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BOUNDEDNESS IN A THREE-DIMENSIONAL
ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH
NONLINEAR DIFFUSION AND LOGISTIC SOURCE

YILONG WANG

ABSTRACT. This article concerns the attraction-repulsion chemotaxis system
with nonlinear diffusion and logistic source,

ur = V- ((u+1)™" V) = V- (xuVv) + V - (EuVw) + ru — pu”,
r€eQ, t>0,
ve=Av+au—Lv, €N, t>0,
wy =Aw+yu—dow, x € t>0
under Neumann boundary conditions in a bounded domain Q C R3 with
smooth boundary. We show that if the diffusion is strong enough or the logistic

dampening is sufficiently powerful, then the corresponding system possesses a

global bounded classical solution for any sufficiently regular initial data. More-

over, it is proved that if r =0, 8 > ﬁ and 6 > ﬁ for the latter case,

then u(-,t) — 0, v(-,t) — 0 and w(:,t) — 0 in L>°(Q) as t — oo.

1. INTRODUCTION

We consider the attraction-repulsion chemotaxis system with nonlinear diffusion
and logistic source,

uy =V - ((u41)""'Vu) = V- (xuVv) + V - (uVw) + ru — pu”,

zeQ, t>0,
v =Av+aou—pLPv, e t>0,
wy = Aw +yu—dw, x€Q, t>0, (1.1)
Ju Ov  Ow

5—5—5—0, .’IIE@Q,t>O,

w(z,0) = uo(z), v(z,0)=vo(z), w(z,0)=w(x), z€,
in a bounded domain 2 C R3 with smooth boundary, where % denotes the outward
normal derivative on 92, m > 1, r >0, p > 0, n > 1, x >0, & > 0, a > 0,
B >0, >0and § > 0 are prescribed parameters. Here u(x,t) denotes the cell
density, v(z,t) and w(z,t) represent the chemoattractant concentration and the
chemorepellent concentration, respectively. In we assume that cell kinetics
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follows a logistic-type law determined by parameters r, u and 7. The first cross-
diffusive term and the second in the first equation reflect the attractive migration
and repulsive movement of cells, respectively. The second and the third equations
imply that the attractive and repulsive signals are produced by cells themselves.
System is a generalized version of the classical Keller-Segel model [9] and can
describe the aggregation of microglia in Alzheimer’s disease due to the interaction
of chemoattractant and chemorepellent [I1]. System can also address the
quorum effect in the chemotactic process [18]. The mathematical studies on system
are much harder than the classical Keller-Segel system due to lacking a useful
Lyapunov functional.

To motivate our study, we recall some related works on system . In the
case m = 1, r = 0 and p = 0, there have been a series of development: Wang
et al. [I6l [6] proved that system possesses a unique global bounded solution
when n = 1; when n = 2 and the repulsion prevails over the attraction in the
sense that &y — xya > 0, Jin [4] and Tao et al. [15] independently proved that
system admits a unique global bounded solution; however, when n = 3 and
&y — xa > 0, the global existence of classical solutions for is still open; Jin [4]
only proved that system possesses a global weak solution; when n = 2,3 and
the repulsion cancels the attraction (i.e. &y = xa ), the authors in [I3} [5] proved
that system possesses a unique global bounded classical solution and the large
time behavior of solutions is considered for the bounded domain and the whole
space. The authors in [I4] investigated the pattern formation of analytically
and numerically for n = 1. For the parabolic-elliptic case, the global solvability,
critical mass phenomenon, blow-up, and large time behavior were investigated for
the bounded domain and the whole space (see [I}, 211 22] 12| [7]). In [206] 27], the
global solvability and the uniform boundedness were considered for the attraction-
repulsion chemotaxis system with nonlinear diffusion.

In the case m =1, r > 0 and p > 0, there are only few results: Li et al. [I7] 0]
proved that with n > 1 for n = 1 or n > 2 for n = 2 admits a unique global
bounded solution. For n > 3, however, the global existence of classical solutions
of is still open. In [28], the global solvability, boundedness and large time
behavior were only investigated for a quasilinear attraction-repulsion chemotaxis
model with logitic source for parabolic-elliptic type in a bounded domain.

To the best of our knowledge, there is no rigorous result on the quasilinear
attraction-repulsion chemotaxis model with logistic source for parabolic-parabolic
type except [10], where the author only considered two-dimensional case and proved
that when m > 1 or n > 2, system possesses a global bounded classical
solution. Thus the goal of this paper is to explore the interactions between the
nonlinear diffusion and logistic source on the solutions of system for three-
dimensional case and partially answer the above open problem. Throughout this
paper, we assume that the initial data satisfy

ug € WH2(Q), wup >0
vg € WH2(Q), vy >0 on
wo € WH™(Q), wo >0 on

o
=
ol 2D
—
C

‘We now state the main results of this article.
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Theorem 1.1. Let  C R3 be a bounded domain with smooth boundary and initial
data (ug, vy, wp) satisfy (L.2)). Suppose that m > 1, r >0, u>0,n>1, x >0,
E>0,a>0,0>0,v>0 and d > 0. If one of the following two cases holds:

(i) 7> 2 and pp > max {14+ 4x? + 11a® + 2x%(9 + o® +72), 1 + 42 + 1172 +

22(9+ o +9%) |

(ii) n € (1,2) and m > 4/3,
then there exists a triplet (u, v, w) belonging to C° (2 x [0,00)) N C%*(Q x (0,00))
which solves system (1.1)) classically. Moreover, u, v and w are bounded in § X
(0,00) in the sense that

[u(, )l @) + lo( O llwre @) + [wl O)lwre @) < M VE € (0,00),  (1.3)
where M > 0 is a constant independent of t.

Remark 1.2. Theorem [I.1] answers the open problem in [I0, Remark 1.4] and [17|
Remark 1.3] for three-dimensional case.

