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HOMOGENIZATION OF SOME EVOLUTION PROBLEMS IN
DOMAINS WITH SMALL HOLES

BITUIN CABARRUBIAS, PATRIZIA DONATO

Abstract. This article concerns the asymptotic behavior of the wave and heat
equations in periodically perforated domains with small holes and Dirichlet

conditions on the boundary of the holes. In the first part we extend to time-

dependent functions the periodic unfolding method for domains with small
holes introduced in [6]. Therein, the method was applied to the study of elliptic

problems with oscillating coefficients in domains with small holes, recovering

the homogenization result with a “strange term” originally obtained in [11]
for the Laplacian. In the second part we obtain some homogenization results

for the wave and heat equations with oscillating coefficients in domains with

small holes. The results concerning the wave equation extend those obtained
in [12] for the case where the elliptic part of the operator is the Laplacian.

1. Introduction

The aim of this work is the study of the asymptotic behavior as ε → 0 of the
wave and heat equations in a perforated domain with holes distributed periodically
with period ε, and with a Dirichlet condition on the boundary of the holes. We
consider here “small” holes, that is to say with size of the order of εδ (ε → 0,
δ → 0). The case δ = 1 corresponds to the classical case of homogenization where
the size of the holes and of the period is of the same order. We will use for the proofs
an adaptation to the case of time dependent equations of the periodic unfolding
method for small holes from Cioranescu, Damlamian, Griso and Onofrei [7].

The periodic unfolding method for the classical homogenization was introduced
in Cioranescu, Damlamian and Griso [4] for fixed domains (see [5] for detailed
proofs) and extended to perforated domains in [9] (see Cioranescu, Damlamian,
Donato, Griso and Zaki [7] for more general situations). The method was applied
in particular, for the classical homogenization of the wave and heat equations in
periodically perforated domains by Gaveau [17] and more recently, by Donato and
Yang [15] and [16].

The asymptotic behavior of the homogeneous Dirichlet problem for the Poisson
equation in perforated domains with small holes of size εα, α > 0, was studied
by Cioranescu and Murat in [11]. They showed that for each dimension N of the
space, the size εN/N−2 is “critical” in the sense that in the limit problem appears
an additional zero order term (called in [11] “strange term”) which is related to the
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capacity of the set of holes as ε→ 0. There were afterward many works treating the
same geometrical framework with various conditions on the boundary of the holes.
Let us list a few of them. The case of Stokes equations was studied by Allaire in [1],
the Poisson equation with non homogeneous Neumann conditions was treated by
Conca and Donato [14] where it was shown that the contribution of the holes of size
of order of εN/N−1, is reflected by an extra term in the right hand side of the limit
equation. The case of mixed boundary conditions was studied by Cardone, D’Apice
and De Maio in [3]. As concerning the parabolic case, we refer to Gontcharenko
[18] where the homogenization result is obtained via the convergence of some cost-
functionals. Homogenization and corrector results for the wave equation have been
proved by Cioranescu, et al. [12].

In all these papers, the elliptic part of the operator is the Laplacian. For the
asymptotic study, standard variational homogenization methods, as for instance
Tartar’s oscillating test functions method ([25]), are used (see also [2, 13, 23]).
They need to introduce extension operators (since the domains are changing with
ε) and to construct test functions, specific for each situation.

As mentioned before, in the paper we present here, we will use the periodic
unfolding method. On one hand, we take the advantage of the simplicity of this
method when applied to perforated domains as can be seen in [9] or [7]. Indeed, the
periodic unfolding, being a fixed-domain method, no extension operator is needed.
On the other hand, the method does not use any construction of special test func-
tions and so, one can treat general second order operators with highly oscillating
(in ε) coefficients, which was not the case in the papers cited above.

For the case of small holes for the Laplace equation and homogeneous Dirichlet
boundary condition, first applications of the unfolding method have been done in
Cioranescu, et al. [6], Onofrei [20], and Zaki [26]. Then the same operator was
used in the framework of [14], with small holes of size εN/N−1 and non homoge-
neous Neumann conditions, in Ould Hammouda [21] and in Cioranescu and Ould
Hammouda [10] for mixed boundary conditions.

In this work we first extend the unfolding operator Tε,δ introduced in [6] to time-
dependent functions and study in details its related properties. In the second part,
we apply the periodic unfolding method to obtain some homogenization results
for the wave and heat equations with oscillating coefficients in domains with small
holes.

We present here the proofs for the wave equation while for the heat equation we
only state the problem together with the main convergence results. We skip the
proofs for this case, since they follow step by step the outlines of those for the wave
equation.

This paper is organized as follows: Sections 2-4 recalls the geometric framework
for the perforated domain as well as some definitions and properties of the unfolding
operators for fixed and perforated domains with small holes. In Section 5 we extend
the operator Tε,δ given in [6] to time-dependent functions with detailed proofs of
its properties. One can also find in this section the extension of the local average
operator to time-dependent functions together with the related properties needed
in this work. Section 6 is devoted to the main homogenization results for the wave
and heat equations while Section 7 contains the proofs for the wave equation.
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2. Notation and definitions

We recall here some notation and definitions as given in [4] for fixed domains.
Let Ω be a bounded open set in Rn, such that |∂Ω| = 0 and

Y =
]
− `i

2
,
`i
2
[N
, 0 < `i, `i ∈ R+ for i = 1, . . . , N,

be the reference periodicity cell. Let us now introduce the sets

Ω̂ε = interior
{
∪ξ∈Ξε ε

(
ξ + Y

)}
, Ξε =

{
ξ ∈ Zn : ε(ξ + Y ) ⊂ Ω

}
,

Λε = Ω \ Ω̂ε.
(2.1)

By construction, Ω̂ε is the interior of the largest union of ε(ξ + Y ) cells fully con-
tained in Ω, while Λε is the subset of Ω containing the parts from the ε(ξ+Y ) cells
intersecting the boundary ∂Ω (see Figure 1).

Figure 1. Sets Ω̂ε (brown) and Λε (light green)

As in [4], for every z in RN , we denote by [z]Y the unique integer combination
of periods such that

{z}Y = z − [z]Y ∈ Y (2.2)

which is depicted in Figure 2. Then, because of the periodicity and recalling (2.2),
each x ∈ RN can be uniquely written as

x = ε
({x
ε

}
Y

+
[x
ε

]
Y

)
. (2.3)

3. Time-dependent unfolding operator in fixed domains

Throughout this paper, T will be a given positive number. This section recalls
the time-dependent unfolding operator for fixed domains as introduced in [17].

Definition 3.1 ([17]). Let ϕ ∈ Lq(0, T ;Lp(Ω)) where p ∈ [1,+∞[ and q ∈ [1,+∞].
The unfolding operator Tε : Lq(0, T ;Lp(Ω)) 7→ Lq(0, T ;Lp(Ω× Y )) is defined as

Tε(ϕ)(x, y, t) =

{
ϕ(ε[xε ]Y + εy, t) a.e. for (x, y, t) ∈ Ω̂ε × Y×]0, T [,
0 a.e. for (x, y, t) ∈ Λε × Y×]0, T [.
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Figure 2. {z}Y and [z]Y .

Some of the properties of this operator which were stated in [17] are listed below.
For perforated domains with holes of the same size as the period and for detailed
proofs (in Definition 3.1 obviously true for fixed domains), we refer to [15].

Remark 3.2. Notice that if in Definition 3.1 we take ϕ in Lp(Ω) independent of
time, we recover the definition of the unfolding operator for fixed domains from [4].

Proposition 3.3 ([15, 17]). Let p ∈ [1,+∞[ and q ∈ [1,+∞]. Suppose that u and
v are functions in Lq(0, T ;Lp(Ω)). Then:

(1) Tε is linear and continuous from Lq(0, T ;Lp(Ω)) to Lq(0, T ;Lp(Ω× Y ));
(2) Tε(uv) = Tε(u)Tε(v);
(3) if u ∈ Lq(0, T ;W 1,p(Ω)) then Tε(u) ∈ Lq(0, T ;Lp(Ω;W 1,p(Y ))) and

∇y(Tε(u)) = εTε(∇u) in Ω× Y×]0, T [ ;

(4) for almost every t ∈]0, T [,

1
|Y |

∫
Ω×Y

Tε(u)(x, y, t) dx dy dt =
∫

Ω

u(x, t) dx dt−
∫

Λε

u(x, t) dx dt

=
∫

bΩε u(x, t) dx dt.

Proposition 3.4 ([15, 17]). Let p, q ∈ [1,+∞[. Suppose that φ ∈ Lq(0, T ;Lp(Ω))
and {φε} is a sequence in Lq(0, T ;Lp(Ω)).

(1) Tε(φ)→ φ strongly in Lq(0, T ;Lp(Ω× Y )).
(2) If φε → φ strongly in Lq(0, T ;Lp(Ω)), then Tε(φε)→ φ strongly in the space

Lq(0, T ;Lp(Ω× Y )).

