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LONG TIME DECAY FOR 3D NAVIER-STOKES EQUATIONS IN
SOBOLEV-GEVREY SPACES

JAMEL BENAMEUR, LOTFI JLALI

Abstract. In this article, we study the long time decay of global solution to

3D incompressible Navier-Stokes equations. We prove that if u ∈ C([0,∞), H1
a,σ(R3))

is a global solution, where H1
a,σ(R3) is the Sobolev-Gevrey spaces with param-

eters a > 0 and σ > 1, then ‖u(t)‖H1
a,σ(R3) decays to zero as time approaches

infinity. Our technique is based on Fourier analysis.

1. Introduction

The 3D incompressible Navier-Stokes equations are

∂tu−∆u+ u · ∇u = −∇p in R+ × R3

div u = 0 in R+ × R3

u(0, x) = u0(x) in R3,

(1.1)

where, we assume that the fluid viscosity ν = 1, and u = u(t, x) = (u1, u2, u3) and
p = p(t, x) denote respectively the unknown velocity and the unknown pressure
of the fluid at the point (t, x) ∈ R+ × R3, (u · ∇u) := u1∂1u + u2∂2u + u3∂3u,
and u0 = (uo1(x), uo2(x), uo3(x)) is a given initial velocity. If u0 is quite regular, the
divergence free condition determines the pressure p.

We define the Sobolev-Gevrey spaces as follows; for a, s ≥ 0, σ > 1 and |D| =
(−∆)1/2,

Hs
a,σ(R3) = {f ∈ L2(R3) : ea|D|

1/σ
f ∈ Hs(R3)}

which is equipped with the norm

‖f‖Hsa,σ = ‖ea|D|
1/σ
f‖Hs

and its associated inner product

〈f | g〉Hsa,σ = 〈ea|D|
1/σ
f | ea|D|

1/σ
g〉Hs .

There are several authors who have studied the behavior of the norm of the
solution to infinity in the different Banach spaces. Wiegner [8] proved that the
L2 norm of the solutions vanishes for any square integrable initial data, as time
approaches infinity, and gave a decay rate that seems to be optimal for a class of
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initial data. Schonbek and Wiegner [7, 9] derived some asymptotic properties of
the solution and its higher derivatives under additional assumptions on the initial
data. Benameur and Selmi [4] proved that if u is a Leray solution of the 2D Navier-
Stokes equation, then limt→∞ ‖u(t)‖L2(R2) = 0. For the critical Sobolev spaces
Ḣ1/2, Gallagher, Iftimie and Planchon [6] proved that ‖u(t)‖Ḣ1/2 approaches zero
at infinity. Now, we state our main result.

Theorem 1.1. Let a > 0 and σ > 1. Let u ∈ C([0,∞), H1
a,σ(R3)) be a global

solution to (1.1). Then
lim sup
t→∞

‖u(t)‖H1
a,σ

= 0. (1.2)

Note that the existence of local solutions to (1.1) was studied recently in [3].
This article is organized as follows: In section 2, we give some notations and im-

portant preliminary results. Section 3 is devoted to prove that if u ∈ C(R+, H1(R3))
is a global solution to (1.1) then ‖u(t)‖H1 decays to zero as time approaches infinity.
The proof is based on the fact that

lim
t→∞

‖u(t)‖Ḣ1/2 = 0 (1.3)

and the energy estimate

‖u(t)‖2L2 +
∫ t

0

‖∇u(τ)‖2L2dτ ≤ ‖u0‖2L2 . (1.4)

In section 4, we generalize the results of Foias-Temam [5] to R3 and in section 5,
we prove the main theorem.

2. Notation and preliminary results

2.1. Notation. In this section, we collect notation and definitions that will be used
later. First, the Fourier transformation is normalized as

F(f)(ξ) = f̂(ξ) =
∫

R3
exp(−ix · ξ)f(x)dx, ξ = (ξ1, ξ2, ξ3) ∈ R3,

the inverse Fourier formula is

F−1(g)(x) = (2π)−3

∫
R3

exp(iξ · x)g(ξ)dξ, x = (x1, x2, x3) ∈ R3,

and the convolution product of a suitable pair of functions f and g on R3 is

(f ∗ g)(x) :=
∫

R3
f(y)g(x− y)dy.