Remark 1.3. For the case n >4, if m > 2 — %, then Theorem holds. This can
be proved by the same arguments of case (ii) in Theorem 1.1

Next, we consider the large time behavior of solutions to for a special case
r=0,n>2 u> max{1+4x2 +1102 +2x2(9+ a2 +42), 1 +4E2 + 1192 +262(9 +
ao? + ’yz)}, 8> ﬁ and § > ﬁ by using the ideas in [24]. Here r = 0 means
that either cells are a prior unable to reproduce themselves, or the considered time

scales are much smaller than those of cell proliferation (see [2, [§] for details).

Theorem 1.4. Let Q C R? be a bounded domain with smooth boundary and initial
data (ug,vo,wo) satisfy . Suppose that m > 1, x >0, >0, a >0, >0,
Y>0and§>0. Ifr=0,n>2, p>max {1l +4x? + 11a? + 2x*(9 + o + 7?),
1+482 + 1172 + 2829+ a2 +92)}, B8 > ﬁ and § > 2(7771_1), then the global
solution (u,v,w) of system satisfies

[uCs Ollzoe@) = 0, o Dlle@) = 0, flw )@ =0 ast — oo (1.4)

This article is organized as follows. In Section 2, we state the existence of local
solutions to and some preliminary inequalities. In Section 3, we give some
fundamental estimates for solutions to and prove Theorem In Section 4,
we consider the large time behavior of solutions to for a special case and prove
Theorem [[4l

2. PRELIMINARIES

In this section, we first state the local existence of solutions to the system (|1.1))
and then present some preliminary inequalities. By directly adapting the reasoning
in [25, Lemma 2.1], we can derive the following lemma on local existence of classical

solutions to ([1.1J).

Lemma 2.1. Let Q C R3 be a bounded domain with smooth boundary and initial
data (uo,vo,wo) satisfy (1.2)). Suppose thatm > 1, r >0, p >0, 7> 1, x >0,
E>0,a>0,8>0,7>0 and 6 > 0. Then there exist Tax € (0,00] and a triplet
(u,v,w) of nonnegative functions from C°(Q x [0, Thax)) N C*(Q x (0, Thax))
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solving (L.1)) classically in © x (0, Timax). These functions satisfy u >0, v > 0 and
w >0 1in Q x (0, Tmax) and, moreover, we have

either Tyax = 00, or

(2.1)
[u(s )l Lo (@) + [lo( D) llwree @) + [w-, E)lwee @) — 00 as t — Thax.
Let us state the following basic properties associated with w.
Lemma 2.2. There exists some constants M7 > 0 and C > 0 such that
/ w(z, t)de < M; Vit € (0, Tax), (2.2)
Q
t+7
/ / ul(z,t)dxds < C VYt € (0, Tmax — T), (2.3)
t Q
where )
7 :=min{1, §TmaX}' (2.4)
Proof. Integrating the first equation of (|I.1]), we obtain
d
— | udx + ,u/ u'dx = r/ udx YVt € (0, Timax)- (2.5)
dt Jo Q Q

If r = 0, we have 4 [ udz = —p [, u"dx for all t € (0, Tinax). The nonnegativity
of u implies % Joudz < 0 for all t € (0, Tiax). Thus, we have [, udz < [, uodz
for all t € (0, Tynax). If 7 > 0, then by using Young’s inequality we have

2ru < pu’ + ,ufﬁ(Qr)n%l.
This implies

d
— udm—l—r/ udx < ufﬁ(%)%\m Vt € (0, Tiax)-

Thus,

1 n
Tan—1(2r)n-1|Q)
/udazﬁMl::max{/uodx,'u H2r) T |}
Q

9] T
for all ¢t € (0, Timax). Therefore, (2.2) holds. By a time integration of (2.5)), we

derive that
t+7
/ u(x,t—i—T)dm—l—,u/ / u'l(x, s)dx ds
Q t Q

t+1
S/u(x,t)dw—i—r/ /u(w,s)dxds
Q t Q

SMl +T’TM1 th(O,TmaxfT),
which implies that (2.3)) holds. O

The following auxiliary lemma on a boundedness property in an ODI will be
used in our analysis. It is a straightforward generalization of a particular case
7 = 1 which has been proved in [20, Lemma 3.4].

Lemma 2.3. LetT >0, 7€ (0,T7), a >0 and b > 0, and suppose thaty : [0,T) —
[0,00) is absolutely continuous and such that

y'(t) +ay(t) < h(t) forae te(0,T),
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where h € L}, ([0,T)) is nonnegative and satisfies
t+71
/ h(s)ds <b ¥Ytel0,T—r).
t

Then b
y(t) < max{y(0) + b, — + 2b} for allt € (0,T).
at

As an application of Lemma [2.2] and Lemma we can establish the following
estimates associated with v and w.

Lemma 2.4. Let n > 2, then there exists a constant C > 0 such that

/Q (@, )z < C V€ (0, Tona), (2.6)
/Q|Vv|2da: <C Vte (0,Tmax), (2.7)
/Qw(x,t)dx <C Vte (0,Tmax), (2.8)
/Q\Vw\zdz <C Vte (0, Tmax)- (2.9)

Proof. We first prove the estimates associated with v. Integrating the second equa-

tion in over € and then using (2 , we obtain that
d
pn vdm-—ﬁ/vdw+a/udm< ﬁ/vdaj—i—aMl vt € (0, Trax)s
Q

which implies (2.6) by an ODE comparison. We multiply the second equation in
(1.1) by —Awv and integrate by parts over € to derive that

2 2
th/ [V d:r+/ |Av| dx—f—ﬁ/ |Vul“dx
= /uAv (2.10)
Q

1 a?
7/ |Av|2d:17+f/u2dx vt € (0, Trax)-

Letting y(t) := [, |Vv|?dz and h(t) := o? [, u*dz for t € (0, Timax), we have
y'(t) +28y(t ) < h(t) Vte (0,Tmax)-

Since ([2.3]) holds for all n > 2, we have ft+T s)ds < Cy for any t € (0, Tinax — 7)
with some constant C; > 0 and 7 = min {1 max} Thus, according to Lemma
-, we establish . Taking a similar procedure for w, we can also establish .

and .