Proposition 3.5 ([15, 17]). Let p ∈]1,+∞[ and {ϕε} be a sequence in the space
L∞(0, T ;W 1,p

0 (Ω)) such that

‖∇ϕε‖L∞(0,T ;Lp(Ω)) ≤ C.

Then there exist ϕ ∈ L∞(0, T ;W 1,p
0 (Ω)) and ϕ̂ ∈ L∞(0, T ;Lp(Ω;W 1,p

per(Y ))) such
that up to a subsequence,

(i) Tε(ϕε) ⇀ ϕ weakly∗ in L∞(0, T ;Lp(Ω;W 1,p(Y ))),
(ii) Tε(∇ϕε) ⇀ ∇xϕ+∇yϕ̂ weakly∗ in L∞(0, T ;Lp(Ω× Y )).
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We end this section by recalling the definition of the mean value operator MY

and that of the local average operator Mε
Y and give some of their properties that

will be useful in the sequel.

Definition 3.6. Let p ∈ [1,+∞[ and q ∈ [1,+∞]. The mean value operator
MY : Lq(0, T ;Lp(Ω× Y )) 7−→ Lq(0, T ;Lp(Ω)) is defined by

MY (u)(x, t) =
1
|Y |

∫
Y

u(x, y, t) dy,

for every u ∈ Lq(0, T ;Lp(Ω× Y )).

Definition 3.7. Let p ∈ [1,+∞[ and q ∈ [1,+∞]. The local average operator
Mε

Y : Lq(0, T ;Lp(Ω)) 7−→ Lq(0, T ;Lp(Ω)) is defined by

Mε
Y (ϕ)(x, t) =

1
|Y |

∫
Y

Tε(ϕ)(x, y, t) dy,

for any ϕ ∈ Lq(0, T ;Lp(Ω)).

Remark 3.8. In connection with Remark 3.2, some of the properties of Tε (in
the case of dependence on time) can be derived directly for those of the unfolding
operator for fixed domains from [4] with the time t as a mere parameter.

As a consequence, we have the following result.

Proposition 3.9. Let p ∈ [1,∞[ and q ∈ [1,∞].
(1) For ϕ ∈ Lq(0, T ;Lp(Ω)), one has

Tε(Mε
Y (ϕ))(x, y, t) =MY (Tε(ϕ))(x, t) =Mε

Y (ϕ)(x, t) in Ω×]0, T [.

(2) Let {wε} be a sequence in Lq(0, T ;Lp(Ω)) such that

wε → w strongly in Lq(0, T ;Lp(Ω)).

Then

Mε
Y (wε)→MY (w) = w strongly in Lq(0, T ;Lp(Ω)).

(3) For any ϕ ∈ Lq(0, T ;Lp(Ω)),

‖Mε
Y (ϕ)‖Lq(0,T ;Lp(Ω)) ≤ |Y |

1−p
p ‖ϕ‖Lq(0,T ;Lp(Ω)).

Proof. Property 1 corresponds to [4, Remarks 2.23 and 2.24]. For the reader’s
convenience, let us sketch the proof. One has successively, by using Definitions 3.1,
3.6 and 3.7,

Tε(Mε
Y (ϕ))(x, y, t) =Mε

Y (ϕ)
(
ε[
x

ε
]Y + εy, t

)
=

1
|Y |

∫
Y

Tε(ϕ)(ε[
x

ε
]Y + εy, y, t) dy

=
1
|Y |

∫
Y

Tε(ϕ)(x, y, t) dy =MY (Tε(ϕ))(x, t) =Mε
Y (ϕ)(x, t),

for a.e. (x, t) in Ω× (0, T ).
Property 2 (corresponding to [4, Proposition 2.25 (iii)]) follows immediately from

Proposition 3.4(2) and Definition 3.6.
Property 3 is a consequence of [4, Proposition 2.25(iii)] which shows that for all

w ∈ Lp(Ω),
‖Tε(w)‖Lp(Ω×Y ) ≤ | Y |

1/p ‖w‖Lp(Ω).

Then the result is straightforward by taking into account Remark 3.8 and Definition
3.7. �
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4. Unfolding operator in domains depending on two parameters

In this section we recall the definition and some of its properties of the unfolding
operator Tε,δ depending on two mall parameters ε and δ, as introduced in [6].

Definition 4.1 ([6]). Let p ∈ [1,+∞[. For φ ∈ Lp(Ω), the unfolding operator Tε,δ
is the function Tε,δ : Lp(Ω)→ Lp(Ω× RN ) defined by

Tε,δ(φ)(x, z) =

{
Tε(φ)(x, δz) if (x, z) ∈ Ω̂ε × 1

δY,

0 otherwise,

where Tε is the operator for fixed domains as introduced in [4] (see Remark 3.2).

To go further, let us introduce what is called a perforated domain with small
holes, denoted here Ω∗ε,δ. Let B ⊂⊂ Y and denote Y ∗δ = Y \δB. Then Ω∗ε,δ is
defined as

Ω∗ε,δ = {x ∈ Ω such that {x
ε
}Y ∈ Y ∗δ },

where δ → 0 with ε. This definition means that Ω∗ε,δ is a domain ε-periodically
perforated by holes εδB, see Figure 3.

Figure 3. Perforated domain with small holes Ω∗ε,δ.

Remark 4.2. As shown in [6], it turns out that the operator Tε,δ is well-adapted
for domains with small holes when dealing with functions which vanish on the
boundary of Ω∗ε,δ. It is precisely the case we treat in this work. We will deal with
functions belonging in particular, to H1

0 (Ω∗ε,δ). The extensions of these functions
by zero to the whole of Ω, belong to H1

0 (Ω). Consequently in the sequel, we will
not distinguish the elements of H1

0 (Ω∗ε,δ) and their extensions from H1
0 (Ω).

Proposition 4.3. [6]
(1) For any v, w ∈ Lp(Ω), Tε,δ(vw) = Tε,δ(v)Tε,δ(w).
(2) For any u ∈ L1(Ω),

δN
∫

Ω×RN
|Tε,δ(u)| dx dz ≤

∫
Ω

|u| dx.

(3) For any u ∈ L2(Ω),

‖Tε,δ(u)‖2L2(Ω×RN ) ≤
1
δN
‖u‖2L2(Ω).
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(4) For any u ∈ L1(Ω),∣∣ ∫
Ω

u dx− δN
∫

Ω×RN
Tε,δ(u) dx dz

∣∣ ≤ ∫
Λε

|u| dx.

(5) Let u ∈ H1(Ω). Then

Tε,δ(∇xu) =
1
εδ
∇z(Tε,δ(u)), in Ω× 1

δ
Y.

(6) Suppose N ≥ 3 and let ω ⊂ RN be open and bounded. The following
estimates hold:

‖∇z(Tε,δ(u))‖2L2(Ω× 1
δY ) ≤

ε2

δN−2
‖∇u‖2L2(Ω),

‖Tε,δ(u−Mε
Y (u))‖2L2(Ω;L2∗ (RN )) ≤

Cε2

δN−2
‖∇u‖2L2(Ω),

‖Tε,δ(u)‖2L2(Ω×ω) ≤
2Cε2

δN−2
|ω|2/N‖∇u‖2L2(Ω) + 2|ω|‖u‖2L2(Ω),

where C is the Sobolev-Poincaré-Wirtinger constant for H1(Y ).
(7) Suppose N ≥ 3 and let {wε,δ} be a sequence in H1(Ω) which is uniformly

bounded as both ε and δ approach 0. Then there exists W in L2(Ω;L2∗(RN ))
with ∇zW in L2(Ω× RN ) such that, up to a subsequence,

δ
N
2 −1

ε

(
Tε,δ(wε,δ)−Mε

Y (wε,δ)1 1
δY

)
⇀W w-L2(Ω;L2∗(RN )),

and

δ
N
2 −1

ε
∇z(Tε,δ(wε,δ))1 1

δY
⇀ ∇zW weakly in L2(Ω× RN ).

Furthermore, if

lim sup
(ε,δ)→(0+,0+)

δ
N
2 −1

ε
< +∞,

then one can choose the subsequence above and some U ∈ L2(Ω;L2
loc(RN ))

such that

δ
N
2 −1

ε
Tε,δ(wε,δ) ⇀ U weakly in L2(Ω;L2

loc(RN )).

Definition 4.4. A sequence {vε,δ} in L1(Ω) satisfies the unfolding criterion for
integrals (u.c.i.) if ∫

Ω

vε,δ dx− δN
∫

Ω×RN
Tε,δ(vε,δ) dx dz → 0,

for every sequence (ε, δ)→ (0+, 0+). This property is denoted∫
Ω

vε,δ dx
Tε,δ∼= δN

∫
Ω×RN

Tε,δ(vε,δ) dx dz.

