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ON THE SO CALLED ROGUE WAVES IN NONLINEAR
SCHRÖDINGER EQUATIONS

Y. CHARLES LI

Abstract. The mechanism of a rogue water wave is still unknown. One pop-

ular conjecture is that the Peregrine wave solution of the nonlinear Schrödinger
equation (NLS) provides a mechanism. A Peregrine wave solution can be ob-

tained by taking the infinite spatial period limit to the homoclinic solutions.

In this article, from the perspective of the phase space structure of these ho-
moclinic orbits in the infinite dimensional phase space where the NLS defines

a dynamical system, we examine the observability of these homoclinic orbits

(and their approximations). Our conclusion is that these approximate homo-
clinic orbits are the most observable solutions, and they should correspond to

the most common deep ocean waves rather than the rare rogue waves. We

also discuss other possibilities for the mechanism of a rogue wave: rough de-
pendence on initial data or finite time blow up.

1. Introduction

The mystery of rogue water waves started from folklores of mariners centuries
ago. Their existence was scientifically confirmed on New Year’s day 1995 at the
Draupner platform in the North Sea. In oceanography, rogue waves are defined
as waves with height more than twice the significant wave height (SWH). SWH is
the average of the top third wave heights in a wave record. A rogue wave is often
a single tall wave that is localized in both space and time, and appears without
warning in mid-ocean. The key in theoretical understanding of rogue waves is:

• What is the mechanism of a rogue wave?

Once the mechanism of a rogue wave is understood, it will be easier to understand
the causes in different oceanic environments, that can lead to the mechanism to be in
action. The consequences of rogue waves have been suspected for many ship sinking
incidents. Because of their importance in application and theory, rogue waves have
been extensively studied, for a sample of references, see [1, 2, 4, 5, 9, 12, 14, 24].
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2. Observability of approximate homoclinic orbits under the
nonlinear Schrödinger dynamics

Can homoclinic orbits or Peregrine wave solutions be responsible for rogue water
waves? This is the interesting question asked by many researchers [1, 4, 9, 10].
Peregrine wave solutions “look like” rogue water waves. They share the spatial and
temporal locality of rogue waves. In infinite spatial and temporal (both positive and
negative) limits, they approach the uniform Stokes waves, and their main humps
also have tall enough heights to mimic rogue waves [1].

One of the simplest deep water weakly nonlinear amplitude model equations is
the integrable 1D cubic focusing nonlinear Schrödinger equation

iqt = ∂2
xq + 2|q|2q. (2.1)

A simple Peregrine wave solution to (2.1) is [9, 1]

q =
[
1− 4

1− i4t
1 + 4x2 + 16t2

]
e−i2t. (2.2)

The Peregrine wave solution can be obtained by taking the infinite spatial period
limit to the spatially periodic and temporally homoclinic solutions to be discussed
below [4] [1]. From now on, we will focus our attention on the Peregrine wave’s
approximations given by large spatial period homoclinic solutions. Therefore, we
pose the spatial periodic boundary condition

q(t, x+ L) = q(t, x) (2.3)

to (2.1). Equation (2.1) with the periodic boundary condition (2.3) defines a dy-
namical system in the infinite dimensional phase space H1

[0,L] which is the Sobolev
space on the periodic domain [0, L]. Specifically, the norm of q is given by

‖q‖2H1
[0,L]

=
∫ L

0

(|q|2 + |qx|2)dx.

One way to visualize dynamics in the infinite dimensional phase space H1
[0,L] is

through Fourier series
q(t, x) =

∑
n∈Z

qn(t)einx,

where Z denotes all integers. The set {einx}n∈Z forms a base. Each base element
einx spans a complex plane on which the projection of the dynamics is given by
qn(t). In terms of {qn(t)}n∈Z, the NLS (2.1) is transformed into infinitely many
ordinary differential equations. When n = 0, the base element ei0x = 1 spans
the spatially independent complex plane P which is a two dimensional invaraint
subspace under the NLS dynamics. The dynamics on this invariant plane is given
by

iqt = 2|q|2q.
The orbits on this invariant plane are given by the uniform Stokes waves

qc = ae−i(2a
2t+γ) (2.4)

where a is the constant amplitude and γ is the constant phase. In the original water
wave variable, these uniform Stokes waves correspond to the common Stokes water
waves. Geometrically, the orbits on the invariant plane are periodic circular orbits
as shown in Figure 1.
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Figure 1. Circular orbits on the invariant plane.
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Figure 2. An illustration of the Inclination Lemma.

