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DYNAMICAL BIFURCATION IN A SYSTEM OF COUPLED
OSCILLATORS WITH SLOWLY VARYING PARAMETERS

IGOR PARASYUK, BOGDAN REPETA

Abstract. This paper deals with a fast-slow system representing n nonlin-
early coupled oscillators with slowly varying parameters. We find conditions

which guarantee that all ω-limit sets near the slow surface of the system are

equilibria and invariant tori of all dimensions not exceeding n, the tori of di-
mensions less then n being hyperbolic. We show that a typical trajectory

demonstrates the following transient process: while its slow component is far
from the stationary points of the slow vector field, the fast component exhibits

damping oscillations; afterwards, the former component enters and stays in

a small neighborhood of some stationary point, and the oscillation amplitude
of the latter begins to increase; eventually the trajectory is attracted by an

n-dimesional invariant torus and a multi-frequency oscillatory regime is estab-

lished.

1. Introduction

The coupled oscillators theory plays a significant role in understanding various
patterns of collective behavior occurring in physical, chemical, biological and social
systems (see, e. g., [22, 4] and references therein). The variety of behaviors exhibited
by systems of coupled oscillators (SCO) ranges from synchronization to complex
chaotic motions. In many cases, transient processes in SCO eventually turn into
self-excited multi-frequency (quasiperiodic) oscillations on toric attractors. Such
a type of behavior in non-conservative systems was observed as early as in the
20s–30s of the XX century and since that time was intensively studied (see, e. g.
[9, 10, 13, 17, 19, 30, 31, 39, 43, 45]). In the middle of the XX century, there was
discovered a phenomenon of a 2-dimensional torus bifurcation accompanying the
stability loss of a limit cycle [27, 32, 41]. Later, studies on bifurcations of invariant
tori and quasiperiodic oscillations were conducted by many authors (see, e. g.,
[6, 7, 8, 14, 20, 24, 29] and references therein) and the actual toolkit for qualitative
investigation of such bifurcations was developed in [10, 15, 19, 31, 42, 43].

The aforementioned results concern static bifurcation theory which deals with
systems dependent on time-constant parameters. Within the framework of this
theory, the birth of a stable k-dimensional invariant torus from an equilibrium of
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the system

ẋ = f(x, u), x ∈ Rd, (ẋ :=
dx
dt

), (1.1)

dependent on the m-dimensional parameter u can be ensured by the following con-
ditions: there exists a sufficiently smooth curve (equilibrium curve) x = ξ(s), u =
υ(s), s ∈ (−1, 1), such that f(ξ(s), υ(s)) = 0 for all s ∈ (−1, 1); the eigenvalues
of the Jacobi matrix f ′x(ξ(s), υ(s)) have negative real parts for all s ∈ (−1, 0) and
positive real parts for all s ∈ (0, 1); there exists a sufficiently smooth mapping
Ξ(·, ·) : Tk × [0, 1) → Rn (here Tk := Rk/2πZk denotes the standard torus), such
that Ξ(ϕ, υ(0)) = ξ(0) for all ϕ ∈ Tk and rank Ξ′ϕ(ϕ, υ(s)) = k for all ϕ ∈ Tk,
s ∈ (0, 1); finally, for any s ∈ (0, 1) the toroidal surface x = Ξ(ϕ, υ(s)) is a local
attractor of the flow generated by the system ẋ = f(x, υ(s)). Under such condi-
tions, when the parameter u, restricted to the curve u = υ(s), passes through the
point u = υ(0), we observe the stability loss of equilibrium and the birth of a stable
invariant torus. It should be stressed that here the verb “passes” does not have any
relation to a parameter motion over time.

On the contrary to the theory of static bifurcations, dynamical bifurcation theory
deals with systems which depend on slowly varying in time parameters (fast-slow
systems). Dynamical bifurcation theory focuses on qualitative behavioral transfor-
mations which happen in fast-slow systems due to the slow passage of parameters
through certain critical points in the parameter space. The origin of this theory
can be found in papers on relaxation oscillations (see the review [1]), although the
term “dynamical bifurcation” appeared later, in the 80s of the XX century. The
papers [47, 33, 34, 35, 5] gave start to studies of actually dynamic bifurcations in
fast-slow systems. During the last several decades many important results concern-
ing the considered area were obtained [12, 23, 11, 46, 40, 3, 26, 18, 28]. Some of the
most peculiar features of fast-slow systems, such as the delayed loss of stability, the
synchronization, the existence of the canard solutions and the blue-sky catastrophe
can be of great importance in the real-world applications. Nevertheless, some phe-
nomena have not yet been fully understood. In particular, as it was noted in [2],
this can be said about the emergence of multi-frequency oscillations as a result of
parameters evolution in fast-slow systems.