Proposition 4.5 ([6](u.c.i.)). If {vε} is a sequence in L1(Ω) satisfying∫
Λε

|uε| dx→ 0,

then it satisfies u.c.i..
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Corollary 4.6 ([6]). Let {uε} be bounded in L2(Ω) and {vε} be bounded in Lp(Ω)
with p > 2. Then {uεvε} satisfies u.c.i..

Remark 4.7. As observed in [6], for any ψ ∈ D(Ω), one has

‖Tε,δ(ψ)− ψ‖L∞(Ω̂ε× 1
δY ) → 0.

5. Time-dependent unfolding operator in domains with two
parameters

In this section, we extend the operator Tε,δ defined in the previous section to
time-dependent functions by adapting what is done in [15]. We start by defining
the unfolding operator for time-dependent functions in the domain Ω∗ε,δ×]0, T [,
depending on ε and δ.

In what follows, we have (ε, δ)→ (0, 0) through any sequence and subsequence.

Definition 5.1. Let p ∈ [1,+∞[ and q ∈ [1,+∞]. Let ϕ ∈ Lq(0, T ;Lp(Ω)). The
unfolding operator Tε,δ : Lq(0, T ;Lp(Ω))→ Lq(0, T ;Lp(Ω× RN )) is defined as

Tε,δ(ϕ)(x, z, t) =

{
Tε(ϕ)(x, δz, t) if (x, z, t) ∈ Ω̂ε × 1

δY×]0, T [,
0 otherwise.

that is,

Tε,δ(ϕ)(x, z, t) =

{
ϕ
(
ε[xε ]Y + εδz, t

)
if (x, z, t) ∈ Ω̂ε × 1

δY×]0, T [,
0 otherwise.

As mentioned above, for δ = 1 we are in presence of the unfolding operator for
fixed domains introduced in [4].

Remark 5.2. From now on, if a function does not depend on t, by Tε,δ(ϕ) we
simply mean the operator introduced in Definition 4.1.

Being defined by means of the operator Tε, the unfolding operator Tε,δ inherits
most of the general properties of it. In particular, the following proposition is
straightforward:

Proposition 5.3. Let p ∈ [1,+∞[ and q ∈ [1,+∞].

(1) Tε,δ is linear and continuous from Lq(0, T ;Lp(Ω)) to Lq(0, T ;Lp(Ω×RN )).
(2) Tε,δ(vw) = Tε,δ(v)Tε,δ(w) for every v, w ∈ Lq(0, T ;Lp(Ω)).
(3) ∇z(Tε,δ(ϕ)) = εδTε,δ(∇ϕ) in Ω× 1

δY×]0, T [ for all ϕ ∈ Lq(0, T ;H1(Ω)).

Theorem 5.4. Let p ∈ [1,+∞[ and q ∈ [1,+∞].

• Let ϕ ∈ Lq(0, T ;Lp(Ω)).
(1)

δN

|Y |

∫
Ω×RN

Tε,δ(ϕ)(x, z, t) dx dz =
∫

bΩε ϕ(x, t) dx

=
∫

Ω

ϕ(x, t) dx−
∫

Λε

ϕ(x, t) dx

for a.e. t ∈ ]0, T [.
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(2) The continuity of the operator Tε,δ from Proposition 5.3 reads as fol-
lows:

‖Tε,δ(ϕ)‖Lq(0,T ;Lp(Ω)) ≤
( |Y |
δN

)1/p

‖ϕ‖Lq(0,T ;Lp(Ω)). (5.1)

• Let ϕ ∈ Lq(0, T ;H1(Ω)) and N ≥ 3. Then, for a.e. t ∈]0, T [,
(3)

‖∇z(Tε,δ(ϕ))‖Lp(Ω× 1
δY ) ≤

ε|Y |1/p

δ
N
p −1

‖∇ϕ‖Lp(Ω).

Proof. As a rule, all the properties above are proved by using the change of variable
z = (1/δ)y and the fact that the integral

∫bΩε can be written as a sum on the cells
εξ + εY for ξ ∈ Ξε (see (2.1) for the definition of Ξε).
(1) With this rule in mind, for every ϕ ∈ Lq(0, T ;Lp(Ω)) and recalling Definition
5.1, one has∫

Ω×RN
Tε,δ(ϕ)(x, z, t) dx dz =

∫
bΩε×RN

Tε,δ(ϕ)(x, z, t) dx dz

=
∑
ξ∈Ξε

∫
(εξ+εY )×RN

Tε,δ(ϕ)(x, z, t) dx dz

=
∑
ξ∈Ξε

∫
(εξ+εY )× 1

δY

ϕ(ε[
x

ε
]Y + εδz, t) dx dz

(5.2)

for almost every t ∈]0, T [. For each element of the last sum, we have successively,

δN
∫

(εξ+εY )× 1
δY

ϕ
(
ε[
x

ε
]Y + εδz, t

)
dx dz

= δN |εξ + εY |
∫

1
δY

ϕ
(
ε[
x

ε
]Y + εδz, t

)
dz

= εN |Y |
∫
Y

ϕ
(
ε[
x

ε
]Y + εy, t

)
dy = |Y |

∫
(εξ+εY )

ϕ(x, t) dx.

(5.3)

Using (2.1), the first property follows by summing up with respect to ξ in Ξε.
(2) For the second property we proceed in the same way as for (5.3), to obtain∫

(εξ+εY )×RN

∣∣Tε,δ(ϕ)(x, z, t)
∣∣p dxdz =

|Y |
δN

∫
(εξ+εY )

|ϕ(x, t)|p dx.

Summing as above yields∫
Ω×RN

∣∣Tε,δ(ϕ)(x, z, t)
∣∣p dxdz =

|Y |
δN

∫
bΩε |ϕ(x, t)|p dx ≤ |Y |

δN

∫
Ω

|ϕ(x, t)|p dx.

Hence

‖Tε,δ(ϕ)‖Lp(Ω×RN ) ≤
( |Y |
δN

)1/p

‖ϕ‖Lp(Ω), (5.4)

which when integrated with respect to time gives (5.1).
(3) For ϕ ∈ Lq(0, T ;Lp(Ω)), from property 3 of Proposition 5.3 and (5.4),

‖∇z(Tε,δ(ϕ))‖Lp(Ω× 1
δY ) = ‖εδTε,δ(∇ϕ)‖Lp(Ω× 1

δY ) ≤ εδ
( |Y |
δN

)1/p

‖∇ϕ‖Lp(Ω),

for a.e. t ∈]0, T [, which gives the desired result. �
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Regarding the integral formulas, one still has an unfolding criterion for integrals,
which is very useful in homogenization problems.

Proposition 5.5. Let q ∈ [1,+∞] and ϕε ∈ Lq(0, T ;L1(Ω)) satisfying∫ T

0

∫
Λε

ϕε dx dt→ 0, (5.5)

then ∫ T

0

∫
Ω

ϕε dx dt
Tε,δ∼=

δN

|Y |

∫ T

0

∫
Ω×RN

Tε,δ(ϕε) dx dz dt.

The proof of the following proposition is essentially the same as that of [15,
Proposition 2.6].

Proposition 5.6. Let p, q ∈]1,+∞]. Let {ϕε} be a sequence in Lq(0, T ;Lp(Ω))
and {ψε} be a sequence in Lq

′
(0, t;Lp0(Ω)), such that

‖ϕε‖Lq(0,T ;Lp(Ω)) ≤ C and ‖ψε‖Lq′ (0,T ;Lp0 (Ω)) ≤ C,

where 1
p + 1

p0
< 1 and 1

q + 1
q′ = 1. Then,∫ T

0

∫
bΩε ϕεψε dx dt

Tε,δ∼=
δN

|Y |

∫ T

0

∫
Ω× 1

δY

Tε,δ(ϕεψε) dx dzdt.

The next two propositions extend to time-dependent functions some properties
given in [6, Theorem 2.11].

Proposition 5.7. Let u ∈ Lq(0, T ;H1(Ω)). For q ∈ [1,+∞[, one has the estimates

‖Tε,δ(u−Mε
Y (u))‖Lq(0,T ;Lp(Ω;Lp∗ (RN ))) ≤

Cε|Y |1/p

δ
N
p −1

‖∇u‖Lq(0,T ;Lp(Ω)), (5.6)

and for ω an open and bounded subset of RN ,

‖Tε,δ(u)‖Lq(0,T ;Lp(Ω×ω))

≤ 2Cε|Y |1/p

δ
N
p −1

‖∇u‖Lq(0,T ;Lp(Ω)) + 2|ω||Y |
1−p
p ‖u‖Lq(0,T ;Lp(Ω)),

(5.7)

where C is the Sobolev-Poincaré-Wirtinger constant for H1(Y ).