Observable ocean waves should lie in the neighborhood of the Stokes waves (2.4)
in the infinite dimensional phase space H1

[0,L], and the neighborhood is where we
will focus our attention on. Linearize (2.1) at (2.4) in the form

q = ae−i(2a
2t+γ)(1 +Q),

one gets the linearized equation

iQt = ∂2
xQ+ 2a2(Q+ Q̄).

Set
Q = AeΩt+ikx +BeΩ̄t−ikx,

where Ω, A and B are complex parameters, and k is a real parameter given by

k =
2π
L
n, n ∈ Z,

to satisfy the boundary condition (2.3). One gets

([2a2 − k2]− iΩ)A+ 2a2B̄ = 0,

2a2A+ ([2a2 − k2] + iΩ)B̄ = 0,
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and the relation
Ω = ±

√
[4a2 − k2]k2.

When
0 < k2 < 4a2, i.e. 0 < |n| < aL

π
, (2.5)

there is the so-called modulational instability. For any a > 0, when L > π
a , the

instability appears. That is, no matter how small a is, as long as L is large enough,
the instability appears. For fixed a and L, the unstable modes are given by those n’s
satisfying (2.5). Let 2N be the number of such unstable modes. Then the unstable
subspace Su of the periodic orbit (2.4) has dimension 2N , the stable subspace Ss

of the periodic orbit (2.4) has dimension 2N , and the center subspace Sc of the
periodic orbit (2.4) has codimension 4N . The product of the unstable subspace
and the center subspace is the codimension 2N center-unstable subspace Scu, and
the product of the stable subspace and the center subspace is the codimension 2N
center-stable subspace Scs. These subspaces can be exponentiated into invariant
submanifolds under the NLS (2.1) dynamics via Darboux transformations [20].

Theorem 2.1 ([16]). Under the NLS (2.1) dynamics, the periodic orbit (2.4) on
the invariant plane P has a codimension 4N center manifold W c, a codimension
2N center-unstable manifold W cu, and a codimension 2N center-stable manifold
W cs. Moreover, W cu = W cs and W cu ∩W cs = W c.

Explicit formulae for certain homoclinic orbits inside W cu = W cs can be found
in the Appendix. The neighborhood of the periodic orbit (Stokes wave (2.4)) is
divided by W cu and W cs into different regions. Dynamics in the neighborhood of
the periodic orbit follows the following Inclination Lemma [15].

Theorem 2.2 (Inclination Lemma). All orbits starting from initial points in the
neighborhood of the periodic orbit approach the center-unstable manifold W cu in
forward time.

See Figure 2 for an illustration. Notice that the center manifold W c is a measure
zero subset of the neighborhood of the periodic orbit, and it is also a measure zero
subset of W cu. Orbits starting from points inside W c of course stay inside W c.
Orbits starting from points inside W cu but not in W c have the same homoclinic
feature as those explicitly calculated in the Appendix. In principle, all such orbits
in W cu can be constructed via Darboux transformations as shown in the Appendix.
One can view all such orbits as rooted to the center manifold W c. In fact, each point
in the center manifold W c is a Fenichel fiber base point, and the Fenichel fibers
capture the global features of these homoclinic orbits [16]. Since the center manifold
W c lies inside the neighborhood of the periodic orbit, those homoclinic orbits rooted
to the invariant plane P are good approximations of all such homoclinic orbits in
W cu which in general may have small amplitude oscillating tails in space and time.
These homoclinic orbits in W cu are generic orbits in W cu in the sense that W c is
a measure zero subset of W cu. In view of the Inclination Lemma, generic orbits
starting from initial points in the neighborhood of the periodic orbit approach those
homoclinic orbits in W cu which can be approximated by those homoclinic orbits
rooted to the invariant plane P . The infinite spatial period limits of the homoclinic
orbits rooted to the invariant plane P are the Peregrine waves. In conclusion,
generic orbits starting from initial points in the neighborhood of the periodic orbit
(Stokes wave) have the homoclinic feature and Peregrine wave feature (when the
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spatial period approaches infinity). Therefore, such homoclinic orbits and Peregrine
waves should be the most observable (common) waves in the deep ocean according
to the nonlinear Schrödinger model. They should not be the rarely observed rogue
waves.