For s ∈ R, Hs(R3) denotes the usual non-homogeneous Sobolev space on R3 and
〈· | ·〉Hs denotes the usual scalar product on Hs(R3). For s ∈ R, Ḣs(R3) denotes
the usual homogeneous Sobolev space on R3 and 〈· | ·〉Ḣs denotes the usual scalar
product on Ḣs(R3). We denote by P the Leray projection operator defined by the
formula

F(Pf)(ξ) = f̂(ξ)− (f(ξ) · ξ)
|ξ|2

ξ.

The fractional Laplacian operator (−∆)α for a real number α is defined through
the Fourier transform, namely

̂(−∆)αf(ξ) = |ξ|2αf̂(ξ).
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Finally, If f = (f1, f2, f3) and g = (g1, g2, g3) are two vector fields, we set

f ⊗ g := (g1f, g2f, g3f),

and
div(f ⊗ g) := (div(g1f),div(g2f),div(g3f)).

2.2. Preliminary results. In this section, we recall some classical results and we
give a new technical lemma.

Lemma 2.1 ([1]). Let (s, t) ∈ R2 be such that s < 3/2 and s+ t > 0. Then, there
exists a constant C := C(s, t) > 0, such that for all u, v ∈ Ḣs(R3) ∩ Ḣt(R3), we
have

‖uv‖
Ḣs+t−

3
2 (R3)

≤ C(‖u‖Ḣs(R3)‖v‖Ḣt(R3) + ‖u‖Ḣt(R3)‖v‖Ḣs(R3)).

If s < 3/2, t < 3/2 and s+ t > 0, then there exists a constant c := c(s, t) > 0, such
that

‖uv‖
Ḣs+t−

3
2 (R3)

≤ c‖u‖Ḣs(R3)‖v‖Ḣt(R3).

Lemma 2.2. Let f ∈ Ḣs1(R3) ∩ Ḣs2(R3), where s1 < 3
2 < s2. Then, there is a

constant c = c(s1, s2) such that

‖f‖L∞(R3) ≤ ‖f̂‖L1(R3) ≤ c‖f‖
s2−

3
2

s2−s1
Ḣs1 (R3)

‖f‖
3
2−s1
s2−s1
Ḣs2 (R3)

.

Proof. We have

‖f‖L∞(R3) ≤ ‖f̂‖L1(R3)

≤
∫

R3
|f̂(ξ)|dξ

≤
∫
|ξ|<λ

|f̂(ξ)|dξ +
∫
|ξ|>λ

|f̂(ξ)|dξ.

We take

I1 =
∫
|ξ|<λ

1
|ξ|s1
|ξ|s1 |f̂(ξ)|dξ.

Using the Cauchy-Schwarz inequality, we obtain

I1 ≤
(∫
|ξ|<λ

1
|ξ|2s1

dξ
)1/2

‖f‖Ḣs1

≤ 2
√
π
(∫ λ

0

1
r2s1−2

dr
)1/2

‖f‖Ḣs1

≤ cs1λ
3
2−s1‖f‖Ḣs1 .

Similarly, take

I2 =
∫
|ξ|>λ

1
|ξ|s2
|ξ|s2 |f̂(ξ)|dξ.

Then we have

I2 ≤
(∫
|ξ|>λ

1
|ξ|2s2

dξ
)1/2

‖f‖Ḣs2

≤ 2
√
π
(∫ ∞

λ

1
r2s2−2

dr
)1/2

‖f‖Ḣs2
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≤ cs2λ
3
2−s2‖f‖Ḣs2 .

Therefore,
‖f‖L∞ ≤ Aλ

3
2−s1 +Bλ

3
2−s2 ,

with A = cs1‖f‖Ḣs1 and B = cs2‖f‖Ḣs2 .
Since the function

λ 7→ ϕ(λ) = Aλ
3
2−s1 +Bλ

3
2−s2

attains its minimum at λ = λ∗ = c(s1, s2)(B/A)
1

s2−s1 . Then

‖f‖L∞(R3) ≤ c′A
s2−

3
2

s2−s1B
3
2−s1
s2−s1 .