Proof. Let u ∈ Lq(0, T ;H1(Ω)).
Step 1. Let us prove (5.6). By a change of variable, the linearity of the unfolding
operator and using Proposition 3.9(1), we have for almost every x ∈ Ω and t ∈]0, T [,

‖Tε,δ(u−Mε
Y (u))(x, ·, t)‖Lp∗ ( 1

δY )

=
(∫

1
δY

|Tε,δ(u−Mε
Y (u))(x, z, t)|p

∗
dz
)1/p∗

=
(∫

1
δY

|Tε(u−Mε
Y (u))(x, δz, t)|p

∗
dz
)1/p∗

=
( 1
δN

∫
Y

|Tε(u−Mε
Y (u))(x, y, t)|p

∗
dy
)1/p∗

=
1

δN/p∗

(∫
Y

|(Tε(u)−MY (Tε(u)))(x, y, t)|p
∗
dy
)1/p∗
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=
1

δN/p∗
‖(Tε(u)−MY (Tε(u)))(x, ·, t)‖Lp∗ (Y ).

On the other hand, using the Sobolev-Poincaré-Wirtinger inequality in H1(Y ),
Proposition 3.3(3), Proposition 5.3(3) and a change of variable, we obtain

1
δN/p∗

‖(Tε(u)−MY (Tε(u)))(x, ·, t)‖Lp∗ (Y )

≤ C

δN/p∗
‖∇y(Tε(u)(x, ·, t))‖Lp(Y )

=
C

δN/p∗
‖εTε(∇(u))(x, ·, t)‖Lp(Y )

=
Cε

δN/p∗

(∫
Y

|Tε(∇(u))(x, y, t)|p dy
)1/p

=
Cε

δN/p∗

(∫
1
δY

|Tε(∇(u))(x, δz, t)|p δNdz
)1/p

=
Cε

δN/p∗

(∫
1
δY

|Tε,δ(∇(u))(x, z, t)|p δNdz
)1/p

=
Cε

δN/p∗

(∫
1
δY

∣∣ 1
εδ
∇z(Tε,δ(u)(x, z, t))

∣∣p δNdz)1/p

= Cδ
N
p −

N
p∗−1‖∇z(Tε,δ(u)(x, ·, t))‖Lp( 1

δY )

= C‖∇z(Tε,δ(u)(x, ·, t))‖Lp( 1
δY ),

since N
p −

N
p∗ − 1 = 0, and where C is the Sobolev-Poincaré-Wirtinger constant for

H1(Y ). Thus,

‖Tε,δ(u−Mε
Y (u))(x, ·, t)‖Lp∗ ( 1

δY ) ≤ C‖∇z(Tε,δ(u)(x, ·, t))‖Lp( 1
δY ),

which implies

‖Tε,δ(u−Mε
Y (u))(·, ·, t)‖Lp(Ω;Lp∗ ( 1

δY )) ≤ C‖∇z(Tε,δ(u)(·, ·, t))‖Lp(Ω× 1
δY ),

for almost every t ∈ ]0, T [. Taking the Lq-norm over ]0, T [ gives

‖Tε,δ(u−Mε
Y (u))‖Lq(0,T ;Lp(Ω;Lp∗ ( 1

δY ))) ≤ ‖∇z(Tε,δ(u))‖Lq(0,T ;Lp(Ω× 1
δY )).

This, together with Definition 5.1 and Theorem 5.4(5) yields (5.6) for a.e. t ∈ ]0, T [.
smallskip
Step 2. For estimate (5.7), we use Proposition 3.9(3) and note that

|Tε,δ(u)|p = |Tε,δ(u−Mε
Y (u)) + Tε,δ(Mε

Y (u))|p

≤ 2p(|Tε,δ(u−Mε
Y (u))|p + |Tε,δ(Mε

Y (u))|p)
= 2p(|Tε,δ(u−Mε

Y (u))|p + |Mε
Y (u)|p).

Thus, one has

‖Tε,δ(u)‖Lp(Ω×ω) ≤ 2(‖Tε,δ(u−Mε
Y (u))‖Lp(Ω×ω) + ‖Mε

Y (u)‖Lp(Ω×ω))

= 2(‖Tε,δ(u−Mε
Y (u))‖Lp(Ω×ω) + |ω|‖Mε

Y (u)‖Lp(Ω))

≤ 2(‖Tε,δ(u−Mε
Y (u))‖Lp(Ω;Lp∗ (ω)) + |ω|‖Mε

Y (u)‖Lp(Ω))

≤ 2(‖Tε,δ(u−Mε
Y (u))‖Lp(Ω;Lp∗ (RN )) + |ω|‖Mε

Y (u)‖Lp(Ω)).

In view of Proposition 3.9(3) and (5.6), taking the Lq-norm over ]0, T [ yields in-
equality (5.7). �
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Theorem 5.8. Let p ∈ [1,+∞[, q ∈ [1,+∞], N ≥ 3, {wε,δ} be a sequence in
Lq(0, T ;H1(Ω)) which is uniformly bounded with respect to ε and δ as (ε, δ) →
(0, 0). Then up to a subsequence, there exists W in Lq(0, T ;Lp(Ω;Lp

∗
(RN ))) with

∇zW in Lq(0, T ;Lp(Ω× RN )) such that

δ
N
p −1

ε
(Tε,δ(wε,δ)−Mε

Y (wε,δ)1 1
δY

) ⇀W weakly in Lq(0, T ;Lp(Ω;Lp
∗
(RN ))),

(5.8)
and

δ
N
p −1

ε
∇z(Tε,δ(wε,δ))1 1

δY
⇀ ∇zW weakly in , Lq(0, T ;Lp(Ω× RN )). (5.9)

Furthermore, if

k∗ = lim sup
(ε,δ)→(0+,0+)

δ
N
p −1

ε
< +∞, (5.10)

then one can choose the subsequence above and some U ∈ Lq(0, T ;Lp(Ω;Lploc(RN )))
with

δ
N
p −1

ε
Tε,δ(wε,δ) ⇀ U weakly in Lq(0, T ;Lp(Ω;Lploc(RN ))). (5.11)

Proof. We follow the arguments from [6] and [20]. The existence of W in the space
Lq(0, T ;Lp(Ω;Lp

∗
(RN ))) in (5.8) is a consequence of estimate (5.6).

Let us prove (5.9). From Theorem 5.4(5), we have

δ
N
p −1

ε
‖∇zTε,δ(wε,δ)‖Lq(0,T ;Lp(Ω× 1

δY )) ≤ |Y |
1
p ‖∇wε,δ‖Lq(0,T ;Lp(Ω)),

and thus, there exists U ∈ Lq(0, T ;Lp(Ω× RN )) such that

δ
N
p −1

ε
∇zTε,δ(wε,δ)1 1

δY
⇀ U, weakly in Lq(0, T ;Lp(Ω× RN )). (5.12)

Let us show that U = ∇zW .
For ϕ ∈ D(Ω× RN×]0, T [), in view of Definition 3.7 one has∫ T

0

∫
Ω×RN

δ
N
p −1

ε
∇zTε,δ(wε,δ)ϕdx dz dt

=
∫ T

0

∫
Ω×RN

δ
N
p −1

ε
∇z(Tε,δ(wε,δ −Mε

Y (wε,δ)))ϕdx dz dt

= −
∫ T

0

∫
Ω×RN

δ
N
p −1

ε
Tε,δ(wε,δ −Mε

Y (wε,δ))∇zϕdx dz dt.

Thus, passing to the limit for any subsequences such that (ε, δ)→ (0, 0) using (5.8)
and (5.12) in this equation yields∫ T

0

∫
Ω×RN

Uϕdx dz dt = −
∫ T

0

∫
Ω×RN

W∇zϕdx dz dt

=
∫ T

0

∫
Ω×RN

∇zWϕdxdz dt.

Therefore, U = ∇zW and from (5.12), we have (5.9).
Finally, by using (5.7), convergence (5.11) follows from (5.10). �
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6. Statement of the main homogenization results

In this section, we suppose that N ≥ 3 and that ε and δ = δ(ε) are such that
(5.10) holds, that is, there exists the following limit and is finite:

k∗
.= lim
ε→0

δ
N
2 −1

ε
< +∞. (6.1)

Remark 6.1. Often in the literature (see for instance [11, 14, 18, 24]), the size of
the reference hole is denoted aε. Then (6.1) is equivalent to

(k∗)
2
N = lim

ε→0

a
N−2
N

ε

ε
.

The case k∗ > 0 concerns the situation where the reference hole has a critical
size, giving rise to the “strange term” ([11]), in the homogenized problem. The
noncritical case k∗ = 0 does not present this phenomenon.

If one assumes that δ = a0ε
α, for some a0 a positive constant, then, in order for

(6.1) to be satisfied, a simple computation shows that necessarily, α = 2
N−2 . This

implies that the size aε of the holes in Ω∗ε,δ and k∗ are

aε = a0ε
N
N−2 , k∗ = a

N−2
N

0 .