3. GLOBAL EXISTENCE AND BOUNDEDNESS OF CLASSICAL SOLUTIONS

In this section, we investigate the global existence and boundedness of classical
solutions to system . In Section 3.1, we establish the global existence for the
strong logistic source case (i.e., 7 > 2 and p > max { 1+4x*+11a%+2x?(9+a*++?),
1+4€2+11724+28%(9+a?+72)}). In Section 3.2, we establish it for the sufficiently
strong diffusion case (i.e., m > %) The key idea is to deduce a uniform estimate
for [|u(-, t)|| ey +VV(, t)|[ La)+ [[Vw(-,t)||La(q) for sufficiently large p and q.
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A priori estimates for the strong logistic source case. Inspired by Tao
and Winkler [24], we first establish an estimate for an appropriate linear com-
bination of the functions [,(u + 1) dz, [, |Vv|*dz, [, |Vw|*dz, [,u|Vv|[*dz
and [, u|Vw|?dz. As a beginning, let us derive differential inequalities for [, (u +
D™z, [ |Vu|*dz and [, [Vw|*dz.

Lemma 3.1. Let n > 2 and the other assumptions in Lemma[2.]] hold. Then we
have

d

all m+1 m(m+ 1)
pn /Q(u + )" de + ————

/(u +1)2m=V|vy2dz
2 Q

< x*m(m + 1)/ u?|Vo2dz 4+ Em(m + 1) / u?|Vw|*dz
Q Q
(m+1) (3.1)
+r(m+1) / (u+1)"dr — mmr / (u+1)""dx
Q 20 )

+ p(m + 1)/(U+1)mdl’ vVt € (0, Tinax)-
Q

Proof. Multiplying the first equation in (|1.1)) by (u+ 1)™ and integrating by parts
over (), we obtain

1 d
/ (u+ 1)z
Q

m+ 1dt

= fm/ (u+1)2m=V |y |?dz + Xm/ u(u+1)"" Vo - Vudz
Q Q

fgm/ u(u+1)m*1Vw~Vud:c+r/
Q

u(u+ 1)"dx — u/ u(u+1)"dx
Q

Q
_m 2(m—1) 2 2 2 2
< (u+1) |Vu|*de + x*m | «*|Vu|“dz
2 Ja Q
—|—£2m/ u2|Vw|2dx+r/(u+1)m+1dx—u/ u'l(u+1)"dx
Q Q Q

for all ¢t € (0, Tinax)- Due to the nonnegativity of u, we have (u+ 1)7 < 27(u" + 1)
and then obtain u" > %(u + 1)7 — 1. Inserting it into the above inequality, we
obtain the desired result (3.1)). O

Lemma 3.2. Let the assumptions in Lemma[3.1] hold. Then we have

d 4 3 212
dt/Q\Vv| dx + 2/Q|V|Vv| [“dz

O|Vu|? (3.2)
< 2/ |Vol? dx + 11a2/ uw?|Vol2dz, Yt € (0, Timax),
o0 v Q
1/ |Vw|4dx+§/ IV |Vl?2da
5 .
< 2/ |Vw|28‘vw‘ dx + 1172/ u?|Vw|?dz, Yt € (0, Timax) -
o0 ov Q

Proof. Differentiating the second equation in ([L.1) and then multiplying 2Vv, we
obtain that

(IVo|?); = A|VY|> = 2|D*0]? — 28|Vu* + 2aVu - Vv YVt € (0,Tmax),  (3.4)
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where we have used the identity A|Vv|? = 2Vv - VAv + 2|D?v|?. Testing (3.4)
against 2|Vv|? yields

i/ |Vv\4dz:2/ A|Vv|2|Vv|2do:—4/ |D?v|?|Vv|?dx
dt Jo Q Q
745/ |Vv|4d:c+4a/(Vu~Vv)|Vv|2d:c
Q
0
/ Vo2 W”' —2/ V|Vl 2da (3.5)
00

—4/ \D2U|Z|V1}|2dx—4ﬁ/ |Vo|*dz
Q Q

— 4a/QuAv|Vv|2d3: — 4a/Qqu -V|Vo|2dz
for all t € (0, Tyax)- Since |Av| < v/3|D?v|, by Young’s inequality we have
—4a/QuAv|Vv\2d:17 §4\/§a/ﬂu|D2vHV1}|2daj
§4/Q|D2v|2|Vv\2dz+3oz2/ﬂu2|Vv\2da:

and

1
—4a/uw.vwv|2dxg 7/ \V|Vv|2\2dx+8a2/ u?|Vo|2da (3.7)
Q Q
for all t € (0, Trnax). Inserting (3.6) and ( into we infer that
1o} 2 3
/|Vv|4dx<2/ (w22 |W‘ dz — /|V|Vv|2|2dx
Q
+ 1102 /uQ\VU| dx—4ﬁ/ |Vo|*dz
Q Q
2
2/ o2V dx—§/ V| V)2 2dz
o0 aV 2 Q

+11a2/u2\V1}|2dx Yt € (0, Tmax)-
Q

Thus, we obtain (3.2]). Taking a same procedure for the third equation in (1.1)), we
can derive (3.3). O

To deal with the integrals [, u?|Vv|?dz and [, u?|Vw|?dz on the right-hand
side of (3.1)-(3.3), we shall establish the following differential inequality related to
them.