When the nonlinear Schrödinger equation (2.1) is under perturbations (for ex-
ample by keeping higher order terms in the NLS model of deep water (3.4)), the
center-unstable manifold W cu, center-stable manifold W cs and center manifold W c

persist, but W cu and W cs do not coincide anymore [16]. Orbits inside W cu have a
near homoclinic nature. The above conclusion that homoclinic orbits and Peregrine
waves should be the most observable common waves rather than rogue waves, still
holds.

3. Conclusion and discussion

Based upon the above rigorous mathematical analysis on the infinite dimensional
phase space where the nonlinear Schrödinger equation (2.1) defines a dynamical
system, we conclude that Peregrine waves and homoclinic orbits are the waves
most commonly observable in deep ocean rather than rogue water waves. Next we
discuss two other possibilities for the mechanism of rogue waters.

3.1. Rough dependence on initial data. The solution operator of high Reynolds
number Navier-Stokes equations has rough dependence on initial data [18] [19].
Temporal amplification of certain perturbations to the initial data can potentially
reach

∼ eσ
√
Re
√
t, (3.1)

where σ is a constant and Re is the Reynolds number. When the Reynolds number
is large, such amplification can reach substantial amount in very short time. This
feature of the solution operator may explain the (no apparent reason) sudden am-
plification of one wave among many into a rogue wave in the deep ocean [6]. That
particular wave may receive just the right perturbation which amplifies superfast
like the above estimate, and very quickly develops into a rogue wave. In this sense,
the choice of the particular wave is random, the right perturbation is random, and
the temporal and spatial locations of the event are also random. All these factors
may manifest into a sudden appearance of a rogue wave. High Reynolds number
Navier-Stokes equations are good models of water waves since real fluids (water or
air) always have viscosity (no matter how slight it may be). On the other hand, for
simplicity, most mathematical models of water waves are derived from Euler equa-
tions, and the solution operator of the Euler equations is nowhere differentiable in
its initial data [13] (formally one can set Re to infinity in the above estimate (3.1)).

3.2. Finite time blowup. A great open problem is whether or not water wave
equations have finite time blowup solutions. A hint of finite time blowup solutions
comes from simple nonlinear wave equations, for example, the one dimensional
nonlinear Schrödinger equation

iqt = ∂2
xq + |q|s−1q, (3.2)

where q(t, x) is a complex-valued function of (t, x). For the initial condition of the
form

q(0, x) = eix
2
ψ(x),
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where ψ(x) is a real-valued function, when the initial energy∫
R

(
|∂xq(0, x)|2 − 2

s+ 1
|q(0, x)|s+1

)
dx

is non-positive and s ≥ 5, the solution blows up in finite time [11, 21, 22, 3]. That
is, there is a finite time 0 < T <∞, such that

lim
t→T−

‖q(t, x)‖L∞ =∞, lim
t→T−

‖∂xq(t, x)‖L2 =∞.

Such a finite time blowup solution resembles very much a rogue wave in terms of
spatially and temporally local nature. One should only take such a finite time
blowup solution as a hint rather than a clear indication for a possible finite time
blowup solution to the water wave equations. There are a lot of simple models
of water wave equations, for example, the Davey-Stewartson equations [7]. For
the Davey-Stewartson equations with coefficients in the water wave regime, a finite
time blowup solution has not been found. For the Davey-Stewartson equations with
coefficients outside the water wave regime, finite time blowup solutions have been
found [23]. In the deep water limit, the Davey-Stewartson equations [7] reduce to
the following equation

iqt = �q + 2|q|2q (3.3)

where q(t, x, y) is complex-valued and

� = ∂2
x − ∂2

y .