These are precisely the values from [11] leading to the presence of the “strange
term” in the limit equation.

We also denote by M(α, β,Ω) the set of N × N matrices A = (aij)1≤i,j≤N in
(L∞(Ω))N×N such that

(i) (A(x)λ, λ) ≥ α|λ|2,
(ii) |A(x)λ| ≤ β|λ|,

for any λ ∈ RN and almost everywhere on Ω, where α, β ∈ R such that 0 < α < β.

6.1. Wave equation. We want to study the asymptotic behavior as ε→ 0, of the
problem

u′′ε,δ(x, t)− div(Aε(x)∇uε,δ(x, t)) = fε,δ(x, t) in Ω∗ε,δ×]0, T [,

uε,δ(x, t) = 0 on ∂Ω∗ε,δ×]0, T [,

uε,δ(x, 0) = u0
ε,δ(x), u′ε,δ(x, 0) = u1

ε,δ(x) in Ω∗ε,δ.

(6.2)

We suppose that the data satisfy the following assumptions:
(i) Aε ∈M(α, β,Ω), Aε symmetric,

(ii) fε,δ ∈ L2(0, T ;L2(Ω∗ε,δ)),

(iii) u0
ε,δ ∈ H1

0 (Ω∗ε,δ),

(iv) u1
ε,δ ∈ L2(Ω).

(6.3)

Moreover, we assume that

(i) u0
ε,δ ⇀ u0 weakly in L2(Ω),

(ii) u1
ε,δ ⇀ u1 weakly in L2(Ω),

(iii) fε,δ ⇀ f weakly in L2(0, T ;L2(Ω)).

(6.4)

The set

Wε,δ = {vε,δ ∈ L2(0, T ;H1
0 (Ω∗ε,δ)) : v′ε,δ ∈ L2(0, T ;L2(Ω∗ε,δ))},



14 B. CABARRUBIAS, P. DONATO EJDE-2016/169

is equipped with the norm

‖vε,δ‖Wε,δ
= ‖vε,δ‖L2(0,T ;H1

0 (Ω∗ε,δ))
+ ‖v′ε,δ‖L2(0,T ;L2(Ω∗ε,δ))

.

The variational formulation of problem (6.2) is: Find uε,δ ∈ Wε,δ such that for all
v ∈ H1

0 (Ω∗ε,δ),

〈u′′ε,δ(x, t), v(x)〉(H1
0 (Ω∗ε,δ))

′,H1
0 (Ω∗ε,δ)

+
∫

Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇v(x) dx

=
∫

Ω∗ε,δ

fε,δ(x, t)v(x) dx in D′(0, T ),

uε,δ(x, 0) = u0
ε,δ(x), u′ε,δ(x, 0) = u1

ε,δ(x) in Ω∗ε,δ.

(6.5)

Classical results [19, 8] provide for every fixed ε and δ the existence and uniqueness
of a solution of problem (6.5) such that

uε,δ ∈ C0([0, T ];H1
0 (Ω∗ε,δ)) ∩ C1([0, T ];L2(Ω∗ε,δ)),

and satisfies the estimate

‖uε,δ‖L∞(0,T ;H1
0 (Ω∗ε,δ))

+ ‖u′ε,δ‖L∞(0,T ;L2(Ω∗ε,δ))
≤ C, (6.6)

where C is independent of ε and δ.

Remark 6.2. In the following, we identify functions in H1
0 (Ω∗ε,δ) with their zero

extension to H1
0 (Ω) so that we can write (6.6) as

‖uε,δ‖L∞(0,T ;H1
0 (Ω)) + ‖u′ε,δ‖L∞(0,T ;L2(Ω)) ≤ C, (6.7)

where C is independent of ε and δ.

We adapt here for the evolution problem some arguments introduced in [6]. Let
us introduce the functional space

KB = {Φ ∈ L2(0, T ;L2∗(RN )) : ∇Φ ∈ L2(0, T ;L2(RN )), Φ is constant on B}.
(6.8)

We also need the following lemmas from [6] in order to pass to the limit in equation
(6.5).

Lemma 6.3 ([6]). Let N ≥ 3. Then, for every δ0 > 0, the set

∪0<δ<δ0{φ ∈ H1
per(Y ) : φ = 0 on δB},

is dense in H1
per(Y ).

Lemma 6.4 ([6]). Let v ∈ D(RN ) ∩KB (i.e., v = v(B) is constant on B) and set

wε,δ(x) = v(B)− v
(1
δ

{x
ε

}
Y

)
for x ∈ RN .

Then
wε,δ ⇀ v(B) weakly in H1(Ω). (6.9)

Remark 6.5. (1) From the definition of wε,δ above, one has

Tε,δ(wε,δ)(x, z) = v(B)− v(z) in Ω̂ε ×
1
δ
Y,

and consequently (see [6]),

Tε,δ(∇wε,δ) =
1
εδ
∇z(Tε,δ(wε,δ)) = − 1

εδ
∇zv in Ω̂ε ×

1
δ
Y. (6.10)
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(2) Let {wε,δ} be a sequence satisfying (6.9). We have,

Tε(wε,δ)→ v(B) strongly in L2(Ω× Y ). (6.11)

Indeed, it was shown in [6] that {wε,δ} is bounded in H1(Ω) so that together with
(6.9) and Rellich compactness theorem, one has wε,δ → v(B) strongly in L2(Ω);
that is,

‖wε,δ − v(B)‖L2(Ω) → 0.

(see [6]) This, together with Proposition 3.4(2) gives (6.11).

We state now a homogenization theorem for system (6.2):

Theorem 6.6. Under assumptions (6.3) and (6.4), suppose that as ε → 0, there
is a matrix field A such that

Tε(Aε)(x, y)→ A(x, y) a.e. in Ω× Y, (6.12)

and as both ε, δ → 0, there exists a matrix field A0 such that

Tε,δ(Aε)(x, z)→ A0(x, z) a.e. in Ω× (RN \B). (6.13)

Let uε,δ be the solution of (6.5). Then there exists u in L∞(0, T ;H1
0 (Ω)) and û in

L∞(0, T ;L2(Ω;H1
per(Y ))) such that

(i) uε,δ ⇀ u weakly∗ in L∞(0, T ;H1
0 (Ω)),

(ii) u′ε,δ ⇀ u′ weakly∗ in L∞(0, T ;L2(Ω)),

(iii) Tε(uε,δ) ⇀ u weakly∗ in L∞(0, T ;L2(Ω;H1(Y ))),

(iv) Tε(u′ε,δ) ⇀ u′ weakly∗ in L∞(0, T ;L2(Ω× Y )).

(v) Tε(∇uε,δ) ⇀ ∇xu+∇yû weakly∗ in L∞(0, T ;L2(Ω× Y )).

(6.14)

and U ∈ L2(0, T ;L2(Ω;L2
loc(RN ))) such that

δ
N
2 −1

ε
Tε,δ(uε,δ) ⇀ U weakly in L2(0, T ;L2(Ω;L2

loc(RN ))), (6.15)

with U vanishing on Ω × B×]0, T [ and U − k∗u ∈ L2(0, T ;L2(Ω;KB)) (KB being
defined by (6.8)).

The couple (u, û) satisfies the limit equation∫
Y

A(x, y)(∇xu(x, t) +∇yû(x, y, t))∇yφ(y) dy = 0, (6.16)

for a.e. x ∈ Ω, a.e. t ∈]0, T [ and for φ ∈ H1
per(Y ). While the function U obeys∫

RN\B
A0(x, z)∇zU(x, z, t)∇zv(z) dz = 0, (6.17)

for a.e. x ∈ Ω, a.e. t ∈]0, T [ and for all v ∈ KB, with vB = 0.
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The ordered triplet (u, û, U) satisfies the limit equation

〈u′′(·, t), ψ〉(H1
0 (Ω))′,H1

0 (Ω)

+
∫

Ω×Y
A(x, y)(∇xu(x, t) +∇yû(x, y, t))∇ψ(x) dx dy

− k∗
∫

Ω×∂B
A0(x, z)∇zU(x, z, t)νBψ(x) dx dσz

=
∫

Ω

f(x, t)ψ(x) dx, for a.e. t ∈]0, T [ and for all ψ ∈ H1
0 (Ω),

u(x, 0) = u0, u′(x, 0) = u1 in Ω,

(6.18)

where νB is the inward normal to ∂B and dσz its surface measure.

In what follows, we will use the notation mY (·) for the average over Y defined
as

mY (v) =
1
|Y |

∫
Y

v(y) dy, ∀v ∈ L1(Y ).

The result below describes now the homogenized problem in the variable (x, t) in
Ω×]0, T [. To this aim, let us consider the correctors χ̂j , j = 1, . . . , N solutions of
the cell problem; they are the same for domains without holes (see [2, 8]).