Lemma 3.3. Let the assumptions in Lemma[3.1] hold. Then we have

i{/u|Vu|2dx+/u|Vw|2dx}

+(p—-1- 4X2)/ u?|VolPde 4+ (p—1 — 452)/ u?|Vw|*dz
Q Q

1 1
< 7/ |V\Vv|2|2da;+f/ |V|Vw|?|?dx
2 Jo 2 Jo
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+(8—1—@2+72)/(u+1)2(m’1)|Vu|2dx+(r—2ﬂ)/u|Vv\2d:z:
Q

2
+(r—25)/u|Vw|2dx+/ ua‘w| dx +/ uaw wl® dz +C (3.9)
Q o Ov oo Ov

for all t € (0, Tyax), where C' is a positive constant.

Proof. By employing the identity Vv-VAv = LA|Vv|? —|D?v|?, we take a straight-
forward computation on < [, u[Vv|?dz to obtain that

(jt u|Vo|?dz
= /Q Vo2 {V - (u+ 1) "Vu — yuVv + uVw) + ru — pu } dx
2/QuV0~V(Av—ﬂv+au)d;v
= —/Q(u+1)m_1Vu-V\Vv|2dx+x/Qqu-V|Vv\2da; (3.10)
—f/Qqu-V|Vv|2dx—u/ﬂu"|Vv|2dx

1
+2/u(gA\VUF—|D2v\2)d:ﬂ+(r—2ﬁ)/u\Vv|2da:
Q Q

+ Za/ uVv - Vudz
Q

for all t € (0,Tmax). We now estimate the integrals on the right of (3.10). By
Young’s inequality, we have

- / (u+1)™"'Vu - V|Vo|2da
Q

: (3.11)
<5 VIV a2 [ 0D
8 Ja Q
X/ uVv - V|Vo|2dz < é/ }V|Vv\2|2dm+2x2/ u?|Voldz, (3.12)
Q Q )
1
—g/ uVw - V|V 2dz < g/ yV|Vv|2|2dx+2g2/ w2 | Vw|?dz, (3.13)
Q Q Q
—u/ u"|Vol*dz gu/ \VU|2dx—u/ u?|Vo|dz, (3.14)
Q Q Q
1
2/ u(=A|Vv|? — |D?v|*)dz
o 2
z/uA|VU|2dm—2/u|D2v|2dx
¢ (3.15)

ov

g/ vl . 4 1 /|V|Vv| | das+2/ V| 2de,
o0 ov

a/qu~Vudx§/u2|Vv\2dz+oz /|Vu\ dx (3.16)
Q Q Q

2
:/ 9Vl dx —/V|V1}|2 Vudx—Q/u|D2v|2dm
o9
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for all ¢ € (0,Tmax). Substituting (3.11)-(3.16) into and using (2.7), we

obtain that there exists a positive constant C1 satlsfylng

d u|Vv|2dx+( 172X2)/u2|Vv|2da:

dt 0

< 5/ |V|Vv|2|2dx+(4+a2)/(u+1)2(m’1)|Vu\2dx (3.17)
Q Q

2 2 2 . 2 9|Vu[?
+2¢ w’|Vw|?dx + (r —208) [ u|Vv|dx + u dx + Cy
Q Q o0 Ov

for all ¢ € (0, Tinax). By taking a similar procedure, we can derive that

d u|Vw| der + (p—1- 252)/ u?|Vw|*dz

dt o

<3 / [VIVPPdo (44 52) [ (w1200 TuPda (318)
Q Q

2
+2X2/u2|Vv|2dx—|—(r—25)/u|Vw|2dx+/ u8|Vw\ dx + Cy
Q Q o0 ov

with a constant Cy > 0 for all t € (0, Tynax). Adding (3.18) to (3.17) yields (3.9). O

Multiplying (3.1) by %0‘7_:'1’;) and then combining (3.2)), (3.3) and (3.9), we

obtain the following result.

Corollary 3.4. Let the assumptions in Lemma[3.1] hold. Then we have

d 129+ a? ++?)
—_ 1)mHld Vo|d /V4d
S et 0 [ ottt [ Vot

+/u|vv\2dx+/u|vw|2dx}+/ |V|Vv|2|2dz+/ V|Vl | de
Q Q Q Q
+[,u71—4X2—11a272X2(9+a2+’yz)]/u2|Vv|2dx

Q

+lu—1—462 1192 - 2629+ o2 +72)]/ u?|Vw|*dz
Q

20u(9 + & +9°)

12(m71)v 2d
+ [ 02D Tupae + 2R

/ (u + 1™ (3.19)
Q
< (r—2p) /Q u|Vol2dz + (r — 26) /Qu|Vw|2dx

+ 2(94'0‘24'72)(70/9(u + )™y 4 M/Q(u + 1)mdx)

m

2 2
+/ u8|Vv| dm+/ ua‘v wl* dx +2/ Vv |28|VU‘ dx
a0 ov a0 ov ov

2
2/ w4 o
a0 v

for all t € (0, Tyax), where C' is a positive constant.

We now are in a position to establish the estimates on [, v dz, [, |[Vo|*dx
and fQ |Vw|*dz. We will show that if u is taken large enough, then these integrals
are uniformly bounded for all ¢ € (0, Taz)-
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Lemma 3.5. Suppose that p > max{1+ 4x% + 11a? +2x%(9 + a? +92),1 + 4£% +
1192 + 2629+ o ++42)}. Let n > 2 and let (u,v,w) be a solution to system (L.1)).
Then we can find a constant C > 0 such that

/(u +1)™Hdr < C YVt € (0, Tnax), (3.20)
Q
/ |Voltde < C Yt € (0, Tnax), (3.21)
Q
/ |Vw|*dz < O Yt € (0, Tiax)- (3.22)
Q

a? 2 m
Proof. Let y(t) := % Jo(u+ D)™ de + [, [Vol*dz + [, [Vw|*dz +
JoulVolPdz + [, u|Vw|*dz. Since p > max{1+4x? 4+ 11a?+2x*(94+ o ++2), 1+

4€2 + 1192 + 26%2(9 + o? ++?)}, from Corollary |3.4] we have

y’(t)-l—y(t)-i—/ \vwv|2|2dx+/ V[ VwP|*de
Q Q

21(9 + a? +~?)

