{\Omega} |\nabla u_n|^{p-2} \nabla u_n \nabla \varphi u_n \, dx \right| \\ &\leq \lim_{n \to +\infty} \left(\int_{\Omega} |u_n|^p \varphi dx \right)^{\frac{p-1}{p}} \lim_{n \to +\infty} \left(\int_{\Omega} |\nabla \varphi|^p |u_n|^p dx \right)^{1/p} \\ &\leq C \Big(\int_{B(x_k, 2\varepsilon) \cap \Omega} |\nabla \varphi|^p |u|^p dx \Big)^{1/p} \\ &\leq C \Big(\int_{B(x_k, 2\varepsilon) \cap \Omega} |\nabla \varphi|^N dx \Big)^{1/N} \Big(\int_{B(x_k, 2\varepsilon) \cap \Omega} |u|^{p^*} dx \Big)^{1/p^*} \\ &\leq C' \int_{B(x_k, 2\varepsilon) \cap \Omega} |u|^{p^*} dx \to 0 \quad \text{as } \varepsilon \to 0, \end{split}$$

and so

$$\begin{split} &\lim_{\varepsilon \to 0} \Big[\int_{\Omega} \varphi d\mu - \lambda \int_{\Omega} |u|^{p} \varphi dx + \int_{\partial \Omega} b(x) |u|^{p} \varphi d\sigma - \int_{\Omega} \varphi d\nu - \mu \int_{\partial \Omega} \rho(x) |u|^{r} \varphi d\sigma \Big] \\ &= \mu_{k} - \nu_{k} = 0. \end{split}$$

Consequently, $S\nu_k^{\frac{p}{p^*}} \leq \nu_k$ if $x_k \in \Omega$ or $2^{-\frac{p}{N}}S\nu_k^{\frac{p}{p^*}} \leq \nu_k$ if $x_k \in \partial\Omega$, implying that $S^{\frac{N}{p}} \leq \nu_k$ if $x_k \in \Omega$ or $\frac{1}{2}S^{\frac{N}{p}} \leq \nu_k$ if $x_k \in \partial\Omega$. On the other hand,

$$c = \lim_{n \to +\infty} I(u_n) = \lim_{n \to +\infty} I(u_n) - \lim_{n \to +\infty} \frac{1}{p} I'(u_n)(u_n)$$

EJDE-2016/100

$$= \left(\frac{1}{p} - \frac{1}{p^*}\right) \int_{\Omega} |u|^{p^*} + \left(\frac{1}{p} - \frac{1}{p^*}\right) \int_{\Omega} \sum_{j \in J} \nu_j \delta_{x_j} + \mu \left(\frac{1}{p} - \frac{1}{r}\right) \int_{\partial \Omega} \rho(x) |u|^r d\sigma$$

$$\ge \left(\frac{1}{p} - \frac{1}{p^*}\right) \nu_k = \frac{1}{N} S^{N/p}.$$

Thus $\nu_k = 0$ for every $k \in J$, implying that $\int_{\Omega} |u_n|^{p^*} dx \to \int_{\Omega} |u|^{p^*} dx$. The result follows by exploiting the continuity of the inverse *p*-Laplace operator. \Box

Theorem 3.2. There exists $\mu_0 > 0$ such that for $\mu \ge \mu_0$ problem (1)-(1) admits a solution.

Proof. We will first verify the requirements for the mountain pass theorem. By the Sobolev embedding and trace theorems we see that

$$I(u) = \frac{1}{p} [u]^p - \frac{1}{p^*} A(u) - \frac{\mu}{r} P(u)$$

$$\geq \frac{1}{p} [u]^p - C_1 [u]^{p^*} - C_2 [u]^r,$$

for some $C_1, C_2 > 0$, and so for a sufficiently small positive number β there exists a > 0 such that I(u) > a > 0 for $[u] = \beta$. We now take $v \in X \setminus \{0\}$. It is easy to see that $\lim_{s \to +\infty} I(sv) = -\infty$. Thus, $I(s_0v) < 0$ for sufficiently large s_0 .

Let $c := \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I(\gamma(t))$, where $\Gamma := \{\gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = s_0 v\}$. We will show that $c < \frac{1}{N} S^{\frac{N}{p}}$ for large enough μ . Take $z \in X$ such that $\|z\|_{p^*} = 1$. The maximum value of $\eta \to I(\eta z), \eta > 0$, is assumed at the point η_{μ} satisfying $\frac{d}{d\eta} I(\eta_{\mu} z) = 0$, that is

$$\eta^{p}_{\mu}[z]^{p} = \eta^{p^{*}}_{\mu} ||z||^{p^{*}}_{p^{*}} + \mu \eta^{r}_{\mu} P(z) = \eta^{p^{*}}_{\mu} + \mu \eta^{r}_{\mu} P(z).$$
(3.3)

Therefore,

$$\eta_{\mu} \leq [z]^{\frac{p}{p^* - p}},$$

which, in view of (3.3), yields $\lim_{\mu \to +\infty} \eta_{\mu} = 0$. On the other hand,

$$I(\eta_{\mu}z) = \eta_{\mu}^{p} \Big(\frac{1}{p} - \frac{1}{p^{*}}\Big)[z]^{p} + \mu \eta_{\mu}^{r} \Big(\frac{1}{p^{*}} - \frac{1}{r}\Big)P(z) \le \eta_{\mu}^{p} \Big(\frac{1}{p} - \frac{1}{p^{*}}\Big)[z]^{p},$$

implying that $\lim_{\mu\to+\infty} I(\eta_{\mu}z) = 0$. Thus, for large enough μ , say $\mu \ge \mu_0$, $I(\eta_{\mu}z) < \frac{1}{N}S^{\frac{N}{p}}$. By Lemma 3.1, $I(\cdot)$ satisfies the Palais-Smale condition and the mountain pass theorem provides a solution.