�

We remark that, for s1 = 1 and s2 = 2, where f ∈ Ḣ1(R3) ∩ Ḣ2(R3), we obtain

‖f‖L∞(R3) ≤ ‖f̂‖L1(R3) ≤ c‖f‖
1/2

Ḣ1(R3)
‖f‖1/2

Ḣ2(R3)
. (2.1)

3. Long time decay of (1.1) in H1(R3)

In this section, we prove that if u ∈ C(R+, H1(R3)) is a global solution of (1.1),
then

lim sup
t→∞

‖u(t)‖H1 = 0. (3.1)

This proof is done in two steps.
Step 1: We shall prove that

lim sup
t→∞

‖u(t)‖Ḣ1 = 0. (3.2)

We have
∂tu−∆u+ u · ∇u = −∇p.

Taking the Ḣ1/2(R3) inner product of the above equality with u, we obtain
1
2
d

dt
‖u‖2

Ḣ1/2 + ‖∇u‖2
Ḣ1/2 ≤ |〈(u · ∇u) | u〉Ḣ1/2 |.

Using the fundamental property u · ∇v = div(u⊗ v) if div v = 0, we obtain
1
2
d

dt
‖u‖2

Ḣ1/2 + ‖∇u‖2
Ḣ1/2 ≤ |〈(u · ∇u) | u〉Ḣ1/2 |

≤ |〈div(u⊗ u) | u〉Ḣ1/2 |
≤ |〈u⊗ u | ∇u〉Ḣ1/2 |
≤ ‖u⊗ u‖Ḣ1/2‖∇u‖Ḣ1/2

≤ ‖u⊗ u‖Ḣ1/2‖u‖Ḣ3/2 .

Hence, from Lemma (2.1) there would exist a constant c > 0 such that
1
2
d

dt
‖u‖2

Ḣ1/2 + ‖u‖2
Ḣ3/2 ≤ c‖u‖Ḣ1/2‖u‖2Ḣ3/2 .

From the equality (1.3) there would exist t0 > 0 such that, for all t ≥ t0,

‖u(t)‖Ḣ1/2 <
1
2c
.

Then
1
2
d

dt
‖u‖2

Ḣ1/2 +
1
2
‖u‖2

Ḣ3/2 ≤ 0, ∀t ≥ t0.
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Integrating with respect to time, we obtain

‖u(t)‖2
Ḣ1/2 +

∫ t

t0

‖u(τ)‖2
Ḣ3/2dτ ≤ ‖u(t0)‖2

Ḣ1/2 , ∀t ≥ t0.

Let s > 0 and c = cs. There exists T0 = T0(s, u0) > 0, such that

‖u(T0)‖Ḣ1/2 <
1

2cs
.

Then
‖u(t)‖Ḣ1/2 <

1
2cs

, ∀t ≥ T0.

Now, for s > 0 we have

∂tu−∆u+ u · ∇u = −∇p.
Taking the Ḣs(R3) inner product of the above equality with u, we obtain

1
2
d

dt
‖u‖2

Ḣs
+ ‖∇u‖2

Ḣs
≤ |〈(u · ∇u) | u〉Ḣs |.

Using the fundamental property u · ∇v = div(u⊗ v) if div v = 0, we obtain

1
2
d

dt
‖u‖2

Ḣs
+ ‖u‖2

Ḣs+1 ≤ |〈(u · ∇u) | u〉Ḣs |

≤ |〈div(u⊗ u)/u〉Ḣs |
≤ |〈u⊗ u | ∇u〉Ḣs |
≤ ‖u⊗ u‖Ḣs‖∇u‖Ḣs
≤ ‖u⊗ u‖Ḣs‖u‖Ḣs+1

≤ cs‖u‖Ḣ1/2‖u‖2Ḣs+1 .

Thus
1
2
d

dt
‖u‖2

Ḣs
+

1
2
‖u(t)‖2

Ḣs+1 ≤ 0, ∀t ≥ T0.

So, for T0 ≤ t′ ≤ t,

‖u(t)‖2
Ḣs

+
∫ t

t′
‖u(τ)‖2

Ḣs+1dτ ≤ ‖u(t′)‖2
Ḣs
.

In particular, for s = 1,

‖u(t)‖2
Ḣ1 +

∫ t

t′
‖u(τ)‖2

Ḣ2dτ ≤ ‖u(t′)‖2
Ḣ1 .