120n=1) 7y 12d
+/Q(u+ ) |Vul*dx + S

/ (u+1)"""dx
Q

<(r+1- 26)/ u|Vol*de + (r +1— 25)/ u| V| da
Q Q

20+ +)[rm+ D+ [ gy
+ P CE) /Q( +1)™*td (3.23)

2 2 2
+/ ua\vm dm—i—/ ude—l—Q/ |Vv|2de
o9 o9 o9

ov ov ov
2 2 2
+2/ |vw|28|Vw\ dx+2u(9+a + )/
a0 81/ m

Q
+/ |Vv|4dx+/ |Vw|*dz + Cy YVt € (0, Tmax),
Q Q

(u+1)"dz

where Cj is a positive constant. We next use the dissipated quantities on the left of
(3-23) to estimate all integrals on the right. By the Gagliardo-Nirenberg inequality,
we obtain that
[ 9ol = 196 o
o . (3.24)
6 4
< CLIVIVUPI 22 oy V0PI () + Clll Vol 17 0

for all ¢ € (0, Tiax), with some constant C; > 0. From Lemma we know that
Jo IVu]? < Gy for all t € (0, Timax) with some Cy > 0. Thus by Young’s inequality
we can find a constant C3 > 0 such that
1
/Q|Vv|4da: < SIVIVeP aq) + Cs Yt € (0, Tonas) (3.25)

Similarly, we can also have

1
/ Vaullde < L[9IT0l Ry +Ci V€ (0, Tu) (3.26)
Q
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with some constant Cy > 0. By Young’s inequality, we obtain
1—23)?
(r+1- 2/6’)/ u|Vol2de < u/ u2dx+/ |Vol*de (3.27)
Q 4 Q Q
and hence, upon (3.25) we derive that
(r+1- Qﬂ)/ u|Vo|2dx +/ |Vol*dx
Q Q

1-28)2
< u/ﬁdw+2/ | Vo) dz
4 Q Q

3.28)
1-28)2 1 (
< u/ u2d$ + *HVlvvle%z(Q) + 203
4 o 4
p(9+a® ++°%) m 1
>~ W Q(U+1) +nd$+1|‘v|vv|2“%2(ﬂ) +C,5
with some constant Cs > 0 for all ¢t € (0, Tipax). Similarly, we can obtain
(r+1- 26)/ u|Vw|*dx +/ |Vw|*dz
@ & (3.29)

p9+a® +9%)

m 1
<L) [ 1y e + 191V e + Co

with some Cg > 0 for all ¢ € (0, Tinax). Using Young’s inequality again, we obtain
that there exist positive constants C7 and Cy fulfilling

294 a? +¥?)[r(m+1) + 1] /(u + 1)
Q

m(m+1) (3.30)
19+ a® ++°) m
S W Q(u+1) +77dx+C7,
29 +0” +7%) / (u+1)"dz
" e (3.31)

< O+ +7%)

m-+n
> o+l /Q(U+ 1) dl‘—‘rc’g

for all ¢ € (0, Timax). For the boundary integrals in (3.23]), by taking similar argu-
ments in [24} (3.20)] we obtain that there exist some positive constants Cy and Cig
fulfilling

2 2
/ u8|Vv| dx+2/ |Vv|2de
o0 o0 ov

. v . (3.32)
< 7/ ]V|Vv|2|2dx+f/ \Vul2dz + Cy,
4 Jo 2 Ja
2 2
/ u8|gw| d:c—|—2/ |Vw|2a‘gw‘ dx
o0 v o0 v (3.33)

1 1
< f/ |V|Vw|2|2dx+f/ |Vu|?dz + Cho
4 Ja 2 Ja
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for all ¢t € (0, Tinax). Substituting (3.28))-(3.33) into (3.23)), we obtain that

y’(t)+y(t)+/ \V\Vv|2|2dx+/ |V |Vw|?*de
Q Q

9+ a0 +4?)

2
+/§2(u+1)2(’”_1)|Vu\2d:E+ il S /Q(u—l—l)"”'”dx

1 1 (3.34)
<5 [19vePfar+ 5 [ [VIvupfar
2 Q 2 Q
20(9 + a? + 42
+ / |Vu|?dz + 20O +a”+77) / (u+1)""dx + C1y
(9] an 9]

for all t € (0, Tynax), where Cy1 := Cp + 2325 C;. Hence we have
y'(t) +y(t) < Cix Yt € (0, Tiax)- (3.35)

Thus, by Gronwall’s inequality, we have

2 .2
y(t):m/umﬂda@—&—/ |Vv|4dw+/ |Vw|*dz
m(m+1)  Jg Q Q

—|—/ u|Vv|2d:r+/ u|Vw|*da
Q Q
S max{y(O), 011}
for all t € (0, Trnax), which implies (3.20), (3.21]) and (3.22)). O

We now use the L™t! estimate for u + 1 and the L* estimate for Vv and Vw
from Lemma to establish higher regularity estimates for (u, v, w).