References

- A. Ambrosetti, P. H. Rabinowitz; Dual variational methods in critical point theory and applications, J. Funct. Analysis, 14(4) (1973), 349-381.
- [2] T. Bartsch, Z. Liu; Multiple sign changing solutions of a quasilinear elliptic eigenvalue problem involving the p-Laplacian, Commun. Contemp. Math. vol. 6, No. 2 (2004), 245-258.
- [3] P. A. Binding, P. Drabek, Y. X. Huang; Existence of multiple solutions of critical quasilinear elliptic Neumann problems, Nonlinear Analysis 42 (2000), 613-629.
- [4] P. A. Binding, P. Drabek, Y. X. Huang; On Neumann boundary value problems for some quasilinear elliptic equations, Electronic J. Diff. Equations 1997, No. 05 (1997), 1-11.
- [5] J. Fernandez Bonder, J. D. Rossi; Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Analysis Appl. 263 (2001), 195-223.
- [6] Yu. Bozhkov, E. Mitidieri; Existence of multiple solutions for quasilinear systems via fibering method, J. Differential Equations 190, no. 1 (2003), 239–267.
- [7] P. Drabek, S. I. Pohozaev; Positive solutions for the p-Laplacian: application of the fibering method, Proc. Royal Soc. Edinburgh 127A (1997), 703-726.

- [8] P. Drabek, P. Takáč; Poincaré inequality and Palais-Smale condition for the p-Laplacian, Calc. Var. 29 (2007), 31-58.
- [9] J. Fernandez-Bonder, J. D. Rossi; Existence results for the p-Laplacian with nonlinear boundary conditions, J. Math. Anal. Appl. 263 (2001), 195-223.
- [10] R. Filippucci, P. Pucci, V. Radulescu; Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. Partial Differential Equations 33, No. 4-6 (2008) 706–717.
- [11] L. Gasiński, N. S. Papageorgiou; Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Series in Mathematical Analysis and Applications, Vol. 8, Chapman and Hall/CRC, Boca Raton, FL, 2006.
- [12] A. Lê; Eigenvalue problems for the p-Laplacian, Nonlinear Analysis 64 (2006) 1057-1099.
- [13] P. L. Lions; The concentration-compactness principle in the calculus of variations. The limit case, part 1, Rev. Mat. Iberoamericana 1, No. 1 (1985), 145-201.
- [14] P. L. Lions; The concentration-compactness principle in the calculus of variations. The limit case, part 2, Rev. Mat. Iberoamericana 1, No. 2 (1985), 45-121.
- [15] E. S. de Medeiros; Existência e concentração de solução para o p-Laplaciano com condição de Neumann, Doctoral Dissertation, UNICAMP 2001.
- [16] D. Motreanu, V. V. Motreanu, N. S. Papageorgiou; Positive solutions and multiple solutions at non-resonance, resonance and near resonance for hemivariational inequalities with p-Laplacian, Transactions AMS, 360 No5 (2008), 2527-2545.
- [17] N. Papageorgiou, V. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations 256, No. 7 (2014), 2449–2479.
- [18] N. S. Papageorgiou, V. D. Rădulescu; Nonlinear parametric Robin problems with combined nonlinearities, Advanced Nonlinear Studies 15 (2015) 715-748.
- [19] N. Papageorgiou, V. Rădulescu; Positive solutions for perturbations of the eigenvalue problem for the Robin p-Laplacian, Ann. Acad. Sci. Fenn. Math. 40, No. 1 (2015) 255–277.
- [20] K. Perera, E. Silva; On singular p-Laplacian problems, Differential Integral Equations 20, No. 1 (2007) 105-120.
- [21] S. Pohozaev; Nonlinear variational problems via the fibering method. Sections 5 and 6 by Yu. Bozhkov and E. Mitidieri. Handb. Differ. Equ., Handbook of differential equations: stationary partial differential equations. Vol. V, 49–209, Elsevier/North-Holland, Amsterdam, 2008.
- [22] P. Pucci, V. Rădulescu; The impact of the mountain pass theory in nonlinear analysis: a mathematical survey, Boll. Unione Mat. Ital. 9, No. 3 (2010) 543–584.
- [23] S. Tiwari; N-Laplacian critical problem with discontinuous nonlinearities, Adv. Nonlinear Anal. 4, No. 2 (2015), 109–121.
- [24] P. Winkert; Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Comm. Pure and Allpied Analysis, 12, No. 2 (2013), 785-802.
- [25] E. Zeidler; Nonlinear Functional Analysis and its Applications, vol. I, Springer, NY, 1986.

Dimitrios A. Kandilakis

School of Architectural Engineering, Technical University of Crete, 73100 Chania, Greece

E-mail address: dkandylakis@isc.tuc.gr

Manolis Magiropoulos

DEPARTMENT OF ELECTRICAL ENGINEERING, TECHNOLOGICAL EDUCATIONAL INSTITUTE OF CRETE, 71410 HERAKLION, CRETE, GREECE

E-mail address: mageir@staff.teicrete.gr