The present paper grounds on our previous results [37, 38] and aims to fill the
gap above. Here we consider the SCO governed by the n-dimensional second order
system

ẅ + Ω2
0(u)w = 2εΛ(u)ẇ + F (w, ẇ, u, µ), (1.2)

dependent on external (environmental) parameters u = (u1, . . . , um) and small
positive parameters ε, µ� 1. Here

Λ(u) := diag(λ1(u), . . . , λn(u)), λj(·) ∈ C∞(Rm; R),

Ω2
0(u) := diag(ω2

01(u), . . . , ω2
0n(u)), ω0j(·) ∈ C∞(Rm; R++),

F (·) ∈ C∞(R2n+m+1; Rn)

and
F (w, p, u, 0) = O(‖w‖2 + ‖p‖2), ‖w‖2 + ‖p‖2 → 0, (1.3)

where ‖ · ‖ :=
√
〈·, ·〉 stands for the Euclidean norm associated with the standard

dot product in the coordinates vector space. Hereafter, we will also use a norm | · |
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defined as the sum of the absolute values of vector components. We study the case
where the slow evolution of parameters u is governed by the system

u̇ = µG(w, ẇ, u, µ) (1.4)

where G(·) ∈ C∞(R2n+m+1; Rm). Thus, the parameter µ plays the role of the
so-called slowness parameter. When µ = 0, the system

ẅ + Ω2
0(u)w = 2εΛ(u)ẇ + F (w, ẇ, u, 0), u̇ = 0 (1.5)

has an invariant surface given by the equations w = ẇ = 0 and the parameter ε
is responsible for the oscillations damping rate (oscillations growth rate) of vari-
ables w, ẇ near this surface for those u that belong to the stability zone where all
λj(u) < 0 (complete instability zone where all λj(u) > 0). The presence of two
small parameters in fast-slow systems is a rather usual case. Initially these small
parameters are completely independent, however, later we will impose a restric-
tion that µ ∝ ε. All the functions involved in systems (1.2) and (1.4) may also
continuously depend on ε, but we will not show this explicitly.

By the terminology of [1], the equations w = ẇ = 0 define the so-called slow
surface in the phase space R2n+m, the vector g(u) := G(0, 0, u, 0) is called the slow
velocity vector, and, in this way, we obtain the slow system on the slow surface

u̇ = g(u).

In [23, 37, 38], there was considered the case when the slow system has a unique
equilibrium attracting all its other trajectories. Here we study a more general
situation allowing multiple equilibria, among which are stable, hyperbolic and
completely unstable ones, but require the slow vector field to be gradient-like.
This means that there exists a Morse function V (·) ∈ C2(Rm; R+) such that
V̇g(u) := 〈∇V (u), g(u)〉 < 0 for any non-stationary point u of V (·). We find
additional conditions under which a neighborhood of the slow surface is forward
invariant under the semi-flow of system (1.2)–(1.4) and the set of all ω-limit points
contained in this neighborhood consists of equilibria and invariant tori of all di-
mensions less than or equal to n. We show that a typical forward semi-trajectory
starting at (w0, ẇ0, u0), where u0 belongs to the instability zone of the fast sys-
tem (1.5), demonstrates the following transient process: while the slow component
u(t) is far from the stationary points of the Morse function V , the fast component
(w(t), ẇ(t)) exhibits damping oscillations; afterwards, this component eventually
enters and stays in a small neighborhood of some stationary point, and the oscil-
lation amplitude of the fast component begins to increase. Since the trajectory is
attracted by an invariant torus, eventually a multi-frequency oscillatory regime is
established. Such behavior can be naturally interpreted as the dynamical bifurca-
tion of multi-frequency oscillations.

In fact, we will also be able to categorize the solutions by their ultimate behavior
near the slow surface. It will be shown that in a small neighborhood of the slow
surface most of the system’s trajectories, in terms of the Lebesgue measure, are
attracted to trajectories on the stable n-dimensional invariant torus, while the rest
ones lie on the stable manifolds of hyperbolic tori of dimension less than n.

The current article is organized as follows. Section 2 provides the key hypotheses
regarding system (1.2)–(1.4) and the statement of the main theorem. Then, in
section 3 we introduce auxiliary lemmas, which enable us to state in section 4
certain preliminary results on the system’s dynamics near its slow surface, and,
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consequently, describe the solutions behavior and classify them in sections 5, 6.
After that, we provide an example depicting oscillation excitation in a circuit of two
coupled oscillators which have components with temperature dependent properties.
Finally, the paper ends with an addendum containing information on the normal
forms method for systems with slowly varying parameters.