Then, the map t→ ‖u(t)‖Ḣ1 is decreasing on [T0,∞) and u ∈ L2([0,∞), Ḣ2(R3)).
Now, let ε > 0 be small enough. Then the L2-energy estimate

‖u(t)‖2L2 + 2
∫ t

T0

‖∇u(τ)‖2L2dτ ≤ ‖u(T0)‖2L2 , ∀t ≥ T0

implies that u ∈ L2([T0,∞), Ḣ1(R3)) and there is a time tε ≥ T0 such that

‖u(tε)‖Ḣ1 < ε.

Since the map t 7→ ‖u(t)‖Ḣ1 is decreasing on [T0,∞), it follows that

‖u(t)‖Ḣ1 < ε, ∀t ≥ tε.
Therefore (3.2) is proved.
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Step 2: In this step, we prove that

lim sup
t→∞

‖u(t)‖L2 = 0. (3.3)

This proof is inspired by [2] and [4]. For δ > 0 and a given distribution f , we define
the operators Aδ(D) and Bδ(D) as follows

Aδ(D)f = F−1(1{|ξ|<δ}F(f)), Bδ(D)f = F−1(1{|ξ|≥δ}F(f)).

It is clear that when applying Aδ(D) (respectively, Bδ(D)) to any distribution, we
are dealing with its low-frequency part (respectively, high-frequency part).

Let u be a solution to (1.1). Denote by ωδ and υδ, respectively, the low-frequency
part and the high-frequency part of u and so on ωδ0 and υδ0 for the initial data u0.
We have

∂tu−∆u+ u · ∇u = −∇p.
Then

∂tu−∆u+ P(u · ∇u) = 0.

Applying the pseudo-differential operators Aδ(D) to the above equality, we obtain

∂tAδ(D)u−∆Aδ(D)u+Aδ(D)P(u · ∇u) = 0,

∂tωδ −∆ωδ +Aδ(D)P(u · ∇u) = 0.

Taking the L2(R3) inner product of the above equality with ωδ(t), we obtain

1
2
d

dt
‖ωδ(t)‖2L2 + ‖∇ωδ(t)‖2L2 ≤ |〈Aδ(D)P(u(t) · ∇u(t)) | ωδ(t)〉L2 |

≤ |〈Aδ(D) div(u⊗ u)(t) | ωδ(t)〉L2 |
≤ |〈Aδ(D)(u⊗ u)(t) | ∇ωδ(t)〉L2 |
≤ |〈(u⊗ u)(t) | ∇ωδ(t)〉L2 |
≤ ‖u⊗ u(t)‖L2‖∇ωδ(t)‖L2

≤ ‖u⊗ u(t)‖L2‖∇ωδ(t)‖L2 .

Lemma 2.1 gives

1
2
d

dt
‖ωδ(t)‖2L2 + ‖∇ωδ(t)‖2L2 ≤ C‖u(t)‖Ḣ1/2‖∇u(t)‖L2‖∇ωδ(t)‖L2

≤ CM‖∇u(t)‖L2‖∇ωδ(t)‖L2 .

with M = supt≥0 ‖u(t)‖Ḣ1/2). Integrating with respect to t, we obtain

‖ωδ(t)‖2L2 ≤ ‖ωδ0‖2L2 + CM

∫ t

0

‖∇u(τ)‖L2‖∇ωδ(τ)‖L2dτ.

Hence, we have ‖ωδ(t)‖2L2 ≤Mδ for all t ≥ 0, where

Mδ = ‖ωδ0‖2L2 + CM

∫ ∞
0

‖∇u(τ)‖L2‖∇ωδ(τ)‖L2dτ.

Using the fact that limδ→0 ‖ωδ0‖2L2(R3) = 0 and thanks to the Lebesgue-dominated
convergence theorem we deduce that

lim
δ→0

∫ ∞
0

‖∇u(τ)‖L2‖∇ωδ(τ)‖L2dτ = 0. (3.4)
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Hence limδ→0Mδ = 0, and thus

lim
δ→0

sup
t≥0
‖ωδ(t)‖L2 = 0. (3.5)

We can take time equal to ∞ in the integral (3.4) because by definition of ωδ we
have

‖∇ωδ‖L2 = ‖F(∇ωδ)‖L2

= ‖ξ|1{|ξ|<δ}F(u)‖L2

≤ ‖ξ|F(u)‖L2

≤ ‖∇u‖L2 .