Lemma 3.6. Suppose that > max{1l + 4x? + 11a? + 2x%(9 + o + %), 1+ 4&% +
1192 4+ 2629 + o® +92)}. Let n > 2 and let (u,v,w) be a solution to system (1.1)).
Then for all p > % and each q > 1 there ezists a constant C > 0 such that

||u('7t)||LP(Q) < C Vvte (Ovaax)v (336)
IVu(, t)||Lae)y < C Vt € (0, Tax), (3.37)
IVw(, t)||Lay < C VYt € (0, Tiax)- (3.38)

Proof. Testing the first equation in (1.1]) against (u + 1)P~! and then integrating
by parts over €2, we derive that

1d
- 1)Pd
ol Q(qu YPdx
=—(p—1) / (u+ 1)™ P3| Vul?de + (p — 1)x/ u(u + 1)P 72V - Vudz
Q Q
—(p— 1)5/ u(u + 1)P 2V - Vudr + r/ u(u+ 1P~ dx
Q Q
- u/ u'(u + 1P da
Q
< —(p— 1)/(u+1)m+P—3|vu|2d:c+(p— 1)X/(u+1)P—1\vu||vu|dx
Q Q

+(p— 1)§/Q(u + 1P HVw||Vuldz + T/Q(u + 1)Pdx
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—,u/ u(u+ 1)P e
Q

<P [ Ve + (0 - 1)) / (u+ 1)~ Vo 2de
Q Q

+(pf1)52/9(u+1)p7m+1|Vw|2dx+r/Q(u+1)pd:z:

— u/ u(u+ 1P dx, YVt € (0, Tmax), (3.39)
Q

where we have used Young’s inequality in the last step. According to (3.21) and
(3.22)), we note that there exists a constant C; > 0 such that ||Vv||%4(9) < Oy,
||Vw||2L4(Q) < C for all t € (0, Timax). Thus, by using Holder’s inequality and the
inequality —u" < —% + 1, we obtain that

d

— 1)Pd

pm Q(u + 1)Pdx

2p(p — ].) / m4p—1 2

—_— V(u+1)" 2 dz
mtp_1) Q| (u+1) |

+p(p = D + )01l (u+ P 2o
—l—pr/ (u+1)Pdx — g / (u+ )P~ dg + up/ (u+1)P"tdzx
Q 2" Jo Q

for all ¢t € (0, Tinax). Using that p > 3"‘2_1 implies

2(m+1)  4(p—m+1)
m+p—1 m+p—1"~

(3.40)

We note that
4p—m+1)
m+p—1
because 6(m +p—1) —4(p —m + 1) = 10(m — 1) + 2p > 0. We may invoke the
Gagliardo-Nirenberg inequality to estimate

< 6,

- mipes 2ezmy
[[(w+1)P [20) = w+1)" > || 10
" (@)
mipy Mommly o semm )
< CollV () 1)
Lm¥p=1(Q)
mipoy Epmil)
+Coll(u+ 1) 2 || Sars)
Lm+p—1(Q)
for all ¢ € (0, Tynax) with some Cy > 0 and 6 € (0,1) determined by
3 -1 3 3 -1
SmAp=l) g3y 3mAp=b
4p—m+1) 2 2(m+1)
that is,
3(m+p*1)( 1 1 )
9 — 2 m+1 2(p—m+1)

3(mtp-1) _ 1 '
2(m+1) 2
In view of (3.20), we obtain that there exists a constant C's > 0 such that
mtp—1 (p—m+1)

2
=Tl
(1P p2) < CollV(u+ D)2 || 55" +Cs V€ (0, Tnax)- (341)
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It is easy to check that

2p-m+1), 3p—3m+3 _y
m+p—1 3p+2m—4 ’

because (3p+2m —4) — 3p— 3m + 3) =m + 5 (m — 1) > 0. Thus, by applying
Young’s inequality, we have

plp = DO +E)Cull(u+ 1P L2(q)

2p(p—1) / mip=1 o
< ——— 1) 2 d
S C— Q|V(u+ ) |“dx + Cy

for all ¢ € (0, Tynax) with some Cy > 0. Substituting (3.42) into (3.40) yields that

(3.42)

d
— (u—|—1)pdx—|—/(u+1)pdx

pp

<(pr+1) / (u+1)Pde — == [ (u+ 1P 1dx (3.43)
Q 2" Jo

+ up/ (u+ 1)p71dx +Cy
Q

for all t € (0, Tinax)- Using Young’s inequality twice again, there exist some positive
constants C5 and Cg such that

(pr+1) /Q(u + 1)Pdx < S /Q(u + D)PT1 7 e 4+ C5 YVt € (0, Timax),  (3.44)

Mp/ (u+1)P" e < 2/:%:1 /(u + 1D)PT1 7 e + O Yt € (0, Trnax)- (3.45)
Q Q

Substituting (3.44) and (3.45)) into (3.43)), we have

d
— [ (u+1)Pdx + / (u+1)Pdx < C7 Vt € (0, Tiax)

with Cr7 := C4 + C5 + Cg. We thus conclude that there exists Cg > 0 such that
/(u + 1)Pdx < Cg VYt € (0, Tinax),
Q

which implies (3.36)).

From the variation-of-constants representation of v, we have

t

v(-,t) = B Flyy + a/ =) B=By (. s)ds YVt € (0, Tmax),
0

where (em)tzo is the Neumann heat semigroup in 2. Using the LP — LY estimate

for the Neumann heat semigroup, we can find Cy > 0 such that

[Vu(-, D)llLa(a)

t _1_3(1_1) . (3.46)
§09||Vvo||Lq(Q)—|—C'2/ (t—s) 27 2% 4 e P _S)”u(',S)HLP(Q)dS
0

for all t € (0,Tmax). We note that |lu(-,t)|or@) < Cio with Cio > 0 for all

t € (0,Thax) and p > 3"‘2_1. In particularly, if we take p > 3, then we have
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% + %(% — é) < 1 for all ¢ > 1. Thus we can find a constant C; > 0 such that

t
IVo( 1)l pa) < CollVeo]lpa) + CaCho / (t—s)"7 2670 P=0)gs
0 (3.47)

<(Ci; Vte (O;Tmax)-

Similarly, we have ||[Vw(:,t)||Laq) < Ci2 for all t € (0, Tinax) with some constant
Cip > 0. O

In the following subsection, we will deal with the case that the diffusion is strong
enough (i.e., m > %) We can also establish the LP estimate for u and L?? estimate
for Vv and Vw for all p > 1 and ¢ > 1.