2. Main theorem

Let us describe the conditions imposed on system (1.2)–(1.4)
We will assume that the slow vector field u 7→ g(u) := G(0, 0, u, 0) satisfy the

following conditions
(H1) there exists a Morse function V (·) ∈ C2(Rm; R+) with the properties:

(1) V (·) has a non-empty finite set of stationary points;
(2) V (u)→ +∞ when ‖u‖ → ∞;
(3) V̇g(u) := 〈∇V (u), g(u)〉 < 0 for any non-stationary point u of V (·);
(4) the Hesse matrix ∂2

∂u2 V̇g(u) is negative definite at any stationary point
of V (·).

Then, according to this hypothesis, any level set of V (·) is compact and if V ∗ > 0
is sufficiently large, then the sub-level set

V := V −1([0, V ∗)) = {u ∈ Rn : V (u) < V ∗}

contains the set
W := {u ∈ Rm : ∇V (u) = 0}

of all stationary points of V (·). Moreover, there exist such ν∗ ≥ ν∗ > 0 and δ > 0,
that for any stationary point u∗ the following inequalities hold

−ν∗‖u− u∗‖2 < V̇g(u) ≤ −ν∗‖u− u∗‖2, ‖∇V (u)‖ ≤ ν∗‖u− u∗‖ (2.1)

for all u : ‖u−u∗‖ ≤ δ, and δ-neighborhoods of any two points ofW do not intersect.
Obviously,W thereby coincides with the set of all singular points of the vector field
g.

Now, for such a number V ∗, let us adopt certain non-resonant hypotheses which
are necessary for construction of the system’s normal form in the whole domain V,
as well as in a vicinity of the set W.

(H2) if u ∈ cl(V), then

ω0i(u) 6= ω0j(u), ω0i(u) 6= ω0j(u) + ω0k(u), ω0i(u) 6= ω0j(u) + ω0k(u)± ω0l(u)

for all i, j, k, l ∈ {1, 2, . . . , n}.
(H3) there exists such a number N ≥ 5, that for any u∗ ∈ W the equality

n∑
j=1

(qj − qj+n)ω0j(u∗) = σω0i(u∗),

where σ ∈ {0, 1}, i ∈ {1, . . . , n}, q = (q1, . . . , q2n) ∈ Z2n
+ , 4 ≤

∑2n
j=1 qj ≤ N ,

is valid iff qi = qi+n + σ and qj = qj+n for all j ∈ {1, . . . , n} \ {i}.
Furthermore, we may assume that for all ε ∈ [0, ε0], with ε0 > 0 being small

enough, and for all u ∈ cl(V) the frequencies

ωj(u, ε) :=
√
ω2

0j(u)− (ελj(u))2 = ω0j(u) +O(ε2), j ∈ {1, . . . , n}.
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are correctly defined and satisfy hypotheses (H2), (H3) where each ω0j(u) is re-
placed with ωj(u, ε). Hereafter, to simplify our notations, we will omit explicit
dependencies of functions on ε, as long as it does not lead to confusion. Thus, we
will use the notation ωj(u) instead of ωj(u, ε) and so on.

Proceeding to the new variables w, ẇ 7→ x = (x1, . . . , x2n) by means of a substi-
tution

wj = x2j−1, ẇj = ελj(u)x2j−1 + ωj(u)x2j , j ∈ {1, . . . , n}, (2.2)

we come to an equivalent system

ẋ = J(u)x+ F̂ (x, u, µ), u̇ = µĜ(x, u, µ), (2.3)

where

J(u) := diag
[(

ελ1(u) ω1(u)
−ω1(u) ελ1(u)

)
, . . . ,

(
ελn(u) ωn(u)
−ωn(u) ελn(u)

)]
,

Ĝ(x, u, µ) := G(w, ẇ, u, µ)
∣∣
w,ẇ 7→x,

F̂ (x, u, µ) = (F̂1(x, u, µ), . . . , F̂2n(x, u, µ)),

F̂2j−1(x, u, µ) ≡ 0,

F̂2j(x, u, µ) :=
1

ωj(u)
F (w, ẇ, u, µ)

∣∣
w,ẇ 7→x − µε

m∑
i=1

∂λj(u)
∂ui

Ĝi(x, u, µ)x2j−1

− µ
m∑
i=1

∂ωj(u)
∂ui

Ĝi(x, u, µ)x2j .