This equation has two conserved quantities

I =
∫
|q|2dxdy,

E =
∫

[|∂xq|2 − |∂yq|2 − |q|4]dxdy.

Since the two conserved quantities do not bound H1 norm, this equation may have
finite time blowup solutions. When the operator � is replaced by

∆ = ∂2
x + ∂2

y ,

there are indeed finite time blowup solutions [3]. Linearize equation (3.3) at

q∗ = ae−i(2a
2t+θ)

where a > 0 is the amplitude and θ is the phase, in the form

q = ae−i(2a
2t+θ)(1 +Q),

one gets the linearized equation

iQt = �Q+ 2a2(Q+ Q̄).

Set
Q = AeΩt+ik1x+ik2y +BeΩ̄t−ik1x−ik2y

where Ω, A and B are complex parameters, and (k1, k2) are real parameters, one
gets

([(k2
2 − k2

1) + 2a2]− iΩ)A+ 2a2B̄ = 0,

2a2A+ ([(k2
2 − k2

1) + 2a2] + iΩ)B̄ = 0,
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and the relation

Ω = ±
√

[4a2 − (k2
1 − k2

2)](k2
1 − k2

2).

When 0 < k2
1 − k2

2 < 4a2, there is a modulational instability.
In one spatial dimension, equation (3.3) reduces to the integrable cubic non-

linear Schrödinger equation (2.1). By keeping higher order terms, the one spatial
dimension deep water wave model can be written as

iqt = ∂2
xq + 2|q|2q +H(q) (3.4)

where H(q) represents the higher order terms which may involve a variety of terms
like higher order derivatives and higher order nonlinearities [8]. With the higher
order terms in, equation (3.4) may have finite time blowup solutions. Invoking pos-
sible finite time blowup solutions to models of water wave equations is paradoxical
in the search for finite time blowup solutions to the full water wave equations. Most
of these models are derived under the assumption of weak nonlinearity, while finite
time blowup is a strongly nonlinear phenomenon.

4. Appendix: Explicit formulae of homoclinic orbits

Let L = 2π. When 1/2 < a < 1, the Stokes wave (2.4) has one linearly unstable
mode, and when 1 < a < 3/2, the Stokes wave (2.4) has two linearly unstable
modes, etc. The homoclinic orbits asymptotic to the Stokes wave (2.4) are the
nonlinear amplifications of the linearly unstable modes. When 1/2 < a < 1, the
homoclinic orbit is given by [17]

q1 = qc
[
1 + sinϑ0 sech τ cos y

]−1

×
[

cos 2ϑ0 − i sin 2ϑ0 tanh τ − sinϑ0 sech τ cos y
]
,

(4.1)

where
τ = 2σt− ρ, y = x+ ϑ− ϑ0 + π/2, (4.2)

where σ, ρ, ϑ and ϑ0 are real parameters. As t→ ±∞,

q1 → qce
∓i2ϑ0 . (4.3)

Thus q1 is asymptotic to qc up to phase shifts as t→ ±∞. We say Q is a homoclinic
orbit asymptotic to the periodic orbit given by qc. For a fixed amplitude a of qc, the
phase γ of qc and the Bäcklund parameters ρ and ϑ parametrize a 3-dimensional
submanifold with a figure eight structure. For an illustration, see Figure 3.

Figure 3. Figure eight structure of noneven data with one unsta-
ble mode.
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Figure 4. Figure eight structure of even data with one unstable mode.