A priori estimates for the sufficiently strong diffusion case.

Lemma 3.7. Suppose that m > %. Let (u,v,w) be a solution to system (|1.1)).

Then for all p > 1 and each q > 1 there exists a constant C' > 0 such that

||u(7t)||LP(Q) <C Vte (07Tmax)7 (348)
va(-,t)HL2q(Q) <C Vte (0,Tmax), (3.49)
IVw(e,t)lzagey < C Vi € (0, Tonm)- (3.50)

Proof. Multiplying the first equation in (L.1]) by (u + 1)?~!(p > 1) and integrating
it over () and using Young’s inequality, we obtain that

1 d
pdt Jo
-1
< 220 [y v 4+ - 1)X2/(u—|— 1P Vo2
Q Q

(u+ 1)Pdx

(3.51)
+(p—1)€? /Q(u + )P~ Vw|?de 4 r /Q(u + 1)Pdx

- u/ u(u+ 1)P" e
Q

for all t € (0,Tmax). Since u”? > 57(u+1)7 — 1 and > 1, by using Young’s
inequality we obtain

r/(u+1)pd:c—u/u"(u+1)p*1dx

Q Q

§7’/(u+1)pdzv+u/(u+1)p71dzfﬂ/(qul)er"*ldx
0 Q 2" Jo

a / (u+ 1P de + Oy + / (u+ 1P 1dy 4 Cy (3.52)
Q Q

=< on+1 an+1

_H ptn—1
oY Q(u +1) dx

=C1+Cy Vte (O,Tmax)
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with some positive constants C; and Cy. Combining (3.51) with (3.52)) yields that

1d 2(p—1) mip—
Wde < ——L 2 1)
o | e < (m+p_1)2/ﬂ\wu+ )
+(p- 1)X2/(u+ 1)P=m 1 p[2da (3.53)
Q
Fo-DE [ (1Tl + Cy
Q

for all t € (0, Tynax), with C3 := C; + Cs. In Lemma we obtained the identity
(|IVv]?); = A|Vv|? — 2|D%0|? — 23|Vu|? + 2aVu - Vo Vit € (0, Tiax)-
Testing this against |Vv|2q—2 yields

th/ |Vv|?lde + /mvvm dx+2/ | D?v|?| Vo 242
+26/Q|Vv|2qu (3.54)
g/mwv\?q 28';“‘ dz +2a/ |V 2V - Vodz YVt € (0, Tmax),

where we have used the identity

(g—1) /|w2q 19|V 2da /\vw 4% dz.

For the first integral on the right of -, from [3, (3.10)] we have

a|Vv|? -1
/mlw?q—2 'g:‘ <ty /Q]V|Vv|q]2dx+04 WEE (0, Tha)  (3.55)

with some constant Cy > 0. For the second integral on the right of (3.54)), we
integrate by parts over 2 and use Young’s inequality to derive

2a/ Vo242V - Vo dz
Q
= —2a(q — 1)/ u| Vo244V - V|Vo|?dr — 2a/ u| Vo242 Avdx
_q ; , ¢ (3.56)
< %/ (V24 V |V ?| da + 207 (g — 1)/ u?| Vo242 dx
Q Q
2 2
+ f/ |Vo|2972| Av|?dx + 3&/ u?|Vo|* 2 dx
3 Ja 2 Jo
for all ¢t € (0, Tyax). Upon the pointwise inequality |Av|? < 3|D?v|?, we have
2
g/ IV0[20-2| Av[2dz < 2/ Vo272 D20f2dz Wt € (0, Tas)-
We thus infer from (3.54)-(3.56) that

2q (q_l)/ ql?
th/ |Vo|“Idx + 5 Q|V\Vv| |"dx
§(2q—%)a /u2|Vv|2q_2dac+C’4
Q
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for all ¢ € (0, Tinax). By taking a similar procedure for w, we derive that
2 3(q — 2
th/ [Vw[*?dx + o /Q\V\W)m dx
1
< (2¢-3)° / u? [ Vw|?1~2dz + C;
Q

for all t € (0, Tiax), with some constant C5 > 0. Thus, collecting (3.53)), (3.55) and

3.56)) yields that
1
(Z{ /(u—l—l)pdx—i— / |VU|2qu—|— / |Vw|2qd:v}
2(p —
+ 72/ |V (u+ 1)

(3.58)

(m+p—1)
3(g—1) 3(g—1) 2
+ 2 [ |over s+ 2 /Qqu o

(3.59)
< (p—1)x* /Q(u+1)1’*m+1|vu|2dx+(p— 1)52/Q(u+1)17*m+1|v1u|2dx

+(2¢ — %)oﬂ / (u+ 1)%|Vo|*?T 2dx
Q
1
+ (29 — =)v? /Q(u + 1) Vw|??2dz + C

2

for all ¢ € (0, Tynax) with Cg := Cy + Cs. Note that is similar to [23] (3.14)]
and our condition m > 4 satisfies the condition 1 — (m — 1) < & (N = 3) in [23].
Thus, the remaining computation shall follow closely with minor modification. We
omit it for brevity and easily establish —. O

Proof of Theorem[I-1. Using [23] Lemma A.1] and Lemma [3.6|and Lemma
obtain that there ex1sts a positive constant C' > 0 such that

||u(7t)||L°°(Q) <C Vte (O7Tmax)a

which together with the extensibility criterion (2.1)) yields that Ti,ax = +00. By
well-known arguments from parabolic regularity theory for the second and third
equations in (|1.1)), we can find some constants Cy > 0 and C3 > 0 such that

(-, )W) < Ca VE >0,
lw(-t)lwre@ < C3 VE>0.
Thus, we prove that (u,v,w) is a global bounded classical solution to (|1.1)). O

4. ASYMPTOTIC BEHAVIOR

In this section, according to the ideas from [24, Section 5], we consider the
large time behavior of (u,v,w) under the assumptions » = 0, n > 2 and g >
max {1+ 4x% + 1102 + 2x2(9 4 a® +92), 1 + 4% + 1192 + 262(9 4+ o +92) }.