χ̂j ∈ L∞(Ω;H1
per(Y )),∫

Y

A∇(χ̂j − yj)∇ϕdy = 0 a.e. x ∈ Ω, ∀ϕ ∈ H1
per(Y )

mY (χ̂j) = 0,

(6.19)

where A is given by (6.12).
We consider also the cell problem corresponding to the holes B defining the

corrector θ for small holes, introduced in [6],

θ ∈ L∞(Ω;KB), θ(x,B) ≡ 1,∫
RN\B

tA
0(x, z) ∇zθ(x, z) ∇zΨ(z) dz = 0

a.e. for x ∈ Ω, ∀Ψ ∈ KB with Ψ(B) = 0.

(6.20)

Corollary 6.7. Under assumptions (6.3) and (6.4), u ∈ H1
0 (Ω) is the unique

solution of the limit problem

u′′ − div(Ahom∇u) + (k∗)2Θu = f in Ω×]0, T [,

u = 0 in ∂Ω×]0, T [,

u(x, 0) = u0, u′(x, 0) = u1 in Ω,

(6.21)

where the homogenized matrix field is

Ahom = mY

(
aij +

N∑
k=1

aik
∂χ̂j
∂yk

)
, (6.22)

and

Θ =
∫
∂B

tA
0∇zθνB dσz. (6.23)
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Remark 6.8. As shown in [6], Θ can be interpreted as the local capacity of B.
(See also [11, 12].) Moreover, from (6.20) it is easily seen that Θ is non-negative,
i.e.,

Θ(x) =
∫

RN\B
A0(x, z)∇zθ(x, z)∇zθ(x, z) dz ≥ 0,

that is essential for the existence of the solution of the homogenized system (6.21).

Theorem 6.6 is proved in the next section together with Corollary 6.7.

6.2. Heat equation. We want to study now the asymptotic behavior as ε→ 0 of
the problem

u′ε,δ(x, t)− div(Aε(x)∇uε,δ(x, t)) = fε,δ(x, t) in Ω∗ε,δ×]0, T [,

uε,δ(x, t) = 0 on ∂Ω∗ε,δ×]0, T [,

uε,δ(x, 0) = u0
ε,δ(x), in Ω∗ε,δ.

(6.24)

We suppose that the data satisfy the assumptions:

(i)Aε ∈M(α, β,Ω),

(ii)fε,δ ∈ L2(0, T ;L2(Ω)),

(iii)u0
ε,δ ∈ L2(Ω).

(6.25)

Moreover, we assume that

(i)u0
ε,δ ⇀ u0 weakly in L2(Ω),

(iii)fε,δ ⇀ f weakly in L2(0, T ;L2(Ω)).
(6.26)

Set
Wε,δ = {vε,δ ∈ L2(0, T ;H1

0 (Ω∗ε,δ)) : v′ε,δ ∈ L2(0, T ;H−1(Ω∗ε,δ))},
equipped with the norm

‖vε,δ‖Wε,δ
= ‖vε,δ‖L2(0,T ;H1

0 (Ω∗ε,δ))
+ ‖v′ε,δ‖L2(0,T ;H−1(Ω∗ε,δ))

.

The variational formulation of problem (6.24) is: Find uε,δ ∈ Wε,δ such that, for
all v ∈ H1

0 (Ω∗ε,δ),

〈u′ε,δ(x, t), v(x)〉(H1
0 (Ω∗ε,δ))

′,H1
0 (Ω∗ε,δ)

+
∫

Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇v(x) dx

=
∫

Ω∗ε,δ

fε,δ(x, t)v(x) dx in D′(0, T ),

uε,δ(x, 0) = u0
ε,δ(x), in Ω∗ε,δ.

(6.27)

For this problem, classical results [8, 19] provide for every fixed ε and δ the existence
and uniqueness of a solution of problem (6.27) such that

uε,δ ∈ L2(0, T ;H1
0 (Ω∗ε,δ)) ∩ C0([0, T ];L2(Ω∗ε,δ))

and, according to Remark 6.2, satisfies the estimate

‖uε,δ‖L∞(0,T ;L2(Ω)) + ‖u′ε,δ‖L2(0,T ;H1
0 (Ω)) ≤ C, (6.28)

where C is independent of ε and δ. We have the following homogenization result
for problem (6.24).
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Theorem 6.9. Under assumptions (6.25), (6.26), (6.12) and (6.13), let uε,δ be
the solution of problem (6.27). Then there exist u in L∞(0, T ;H1

0 (Ω)) and û in
L∞(0, T ;L2(Ω;H1

perY ))), such that

(i)uε,δ ⇀ u weakly∗ in L∞(0, T ;H1
0 (Ω)),

(ii)Tε(uε,δ) ⇀ u weakly∗ in L∞(0, T ;L2(Ω;H1(Y ))),

(iii)Tε(∇uε,δ) ⇀ ∇xu+∇yû weakly∗ in L∞(0, T ;L2(Ω× Y )).

(6.29)

Moreover, there exists U ∈ L2(0, T ;L2(Ω;L2
loc(RN ))) such that (6.15) holds.

The couple (u, û) still satisfies the limit equation (6.16) while the function U still
obeys (6.17).

The ordered triplet (u, û, U) satisfies the limit equation

〈u′(·, t), ψ〉(H1
0 (Ω))′,H1

0 (Ω) − k∗
∫

Ω×∂B
A0(x, z)∇zU(x, z, t)νBψ(x) dx dσz

+
∫

Ω×Y
A(x, y)(∇xu(x, t) +∇yû(x, y, t))∇ψ(x) dx dy

=
∫

Ω

f(x, t)ψ(x) dx, for a.e. t ∈]0, T [ and for all ψ ∈ H1
0 (Ω),

u(x, 0) = u0 in Ω.

(6.30)

On the other hand, the homogenized problem in the variable (x, t) ∈ Ω×]0, T [ is
given below.

Corollary 6.10. Under assumptions (6.3) and (6.4), u ∈ H1
0 (Ω) is the unique

solution of the limit problem

u′ − div(Ahom∇u) + (k∗)2Θu = f in Ω×]0, T [,

u = 0 in ∂Ω×]0, T [,

u(x, 0) = u0, in Ω,

where the homogenized matrix field Ahom and the function Θ are given by (6.22)
and (6.23), respectively.

The proofs of Theorem 6.9 and Corollary 6.10 follow step by step the outlines of
those of the corresponding results for the wave equation, hence we omit here their
proofs.

7. Proof of main results

Let us now present the proofs of the homogenization results stated in the previous
section. We adapt here some ideas in [6, 15].

7.1. Proof of Theorem 6.6. We prove the results in several steps.
Step 1. The existence of u ∈ L∞(0, T ;H1

0 (Ω)) such that up to subsequences,
convergences (6.14)(i)-(ii) hold, follows from estimate (6.6) while the existence of
û ∈ L∞(0, T ;L2(Ω;H1

per(Y ))) and such that convergences (6.14)(iii)-(v) hold, fol-
lows from Proposition 3.5 (see also Remark 6.2).

On the other hand, from (6.7) and Theorem 5.8 there exists a function W in
L2(0, T ;L2(Ω;L2∗(RN ))) with ∇zW ∈ L2(0, T ;L2(Ω × RN )) such that (up to a
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subsequence)

δ
N
2 −1

ε
(Tε,δ(uε,δ)−Mε

Y (uε,δ)1 1
δY

) ⇀W weakly in L2(0, T ;L2(Ω;L2∗(RN ))).

(7.1)
Moreover, in view of (5.10), again by Theorem 5.8 there exists U such that (up to
a subsequence) (6.15) holds.

Step 2. Let us check the properties of the function U . From (i) and (ii) of (6.14)
we have by compactness,

uε,δ → u strongly in L2(0, T ;L2(Ω)), (7.2)

so that from Proposition 3.9(2) and (5.10),

δ
N
2 −1

ε
Mε

Y (uε,δ)1 1
δY
→ k∗u strongly in L2(0, T ;L2(Ω;L2

loc(RN ))). (7.3)

Thus, from (6.15), (7.1) and (7.3) we conclude that

U = W + k∗u and ∇zU = ∇zW.

Moreover, by using (5.9) of Theorem 5.8, we have

δ
N
2 Tε,δ(∇uε,δ) =

δ
N
2 −1

ε
∇z(Tε,δ(uε,δ))1 1

δY
⇀ ∇zU w-L2(0, T ;L2(Ω×RN )). (7.4)

Also, from Definition 5.1,

Tε,δ(uε,δ) = 0 in Ω×B×]0, T [,

and thus from (6.15), Definition 3.7 and (7.3),

U = u = 0 in Ω×B×]0, T [. (7.5)

This means that
W = U − k∗u ∈ L2(0, T ;L2(Ω;KB)).