In view of (1.3), when µ = 0, system (2.3) has a slow invariant manifold of
equilibria M0 defined by the equation x = 0. Alike static bifurcation theory [7, 8],
we will study the behavior of system (2.3) in a neighborhood of this manifold. And
to do so, our first step will be finding conditions that guarantee the forward semi-
invariance of such a neighborhood. This can be achieved by transforming the N -jet
of system (2.3) to the normal form with respect to variables x.

Let DN ⊂ Rm denote a domain (or a collection of domains), such that for a fixed
natural N and for any k ∈ {1, . . . , n} and σ ∈ {0, 1} the equality

min
u∈clDN

∣∣ n∑
l=1

(ql − ql+n − σδkl)ω0l(u)
∣∣ = 0,

where q ∈ Z2n
+ , 1 ≤ |q| :=

∑2n
k=1 qk ≤ N , fulfills iff

ql − ql+n − σδkl = 0 ∀l ∈ {1, . . . , n}.

Remark 2.1. Hypothesis (H2) guarantees that D3 = V, and under hypothesis
(H3) the domain DN is non-empty and contains some neighborhood of the set W.

If we introduce a vector of complex coordinates z = (z1, . . . , zn) ∈ Cn and
notations

−→
|z| := (|z1|, . . . , |z|n),

−→
|z|2 := (|z1|2, . . . , |z|2n),

−→
|z|p :=

n∏
k=1

|zk|pk ,

where p := (p1, . . . , pn) ∈ Zn+, then, as it is shown in the Addendum, for all
sufficiently small µ and ε there exists a smoothly diffeomorphic change of variables
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(x, u) 7→ (Re z, Im z, v) which for v ∈ DN transforms system (2.3) into

żk =
[
ελk(v) + iωk(v) +

∑
3≤2|p|+1≤N

h0,k,p(v)
−→
|z|2p

]
zk +

P∑
j=1

µjηj,k(v)zk

+
P∑
j=1

µj
[ ∑

3≤2|p|+1≤N

hj,k,p(v)
−→
|z|2p

]
zk +O(‖z‖N+1 + µP+1),

k ∈ {1, . . . , n},

v̇ = µ
[
g(v) +

∑
2≤2|p|≤N

g0,p(v)
−→
|z|2p +

P∑
j=1

µj
∑

0≤2|p|≤N

gj,p(v)
−→
|z|2p

]
+ µO(‖z‖N+1 + µP+1).

(2.4)

Here P ≥ N/2 is an arbitrary fixed natural number, ηj,k(·), hj,k,p(·) are smooth
complex-valued functions in DN and gj,p(·) are smooth Cn-valued functions in
DN . Besides that, all these functions smoothly depend on the parameter ε. The
remainder terms are smooth in the sense of real calculus on the set

‖z‖ < δ, v ∈ DN , µ ∈ [0, µ0], ε ∈ [0, ε0]

with sufficiently small positive numbers δ, µ0 and ε0, and are uniform with respect
to v ∈ DN and ε ∈ [0, ε0].

Further, we will also denote

λ(v) = (λ1(v), . . . , λn(v)), A(v) = {akl(v)}nk,l=1,

akl(v) := −Reh0,k,el(v), bkl(v) := −Imh0,k,el(v),

where el ∈ Zn+ is a vector having its l-th component equal 1 and all other equal
0. As we will see later, the functions λ(v) and A(v) play the key role in emergence
of the bifurcation phenomenon, which is why we require them to satisfy additional
constraints.

(H4) the symmetrical part of the matrix A(v) is positive definite on cl(V), and
all non-diagonal elements aij(v), i 6= j, are non-positive at any stationary
point v ∈ W.

(H5) the set V admits representation as a union of three nonempty sets

V+ := {v ∈ V : λj(v) > 0 ∀j ∈ {1, . . . , n}},
V− := {v ∈ V : λj(v) < 0 ∀j ∈ {1, . . . , n}},

V∗ = V\ [V+ ∪ V−] ,

and each function λj(·), j ∈ {1, . . . , n}, is positive at any stationary point
of V (·).

Note, that W ⊂ V+ and for system (2.3) with µ = 0 the submanifold {(x, u) ∈
M0 : u ∈ V−} is a local attractor, while {(x, u) ∈M0 : u ∈ V−} is a local repeller.

Let us fix sufficiently small κ > 0 in such a way that

Vκ− := {v ∈ V− : λj(v) ≤ −κ ∀j ∈ {1, . . . , n}} 6= ∅.
Now we are in a position to state our main result.