If one restricts the Bäcklund parameter ϑ by ϑ−ϑ0 + π/2 = 0, or π, one gets q1

to be even in x,

q1 = qc
[
1± sinϑ0 sech τ cosx

]−1

×
[

cos 2ϑ0 − i sin 2ϑ0 tanh τ ∓ sinϑ0 sech τ cosx
]
,

(4.4)

where the upper sign corresponds to ϑ−ϑ0 +π/2 = 0. Then for a fixed amplitude a
of qc, the phase γ of qc and the Bäcklund parameter ρ parametrize a 2-dimensional
submanifold with a figure eight structure. For an illustration, see Figure 4.

When 1 < a < 3/2, the homoclinic orbit is given by [17]

q2 = q1 + qc
W2 sin ϑ̂0

W1
, (4.5)

where q1 is given by (4.1),

W1 =
[
(sin ϑ̂0)2(1 + sinϑ0 sech τ cos y)2 +

1
8

(sin 2ϑ0)2(sechτ)2(1− cos 2y)
]

× (1 + sin ϑ̂0 sech τ̂ cos ŷ)

− 1
2

sin 2ϑ0 sin 2ϑ̂0 sech τ sech τ̂(1 + sinϑ0 sech τ cos y) sin y sin ŷ

+ (sinϑ0)2
[
1 + 2 sinϑ0 sech τ cos y + [(cos y)2 − (cosϑ0)2](sechτ)2

]
× (1 + sin ϑ̂0 sech τ̂ cos ŷ)

− 2 sin ϑ̂0 sinϑ0

[
cos ϑ̂0 cosϑ0 tanh τ̂ tanh τ + (sinϑ0 + sech τ cos y)

× (sin ϑ̂0 + sech τ̂ cos ŷ)
]
(1 + sinϑ0 sech τ cos y),

W2 =
[
− 2(sin ϑ̂0)2(1 + sinϑ0 sech τ cos y)2 +

1
4

(sin 2ϑ0)2(sechτ)2(1− cos 2y)
]

× (sin ϑ̂0 + sech τ̂ cos ŷ + i cos ϑ̂0 tanh τ̂)

+ 2(sinϑ0)2(− cosϑ0 tanh τ + i sinϑ0 + i sech τ cos y)2

× (sin ϑ̂0 + sech τ̂ cos ŷ − i cos ϑ̂0 tanh τ̂)

+ 2 sinϑ0(sinϑ0 + sech τ cos y + i cosϑ0 tanh τ)

×
[
2 sin ϑ̂0(1 + sinϑ0 sech τ cos y)(1 + sin ϑ̂0 sech τ̂ cos ŷ)

− sin 2ϑ0 cos ϑ̂0 sech τ sech τ̂ sin y sin ŷ
]
,
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where the notation is as in (4.1), and

τ̂ = 4σ̂t− ρ̂, ŷ = 2x+ ϑ̂− ϑ̂0 + π/2 ,

and σ̂, ρ̂, ϑ̂ and ϑ̂0 are real parameters. The asymptotic phase, as t→ ±∞, of q2 is

q2 → qce
∓i2(ϑ0+ϑ̂0) . (4.6)

Thus q2 is asymptotic to qc up to phase shifts as t → ±∞. For a fixed amplitude
a of qc, the phase γ of qc and the Bäcklund parameters ρ, ϑ, ρ̂, and ϑ̂ parametrize
a 5-dimensional submanifold with a figure eight structure. For an illustration, see
Figure 5.

Figure 5. Figure eight structure of noneven data with two unsta-
ble modes.

Figure 6. Figure eight structure of even data with two unstable modes.

If one put restrictions on the Bäcklund parameters ϑ and ϑ̂, such that

ϑ− ϑ0 + π/2 =

{
0 if ϑ̂− ϑ̂0 + π/2 = 0 or ϑ̂− ϑ̂0 + π/2 = π,

π if ϑ̂− ϑ̂0 + π/2 = 0 or ϑ̂− ϑ̂0 + π/2 = π,
(4.7)

then q2 is even in x. Thus for a fixed amplitude a of qc, the phase γ of qc and
the Bäcklund parameters ρ and ρ̂ parametrize a 3-dimensional submanifold with a
figure eight structure. For an illustration, see Figure 6.
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