Now, using the fact that limδ→0 ‖∇ωδ(t)‖L2 = 0 almost everywhere. Then, the
sequence

‖∇u(t)‖L2‖∇ωδ(t)‖L2

converges point-wise to zero. Moreover, using the above computations and the
energy estimate (1.4), we obtain

‖∇u(t)‖L2‖∇ωδ(t)‖L2 ≤ ‖∇u(t)‖2L2 ∈ L1(R+).

Thus, the integral sequence is dominated. Hence, the limiting function is integrable
and one can take the time T =∞ in (3.4).

Now, let us investigate the high-frequency part. For this, we apply the pseudo-
differential operators Bδ(D) to the (1.1) to obtain

∂tυδ −∆υδ +Bδ(D)P(u · ∇u) = 0.

Taking the Fourier transform with respect to the space variable, we obtain

∂t|υ̂δ(t, ξ)|2 + 2|ξ|2|υ̂δ(t, ξ)|2 ≤ 2|F(Bδ(D)P(u · ∇u))(t, ξ)‖υ̂δ(t, ξ)|
≤ 2|F(Bδ(D)P(div(u⊗ u)))(t, ξ)‖υ̂δ(t, ξ)|
≤ 2|ξ‖F(Bδ(D)P(u⊗ u))(t, ξ)‖υ̂δ(t, ξ)|
≤ 2|ξ‖F(u⊗ u)(t, ξ)‖υ̂δ(t, ξ)|

≤ 2|F(u⊗ u)(t, ξ)‖∇̂υδ(t, ξ)|.

Multiplying the obtained equation by exp(2t|ξ|2) and integrating with respect to
time, we obtain

|υ̂δ(t, ξ)|2 ≤ e−2t|ξ|2 |υ̂0
δ (ξ)|2 + 2

∫ t

0

e−2(t−τ)|ξ|2 |F(u⊗ u)(τ, ξ)‖∇̂υδ(τ, ξ)|dτ.

Since |ξ| > δ, we have

|υ̂δ(t, ξ)|2 ≤ e−2tδ2 |υ̂0
δ (ξ)|2 + 2

∫ t

0

e−2(t−τ)δ2 |F(u⊗ u)(τ, ξ)‖∇̂υδ(τ, ξ)|dτ.

Integrating with respect to the frequency variable ξ and using Cauchy-Schwarz
inequality, we obtain

‖υδ(t)‖2L2 ≤ e−2tδ2‖υδ0‖2L2 + 2
∫ t

0

e−2(t−τ)δ2‖u⊗ u(τ)‖L2‖∇υδ(τ)‖L2dτ.

By the definition of υδ, we have

‖υδ(t)‖2L2 ≤ e−2tδ2‖u0‖2L2 + 2
∫ t

0

e−2(t−τ)δ2‖u⊗ u(τ)‖L2‖∇u(τ)‖L2dτ.
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Lemma 2.1 and the equality (1.3) yield

‖υδ(t)‖2L2(R3) ≤ e
−2tδ2‖u0‖2L2(R3) + C

∫ t

0

e−2(t−τ)δ2‖u(τ)‖Ḣ1/2‖∇u(τ)‖2L2dτ

≤ e−2tδ2‖u0‖2L2 + CM

∫ t

0

e−2(t−τ)δ2‖∇u(τ)‖2L2dτ,

where M = supt≥0 ‖u‖Ḣ1/2 . Hence, ‖υδ(t)‖2L2 ≤ Nδ(t), where

Nδ(t) = e−2tδ2‖u0‖2L2 + CM

∫ t

0

e−2(t−τ)δ2‖∇u(τ)‖2L2dτ.

Using the energy estimate (1.4), we obtain Nδ ∈ L1(R+) and∫ ∞
0

Nδ(t)dt ≤
‖u0‖2L2

2δ2
+
CM‖u0‖2L2

4δ2
.

This leads to the fact that the function t → ‖υδ(t)‖2L2 is both continuous and
Lebesgue integrable over R+.