Lemma 4.1. Let r = 0. Suppose that n > 2 and p > max{l +4x? + 1102 +
X294 a? +92), 14+4€% + 1192 + 2629 + o + ) }. Then the solution of (L.1))

satisfies
o 1
/ /u"(x,t) dx dt < 7/ ug(x)dz Yt >0 (4.1)
0 Q HJa
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and there exists a constant C > 0 such that

/ u(z, t)dz < —C  wso (4.2)
Q (t+1)n—1
Proof. We integrate the first equation in (1.1]) in space to obtain

d

— | u(z,t)dx = f,u/ u(z, t)dx YVt > 0. (4.3)

Integrating it with respect to ¢ yields

t
/ u(x,t)dw—i—u/ / u(x,t) de dt < / uo(z)dz VYt >0,
Q 0 Jo Q
which implies (4.1)). Using Holder’s inequality, we have

1 1
/ud:c§ (/ u"dm)"|ﬂ|1_?
Q Q

and then obtain — [, udx < _\QI% (Jo uda:)". Substituting it into (4.3)) yields

u(z, t)de < — a (/ udac)77 vt > 0.
Q

dt Jq T
By integrating in time we have
1 =1
/ u(z,t)dr < ( N ) ) vt > 0,
Q n—1 + |Q‘n—l t
(fQ uo(z)dm)
which implies (4.2)). O

Lemma 4.2. Let the assumptions in Lemma hold. Suppose that 8 > ﬁ

and § > ﬁ Then there exists C > 0 such that

/ v(x, t)dz < L Vt >0, (4.4)
Q (t+1)71
C
/ w(z, t)de < ————  forallt > 0. (4.5)
Q (t+1)n—1

Proof. Integrating the second equation in (1.1]) and letting y(t) := fQ v(z, t)dz, we
see that there exists a constant C; > 0 such that

C
v (O = =Byl +a [ ule.ds < —py(o) + T >0
Q (t+1)7—1
We define
. olt7T
Cy = max {271 / vo(x)dzx, 70101 )
Q 20—
(t+2)71
Then 5(0) = -~ > [, vo(z)dz = y(0) and

on—1

aCl

7 (t) + By(t) — m
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_ Cy BCo _ aCt
(n=D)(t+2)"77  (F+2)71 (E+1)7T
B Cy 1 1 )
(n—=1)(t+2)mr 2 142
+;[(2ﬁ—i)c —Q(E)ﬁa(}']
2(t +2)71 n—1"" T+ !
C. 1 1 1 1 1
= : — ( _*)+i[(2ﬁ—7)02—21+"*10401]
(n—1)(t+2)771 2 27 2¢t+2)71 n—1
>0 Vt>0,

where we have used the assumption § > ) and the definition of C5. By

1
2(n—1
comparison, we thus establish (4.4). By taking a similar procedure for w, we can

also obtain (4.5)). O

Lemma 4.3. Let n > 2 and pn > max {1+ x* + 11a? +2x2(9+ o +72), 1 + & +
1192 +28%(9 + a® + +?)}. Then there exists § € (0,1) and a constant C > 0 such
that

| SO V> (4.6)

%% @xt,t+1]
Proof. We write the first equation in in the form
ug — V-a(x,t, Vu) =b(z,t) z€Q, t>0,
where a(z,t, Vu) := (u+1)""Vu—h(z,t), h(z,t) := xyuVv —EuVw and b(z,t) :=
ru(z,t) — pu'(z,t) for x € Q and ¢t > 0. Here we note that
a(z,t,Vu) - Vu = (u+ 1) Vu|> = h - Vu > %|Vu|2 - %|h|2,

la(z,t, Vu)| < C1|Vu| + |h]

in Q x (0,00) with Cy := (M + 1)™~!, where we have used (L.3). According to

Lemma [3.6] we obtain that i and b belong to L>°((0, 00); L%(£2)) for any g € (1, 00).
By parabolic Holder regularity [19, Theorem 1.3], this implies (4.6]). O

Proof of Theorem[I] Let us assume that the first claim in (1.4) does not hold.
Then we can find a sequence (t;)jeny C (1,00) and a constant C; > 0 such that
t; — o0 as j — oo and

lu(-, )| Lo > C1 VjeN. (4.7)

In view of Lemma and the Arzela-Ascoli theorem, we see that (u(-,t;)) en
is relatively compact in C°(Q). We can extract a subsequence (still denoted by
(u(-,t5))jen) such that

u(+,t;) = Uso in L(Q) asj— oo

with a certain nonnegative u, € C°(Q). However, from Lemma we can obtain
that u(-,t) — 0 in L'(Q) as t — oco. Therefore, we have u,, = 0, which con-
tradicts (4.7). Thus, we prove |u(:,t)|/1~@) — 0 as t — oo. Upon Lemma
and Lemma we can take a similar arguments to prove |[v(:,t)|| (@) — 0 and
[w(,t)][Le @) — 0 ast — oo,
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