Step 3. Let us prove the first limit equation. Let ψ ∈ D(Ω) and φ ∈ C1
per(Y )

vanishing in a neighborhood of y = 0, and set vε(x) = εψ(x)φε(x) with φε(x) =
φ(xε ). By Proposition 3.3,

Tε(∇vε)→ ψ∇yφ strongly in L2(Ω× Y ). (7.6)

Taking vε as a test function in (6.5), multiplying by ϕ ∈ D(0, T ), and integrating
over ]0, T [, we obtain∫ T

0

∫
Ω∗ε,δ

uε,δ(x, t)vε(x)ϕ′′(t) dx dt

+
∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇vε(x)ϕ(t) dx dt

=
∫ T

0

∫
Ω∗ε,δ

fε,δ(x, t)vε(x)ϕ(t) dx dt.

(7.7)
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Note that this equation can be rewritten as

ε

∫ T

0

∫
Ω∗ε,δ

uε,δ(x, t)ψ(x)φε(x)ϕ′′(t) dx dt

+
∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇vε(x)ϕ(t) dx dt

= ε

∫ T

0

∫
Ω∗ε,δ

fε,δ(x, t)ψ(x)φε(x)ϕ(t) dx dt.

(7.8)

We first use the unfolding operator Tε to pass to the limit in the second term of
the left-hand side of this equation. Using Proposition 3.3(2) and Proposition 3.5(ii)
together with (6.12) and (7.6), we obtain

lim
ε→0

∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇vε(x)ϕ(t) dx dt

= lim
ε→0

1
|Y |

∫ T

0

∫
Ω×Y

Tε(Aε)Tε(∇uε,δ)Tε(∇vε)ϕ(t) dx dy dt

=
1
|Y |

∫ T

0

∫
Ω×Y

A(x, y)(∇xu(x, t) +∇yû(x, y, t))ψ(x)∇yφ(y)ϕ(t) dx dy dt.

On the other hand, the first term on the left-hand side of (7.8) as well as the
term on the right-hand side goes to zero as ε→ 0, which implies

lim
ε→0

∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇vε(x)ϕ(t) dx dt = 0,

so that∫ T

0

∫
Ω×Y

A(x, y)(∇xu(x, t) +∇yû(x, y, t))ψ(x)∇yφ(y)ϕ(t) dx dy dt = 0.

By Lemma 6.3, we obtain (6.16) which describes the asymptotic behavior of the
problem based on the oscillations in the coefficients of (6.5).

Now, to take into account the effect of the perforations, let us use wε,δψ as a
test function in (6.5), where wε,δ is the function defined in Lemma 6.4 and for
ψ ∈ D(Ω). Thus, we have

〈u′′ε,δ(x, t), wε,δ(x)ψ(x)〉(H1
0 (Ω∗ε,δ))

′,H1
0 (Ω∗ε,δ)

+
∫

Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇wε,δ(x)ψ(x) dx

+
∫

Ω∗ε,δ

Aε(x)∇uε,δ(x, t)wε,δ(x)∇ψ(x) dx

=
∫

Ω∗ε,δ

fε,δ(x, t)wε,δ(x)ψ(x) dx.
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Let ϕ ∈ D(0, T ) and multiply the integrands in this equation and integrate over
]0, T [, ∫ T

0

∫
Ω∗ε,δ

uε,δ(x, t)wε,δ(x)ψ(x)ϕ′′(t) dx dt

+
∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇wε,δ(x)ψ(x)ϕ(t) dx dt

+
∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)wε,δ(x)∇ψ(x)ϕ(t) dx dt

=
∫ T

0

∫
Ω∗ε,δ

fε,δ(x, t)wε,δ(x)ψ(x)ϕ(t) dx dt.

(7.9)

For the first term on the left-hand side of this equation, we apply the operator Tε.
Thus, from Proposition 3.3(2)(4), Proposition 3.4(1), Definition 5.1 together with
Remark 6.5(2) and (6.14)(iii), we obtain,

lim
ε→0

∫ T

0

∫
Ω∗ε,δ

uε,δ(x, t)wε,δ(x)ψ(x)ϕ′′(t) dx dt

= lim
ε→0

1
|Y |

∫ T

0

∫
Ω×Y

Tε(uε,δ)Tε(wε,δ)Tε(ψ)ϕ′′(t) dx dy dt

=
v(B)
|Y |

∫ T

0

∫
Ω×Y

u(x, t)ψ(x)ϕ′′(t) dx, dy dt.

(7.10)

For the second term on the left-hand side of equation (7.9), we use the operator
Tε,δ. Then, Remark 4.7, together with (6.1), (6.13), (7.4), (7.5), Proposition 5.3(2),
Proposition 5.5 and Remark 6.5(1), yield

lim
ε→0

∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇wε,δ(x)ψ(x)ϕ(t) dx dt

= lim
ε→0

δN

|Y |

∫ T

0

∫
Ω×RN

Tε,δ(Aε)Tε,δ(∇uε,δ)Tε,δ(∇wε,δ)Tε,δ(ψ(x))ϕ(t) dx dzdt

= lim
ε→0

δN

|Y |

∫ T

0

∫
Ω×RN

Tε,δ(Aε)Tε,δ(∇uε,δ)(−
1
εδ
∇zv)Tε,δ(ψ)ϕ(t) dx dz dt

= lim
ε→0

(
− δ

N
2 −1

ε|Y |

∫ T

0

∫
Ω×RN

Tε,δ(Aε)(δ
N
2 Tε,δ(∇uε,δ))∇zvTε,δ(ψ)ϕ(t) dx dz dt

)
= − k∗

|Y |

∫ T

0

∫
Ω×RN

A0(x, z)∇zU(x, z, t)∇zv(z)ψ(x)ϕ(t) dx dzdt

= − k∗

|Y |

∫ T

0

∫
Ω×(RN\B)

A0(x, z)∇zU(x, z, t)∇zv(z)ψ(x)ϕ(t) dx dz dt,

so that

lim
ε→0

∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇wε,δ(x)ψ(x)ϕ(t) dx dt

= − k∗

|Y |

∫ T

0

∫
Ω×(RN\B)

A0(x, z)∇zU(x, z, t)∇zv(z)ψ(x)ϕ(t) dx dz dt.

(7.11)
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For the third term on the left-hand side of (7.9), we use Tε. From Proposition
3.3(2)(4), Proposition 3.4(1), Definition 5.1 together with Remark 6.5(2), (6.12),
Proposition 3.5(ii), passing to the limit gives

lim
ε→0

∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)wε,δ(x)∇ψ(x)ϕ(t) dx dt

= lim
ε→0

1
|Y |

∫ T

0

∫
Ω×Y

Tε(Aε)Tε(∇uε,δ)Tε(wε,δ)Tε(∇ψ)ϕ(t) dx dy dt

=
v(B)
|Y |

∫ T

0

∫
Ω×Y

A(x, y)(∇xu(x, t) +∇yû(x, y, t))∇ψ(x)ϕ(t) dx dy dt.

(7.12)

For the term on the right-hand side of equation (7.9), we also apply Tε, Definition
5.1, Remark 6.5(2), Proposition 3.3(2) and (6.4)(iii) and passing to the limit, yields

lim
ε→0

∫ T

0

∫
Ω∗ε,δ

fε,δ(x, t)wε,δ(x)ψ(x)ϕ(t) dx dt

= lim
ε→0

1
|Y |

∫ T

0

∫
Ω×Y

Tε(fε,δ)Tε(wε,δ)Tε(ψ)ϕ(t) dx dy dt

=
v(B)
|Y |

∫ T

0

∫
Ω×Y

f(x, t)ψ(x)ϕ(t) dx dy dt.