Now, let ε > 0. At first, the inequality (3.5) implies that there exists some δ0 > 0
such that

‖ωδ0(t)‖L2 ≤ ε/2, ∀ t ≥ 0.

Let us consider the set Rδ0 defined by Rδ0 := {t ≥ 0, ‖υδ(t)‖L2(R3) > ε/2}. If we
denote by λ1(Rδ0) the Lebesgue measure of Rδ0 , we have∫ ∞

0

‖υδ0(t)‖2L2(R3)dt ≥
∫

Rδ0

‖υδ(t)‖2L2(R3)dt ≥ (ε/2)2λ1(Rδ0).

By doing this, we can deduce that λ1(Rδ0) = T εδ0 < ∞, and there exists tεδ0 > T εδ0
such that

‖υδ0(tεδ0)‖2L2 ≤ (ε/2)2.
So, ‖u(tεδ0)‖L2 ≤ ε and from the energy estimate (1.4) we have

‖u(t)‖L2 ≤ ε, ∀t ≥ tεδ0 .
This completes the proof of (3.3).

4. Generalization of Foias-Temam result in H1(R3)

Fioas and Temam [5] proved an analytic property for the Navier-Stokes equations
on the torus T3 = R3/Z3. Here, we give a similar result on the whole space R3.

Theorem 4.1. We assume that u0 ∈ H1(R3). Then, there exists a time T that
depends only on the ‖u0‖H1(R3), such that

• (1.1) possesses on (0, T ) a unique regular solution u such that the function
t 7→ et|D|u(t) is continuous from [0, T ] into H1(R3).

• If u ∈ C(R+, H1(R3)) is a global and bounded solution to (1.1), then there
are M ≥ 0 and t0 > 0 such that

‖et0|D|u(t)‖H1(R3) ≤M, ∀t ≥ t0.

Before proving this Theorem, we need the following Lemmas.

Lemma 4.2. Let t 7→ et|D|u belong to Ḣ1(R3) ∩ Ḣ2(R3). Then

‖et|D|(u · ∇v)‖L2(R3) ≤ ‖et|D|u‖
1/2
H1(R3)‖e

t|D|u‖1/2H2(R3)‖e
t|D|v‖H1(R3).
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Proof. We have

‖et|D|(u · ∇v)‖2L2 =
∫

R3
e2t|ξ||û · ∇v(ξ)|2dξ

≤
∫

R3
e2t|ξ|

(∫
R3
|û(ξ − η)‖∇̂v(η)|dη

)2

dξ

≤
∫

R3

(∫
R3
et|ξ||û(ξ − η)‖∇̂v(η)|dη

)2

dξ.

Using the inequality e|ξ| ≤ e|ξ−η|e|η|, we obtain

‖et|D|(u · ∇v)‖2L2 ≤
∫

R3

(∫
R3
et|ξ−η||û(ξ − η)|et|η||∇̂v(η)|dη

)2

dξ

≤
∫

R3

(∫
R3

(
et|ξ−η||û(ξ − η)|

)(
et|η||η‖v̂(η)|

)
dη
)2

dξ

≤
(∫

R3
et|ξ||û(ξ)|dξ

)2

‖et|D|∇v‖2L2 .

Hence, for f = F−1(et|ξ||û(ξ)|) ∈ Ḣ1(R3) ∩ Ḣ2(R3), inequality (2.1) gives

‖et|D|(u · ∇v)‖L2 ≤ ‖et|D|u‖1/2
Ḣ1 ‖et|D|u‖

1/2

Ḣ2 ‖et|D|∇v‖L2

≤ ‖et|D|u‖1/2
Ḣ1 ‖et|D|u‖

1/2

Ḣ2 ‖et|D|v‖Ḣ1

≤ ‖et|D|u‖1/2H1 ‖et|D|u‖1/2H2 ‖et|D|v‖H1 .

�

Lemma 4.3. Let t 7→ et|D|u ∈ Ḣ1(R3) ∩ Ḣ2(R3). Then∣∣〈et|D|(u · ∇v) | et|D|w〉H1

∣∣ ≤ ‖et|D|u‖1/2H1 ‖et|D|u‖1/2H2 ‖et|D|v‖H1‖et|D|w‖H2 .

Proof. We have

〈u · ∇v | w〉H1 =
∑
|j|=1

〈∂j(u · ∇v) | ∂jw〉L2

= −
∑
|j|=1

〈u · ∇v | ∂2
jw〉L2

= −〈u · ∇v | ∆w〉L2 .

Then ∣∣〈et|D|(u · ∇v) | et|D|w〉H1

∣∣ =
∣∣〈et|D|(u · ∇v) | et|D|∆w〉L2

∣∣
≤ ‖et|D|(u · ∇v)‖L2‖et|D|∆w‖L2

≤ ‖et|D|(u · ∇v)‖L2‖et|D|w‖Ḣ2

≤ ‖et|D|(u · ∇v)‖L2‖et|D|w‖H2 .

Finally, using Lemma 4.2, we obtain the desired result. �

Proof of Theorem 4.1. We have

∂tu−∆u+ u · ∇u = −∇p.
Applying the fourier transform to the last equation and multiplying by û, we obtain

∂tû · û+ |ξ|2|û|2 = −(û · ∇u) · û.
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Then

∂t|û|2 + 2|ξ|2|û|2 = −2 Re((û · ∇u) · û).

Multiplying the above equation by (1 + |ξ|2)e2t|ξ|, we obtain

(1 + |ξ|2)e2t|ξ|∂t|û|2 + 2(1 + |ξ|2)|ξ|2e2t|ξ||û|2 = −2 Re((û · ∇u) · û)(1 + |ξ|2)e2t|ξ|.

Integrating with respect to ξ, we obtain∫
R3

(1 + |ξ|2)e2t|ξ|∂t|û(ξ)|2dξ + 2
∫

R3
(1 + |ξ|2)|ξ|2e2t|ξ||û(ξ)|2dξ

= −2 Re
∫

R3
((û · ∇u) · û)(1 + |ξ|2)e2t|ξ|dξ.

Thus

〈et|D|∂tu/et|D|u〉H1 + 2‖et|D|∇u‖2H1(R3) = −2Re〈et|D|(u · ∇u) | et|D|u〉H1 . (4.1)

Therefore,

〈et|D|u′(t) | et|D|u(t)〉H1 = 〈(et|D|u(t))′ − |D|et|D|u(t) | et|D|u(t)〉H1

=
1
2
d

dt
‖et|D|u‖2H1 − 〈et|D||D|u(t) | et|D|u(t)〉H1

≥ 1
2
d

dt
‖et|D|u‖2H1 − ‖et|D|u‖H1‖et|D|u‖H2 .

Using the Young inequality, we obtain
d

dt
‖et|D|u‖2H1 − 2‖et|D|u‖2H1 −

1
2
‖et|D|u‖2H2 ≤ 2〈et|D|u′(t) | et|D|u(t)〉H1 . (4.2)

Hence, using Lemma 4.3 and Young inequality the right hand of (4.1) satisfies

| − 2 Re〈et|D|(u · ∇u) | et|D|u〉H1 | ≤ 2‖et|D|u‖3/2H1 ‖et|D|u‖3/2H2

≤ 3
4
‖et|D|u‖2H2 +

c1
2
‖et|D|u‖6H1 ,

where c1 is a positive constant. Then, (4.1) yields

〈et|D|u′(t) | et|D|u(t)〉H1 + 2‖et|D|∇u‖2H1 ≤
3
4
‖et|D|u‖2H2 +

c1
2
‖et|D|u‖6H1 . (4.3)

Hence, using (4.2)–(4.3), we obtain

d

dt
‖et|D|u‖2H1 − 2‖et|D|u‖2H1 − 2‖et|D|u‖2H2 + 4‖et|D|∇u‖2H1 ≤ c1‖et|D|u‖6H1 .

The equality ‖et|D|u‖2H2 = ‖et|D|u‖2H1 + ‖et|D|∇u‖2H1 yields

d

dt
‖et|D|u‖2H1 + 2‖et|D|∇u‖2H1 ≤ 4‖et|D|u‖2H1 + c1‖et|D|u‖6H1

≤ c2 + 2c1‖et|D|u‖6H1 .

where c2 is a positive constant. Finally, we obtain

y(t) ≤ y(0) +K1

∫ t

0

y3(s)ds.

where
y(t) = 1 + ‖et|D|u(t)‖2H1 and K1 = 2c1 + c2.
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Let

T1 =
2

K1y2(0)

and 0 < T ≤ T ∗ be such that T = sup{t ∈ [0, T ∗) | sup0≤s≤t y(s) ≤ 2y(0)}. Hence
for 0 ≤ t ≤ min(T1, T ), we have

y(t) ≤ y(0) +K1

∫ t

0

y3(s)ds

≤ y(0) +K1

∫ t

0

8y3(0)ds

≤
(
1 +K18T1y

2(0)
)
y(0).