(7.13)

Thus, combining (7.10)-(7.13), the limit equation of (7.9) is

v(B)
∫ T

0

∫
Ω×Y

u(x, t)ψ(x)ϕ′′(t) dx dy dt

− k∗
∫ T

0

∫
Ω×(RN\B)

A0(x, z)∇zU(x, z, t)∇zv(z)ψ(x)ϕ(t) dx dz dt

+ v(B)
∫ T

0

∫
Ω×Y

A(x, y)(∇xu(x, t) +∇yû(x, y, t))∇ψ(x)ϕ(t) dx dy dt

= v(B)
∫ T

0

∫
Ω×Y

f(x, t)ψ(x)ϕ(t) dx dy dt,

(7.14)

which is true for all ϕ ∈ D(0, T ), ψ ∈ H1
0 (Ω) and v ∈ KB . So, we obtain (6.17) for

v ∈ KB such that v(B) = 0.
If v(B) 6= 0, by applying Stoke’s formula and (6.17), we have∫ T

0

∫
Ω×(RN\B)

A0(x, z)∇zU(x, z, t)∇zv(z)ψ(x)ϕ(t) dx dzdt

= v(B)
∫ T

0

∫
Ω×∂B

A0(x, z)∇zU(x, z, t)νBψ(x)ϕ(t) dx dσz dt,

which used in (7.14) gives the first equation of problem (6.18).
Step 4. It remains now to check the limit initial conditions. Let vε = wε,δψ where
wε,δ is given by Lemma 6.4 and ψ ∈ D(Ω). Let ϕ ∈ C∞([0, T ]) with ϕ(0) = 1 and
ϕ(T ) = 0. Take vεϕ as a test function in (6.5). Using the initial condition in (6.5)
and by integration by parts, we have∫ T

0

∫
Ω∗ε,δ

fε,δ(x, t)vε(x)ϕ(t) dx dt−
∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇vε(x)ϕ(t) dx dt
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=
∫ T

0

〈u′′ε,δ(x, t), vε(x)〉(H1
0 (Ω∗ε,δ))

′H1
0 (Ω∗ε,δ)

ϕ(t) dt

=
∫

Ω∗ε,δ

(u′ε,δ(x, t)ϕ(t))
∣∣T
0
vε(x) dx−

∫ T

0

∫
Ω∗ε,δ

u′ε,δ(x, t)vε(x)ϕ′(t) dx dt

= −
∫

Ω∗ε,δ

u′ε,δ(x, 0)vε(x) dx−
∫ T

0

∫
Ω∗ε,δ

u′ε,δ(x, t)vε(x)ϕ(t)′ dx dt

= −
∫

Ω∗ε,δ

u1
ε,δ(x)vε(x) dx−

∫ T

0

∫
Ω∗ε,δ

u′ε,δ(x, t)vε(x)ϕ(t)′ dx dt.

In view of (7.11)-(7.13) and (6.4), passing to the limit in this equation yields

v(B)
∫ T

0

∫
Ω×Y

f(x, t)ψ(x)ϕ(t) dx dy dt

+ k∗
∫ T

0

∫
Ω×(RN\B)

A0(x, z)∇zU(x, z, t)∇zv(z)ψ(x)ϕ(t) dx dz dt

− v(B)
∫ T

0

∫
Ω×Y

A(x, y)(∇xu(x, t) +∇yû(x, y, t))∇ψ(x)ϕ(t) dx dy dt

= −v(B)
∫

Ω

u1(x)ψ(x) dx− v(B)
∫ T

0

∫
Ω

u′(x, t)ψ(x)ϕ′(t) dx dt

= −v(B)
∫

Ω

u1(x)ψ(x) dx+ v(B)
∫

Ω

u′(x, 0)ψ(x) dx

+ v(B)
∫ T

0

〈u′′(x, t), ψ(x)〉H−1(Ω),H1
0 (Ω)ϕ(t) dt.

Combining this equation with (7.14) yields

−
∫

Ω

u1(x)ψ(x) dx+
∫

Ω

u′(x, 0)ψ(x) dx = 0, ∀ψ ∈ D(Ω), (7.15)

which implies u′(x, 0) = u1(x).
For the first initial condition, let us now choose ϕ ∈ C∞([0, T ]) with ϕ(0) =

ϕ(T ) = ϕ′(T ) = 0 and ϕ′(0) = 1. Let us take again vεϕ as a test function in (6.5).
Using the initial conditions in (6.5) and by integration by parts, we have∫ T

0

∫
Ω∗ε,δ

fε,δ(x, t)vε(x, z)ϕ(t) dx dt−
∫ T

0

∫
Ω∗ε,δ

Aε(x)∇uε,δ(x, t)∇vε(x, z)ϕ(t) dx dt

=
∫ T

0

〈u′′ε,δ(x, t), vε(x, z)〉(H1
0 (Ω∗ε,δ))

′H1
0 (Ω∗ε,δ)

ϕ(t) dt

=
∫

Ω∗ε,δ

(u′ε,δ(x, t)ϕ(t))
∣∣T
0
vε(x) dx−

∫ T

0

∫
Ω∗ε,δ

u′ε,δ(x, t)vε(x)ϕ′(t) dx

= −
∫

Ω∗ε,δ

(uε,δ(x, t)ϕ′(t))
∣∣T
0
vε(x) dx−

∫ T

0

∫
Ω∗ε,δ

uε,δ(x, t)vε(x)ϕ′′(x, t) dx dt

= −
∫

Ω∗ε,δ

uε,δ(x, 0)vε(x) dx−
∫ T

0

∫
Ω∗ε,δ

uε,δ(x, t)vε(x)ϕ′′(x, t) dx dt
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= −
∫

Ω∗ε,δ

u0
ε,δ(x)vε(x) dx−

∫ T

0

∫
Ω∗ε,δ

uε,δ(x, t)vε(x)ϕ′′(x, t) dx dt

By similar argument as those used to obtain (7.15), in view of (7.11)-(7.13), the
initial conditions in (6.5) together with (6.4), passing to the limit and combining
with (7.14) gives

−
∫

Ω

u0(x)ψ(x) dx+
∫

Ω

u(x, 0)ψ(x) dx = 0, ∀ψ ∈ D(Ω),

which implies u(x, 0) = u0(x). This concludes the proof.

Proof of Corollary 6.7. Let us show first that û can be expressed as function of u.
This is a standard procedure in homogenization, see for instance [2] or [8]. To do
so, let us have a look at equation (6.16). Recalling the cell problems (6.19) defining
the functions χ̂j , j = 1, . . . , N , this equation allows as to write û in the form

û(x, y) = −
n∑
j=1

χ̂j(y)
∂u0

∂xj
+ ũ(x),

with ũ unknown.
Plugging this formula in the second integral from (6.18) yields

〈u′′, ψ〉(H1
0 (Ω))′,H1

0 (Ω) − k∗
∫

Ω×∂B
A0∇zUνBψ dσz

+
∫

Ω

Ahom∇u∇ψ dx =
∫

Ω

fψ dx,

(7.16)

for a.e. t ∈ ]0, T [ and where Ahom is given by (6.22).
Taking into account the initial conditions of u, we derive that (7.16) is the

variational formulation of the problem

u′′ − k∗
∫
∂B

A0∇zUνB dσz + div(Ahom∇u) = f in Ω×]0, T [,

u = 0 in ∂Ω×]0, T [,

u(x, 0) = u0, u′(x, 0) = u1 in Ω,

(7.17)

where u′′ ∈ L2(0, T ;H−1(Ω)). Classical results give

u ∈ C0([0, T ];L2(Ω)) and u′ ∈ C0([0, T ];H−1(Ω)).

Finally, the same computation as in [6] shows that the second term in the first
equation of (7.17) satisfies∫

∂B

A0∇zUνB dσz = −k∗u
(∫

∂B

tA0∇zθνB dσz
)
, (7.18)

for a.e. t ∈]0, T [, where θ is the solution of (6.20). Thus, problem (7.17) can be
rewritten as (6.21) where Θ is given by (6.23). �
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comments, as well as with David Gómez-Castro for a careful lecture of a preliminary
version of the paper and several suggestions, that improved the paper.

References

[1] G. Allaire; Homogenization of the Stokes flow in a connected porous medium, Asymptotic
Anal. 3 (1989), 203-222.

[2] A. Bensoussan, J.-L. Lions, G. Papanicolaou; Asymptotic analysis for periodic structures,

North-Holland, Amsterdam 1978.
[3] G. Cardone, C. D’Apice, U. De Maio; Homogenization in perforated domains with mixed

conditions, Nonlinear Diff. Eqs. Appl., 9 (2002), 325-346.
[4] D. Cioranescu, A. Damlamian, G. Griso; Periodic unfolding and homogenization, C.R. Acad.

Sci. Paris, Ser. I, 335 (2002), 99-104.

[5] D. Cioranescu, A. Damlamian, G. Griso; The periodic unfolding and homogenization, SIAM
J. Math. Anal., Vol. 40, 4 (2008), 1585-1620.

[6] D. Cioranescu, A. Damlamian, G. Griso, D. Onofrei; The periodic unfolding method for

perforated domains and Neumann sieve models, J. Math. Pures Appl. 89 (2008), 248-277.
[7] D. Cioranescu, A. Damlamian, P. Donato, G. Griso, R. Zaki; The periodic unfolding method

in domains with holes, SIAM J. Math. Anal., 44, 2 (2012), 718-760.

[8] D. Cioranescu, P. Donato; An Introduction to Homogenization, Oxford University Press 1999.
[9] D. Cioranescu, P. Donato, R. Zaki; The periodic unfolding method in perforated domains,

Portugaliae Math. (N.S), 63, 4 (2006), 467-496.

[10] D. Cioranescu, A. Ould Hammouda; Homogenization of elliptic problems in perforated do-
mains with mixed boundary conditions, Rev. Roumaine Math. Pures Appl., 53, 5-6 (2008),

389-406.
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