Taking 1+K18T1y
2(0) < 2, we obtain T > T1. Then y(t) ≤ 2y(0) for all t ∈ [0, T1].

This shows that t 7→ et|D|u(t) ∈ H1(R3) for all t ∈ [0, T1]. In particular

‖eT1|D|u(T1)‖2H1 ≤ 2 + 2‖u0‖2H1 .

Now, from the hypothesis, we assume that there exists M1 > 0 such that

‖u(t)‖H1 ≤M1 for all t ≥ 0.

Define the system

∂tw −∆w + w.∇w = −∇p in R+ × R3

divw = 0 in R+ × R3

w(0) = u(T ) in R3,

where w(t) = u(T + t). Using a similar technique, we can prove that there exists
T2 = 2

K1
(1 +M2

1 )−2 such that

y(t) = 1 + ‖et|D|w(t)‖2H1 ≤ 2(1 +M2
1 ), ∀t ∈ [0, T2].

This implies 1 + ‖et|D|u(T + t)‖2H1 ≤ 2(1 +M2
1 ). Hence, for t = T2 we have

‖eT2|D|u(T + T2)‖2H1 ≤ 2(1 +M2
1 ).

Since t = T + T2 ≥ T2 for all T ≥ 0, we obtain

‖eT2|D|u(t)‖2H1 ≤ 2(1 +M2
1 ), ∀t ≥ T2.

Then

‖eT2|D|u(t)‖2H1 ≤ 2(1 +M2
1 ), ∀t ≥ T2,

where

T2 = T2(M1) =
2
K1

(1 +M2
1 )−2.

�
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5. Proof of the main result

In this section, we prove Theorem 1.1. This proof uses the results of sections 3
and 4.

Let u ∈ C(R+, H1
a,σ(R3)). As H1

a,σ(R3) ↪→ H1(R3), then u ∈ C(R+, H1(R3)).
Applying Theorem 4.1, there exist t0 > such that

‖et0|D|u(t)‖H1 ≤ c0 = 2 +M2
1 , ∀t ≥ t0, (5.1)

where t0 = 2
K1

(1 +M2
1 )−2. Let a > 0, β > 0. Then there exists c3 ≥ 0 such that

ax1/σ ≤ c3 + βx, ∀x ≥ 0.

Indeed, 1
σ + σ−1

σ = 1
p + 1

q = 1. Using the Young inequality, we obtain

ax1/σ = aβ
−1
σ (β1/σx1/σ)

≤ (aβ
−1
σ )q

q
+

(β1/σx1/σ)p

p

≤ c3 +
βx

σ
≤ c3 + βx,

where c3 = σ−1
σ a

σ
σ−1 β

1
1−σ .

Take β = t0
2 , using (5.1) and the Cauchy Schwarz inequality, we have

‖u(t)‖2H1
a,σ

= ‖ea|D|
1/σ
u(t)‖2H1

=
∫

(1 + |ξ|2)e2a|ξ|
1/σ
|û(t, ξ)|2dξ

≤
∫

(1 + |ξ|2)e2(c3+β|ξ|)|û(t, ξ)|2dξ

≤
∫

(1 + |ξ|2)e2c3et0|ξ||û(t, ξ)|2dξ

≤ e2c3
(∫

(1 + |ξ|2)|û(t, ξ)|2dξ
)1/2(∫

(1 + |ξ|2)e2t0|ξ||û(t, ξ)|2dξ
)1/2

≤ e2c3‖u‖1/2H1 ‖et0|D|u(t)‖1/2H1

≤ c‖u‖1/2H1 ,

where c = e2c3c
1/2
0 . Using the inequality (3.1), we obtain

lim sup
t→∞

‖ea|D|
1/σ
u(t)‖H1 = 0.
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