Theorem 2.2. There exist ρ0 > 0, ς0 > 0, and for any ς∗ ∈ (0, ς0) there is ε0 > 0,
such that once ε ∈ (0, ε0) and µ ∈ (ς∗ε, ς0ε), the following statements are true:
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(1) system (2.4) generates a forward semi-flow on the set

A := {(z, v) ∈ Cn × Rm : ‖z‖ ≤ ρ0, v ∈ V};

(2) if R+ 3 t 7→ (z(t), u(t)) is a solution of system (2.4), such that (z(0), v(0)) ∈
A and (t0, t1) ∈ R+ is an interval, such that ‖z(t)‖ > µP and v(t) ∈ Vκ− for
all t ∈ (t0, t1), then

‖z(t)‖ ≤ e−εκ(t−t0)/2‖z(t0)‖ ∀t ∈ (t0, t1);

(3) to any point of the setW, one can put into correspondence a finite collection
of invariant tori belonging to A, and each such collection contains tori of
all dimensions from 1 to n; in addition, any torus of a dimension less then
n is truly hyperbolic, while any n-dimensional torus corresponding to a local
minimum of the Morse function V (·) is a local attractor of system (2.4);

(4) any non-equilibrium forward semi-trajectory of this system lying in A is at-
tracted by one of the invariant tori, and those trajectories that are attracted
by n-dimensional tori form the set of the full Lebesgue measure in A;

(5) each forward semi-trajectory approaching the n-dimensional invariant torus
is attracted by a forward semi-trajectory lying on this torus.

The rest of this article will be devoted to proving and illustrating this theorem.

3. Auxiliary lemmas

Lemma 3.1. For δ > 0, set B̄dδ := {x ∈ Rd : ‖x‖ ≤ δ}. Suppose that there exists
a Morse function W (·) ∈ C2(B̄dδ ; R) having a unique stationary point x∗ = 0 and a
vector field f(·) ∈ C1(B̄dδ ; Rd), such that

〈∇W (x), f(x)〉 ≤ −θ‖x‖2, ‖f ′(x)‖ ≤ θL ∀x ∈ B̄dδ (0),

where L and θ are some positive constants. Define

K := max
‖x‖≤δ

‖W ′′(x)‖

and let M and ε be arbitrary positive numbers satisfying

M ≥M∗(K,L) :=
1 +KL+

√
1 + 2K3L3

L
, Mε < δ. (3.1)

Then for any f1(·) ∈ C1([τ0,∞)× B̄dδ ; B̄dθ ) and any x0 ∈ Bdδ a solution x(t) of the
initial problem

ẋ = f(x) + εf1(t, x), x(τ0) = x0 (3.2)

meets the following alternative: either there exists such τ∗ > τ0, that ‖x(τ∗)‖ = δ,
or there exists such τ∗ ≥ τ0, that ‖x(t)‖ < Mε for all t > τ∗.

Additionally, if 0 < ε < δ/N(K,L,M), where

N(K,L,M) :=
1 +KL+

√
[1 + (K −M)L]2 + 2KL3M2

L
> M, (3.3)

and if the first scenario takes place, but at some instant of time the solution belongs
to B̄dMε, then

W (x(τ∗)) < W (0)− K(Mε)2

2
≤ min{W (x) : ‖x‖ = Mε}.
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Furthermore, in the case when the stationary point x∗ = 0 is elliptic, numbers
β ∈ (0, δ) and ε > 0 are such, that

max{W (x) : ‖x‖ = β} < min{W (x) : ‖x‖ = δ}, 0 < ε < β/K, (3.4)

and the solution of (3.2) at some moment of time belongs to B̄dβ, then the second
scenario fulfills.

Proof. Since ∇W (0) = 0, it is true that ‖∇W (x)‖ ≤ K‖x‖ and

〈∇W (x), f(x) + εf1(t, x)〉 ≤ θ [−‖x‖+ εK] ‖x‖ ∀x ∈ B̄dδ .

Besides,

max{W (x) : ‖x‖ = %} ≤W (0) +
K%2

2
, min{W (x) : ‖x‖ = %} ≥W (0)− K%2

2
for any % ∈ (0, δ]. As the Hessian of W (·) at x = 0 is non-degenerate, we have
f(0) = 0 and ‖f(x)‖ ≤ θL‖x‖. Hence,

‖f(x) + εf1(t, x)‖ ≤ θ(L‖x‖+ ε) ∀x ∈ B̄dδ .

Now let us demonstrate how to choose M . At first, we will require only that
M ≥ K and Mε < δ. Take an arbitrary % ∈ (Kε,Mε). If the moment τ∗ does not
exists, i. e. ‖x(t)‖ < δ for all t ≥ τ0, then the function W (x(t)) strictly decreases
until x(t) reaches the sphere ‖x‖ = % at an instant of time τ∗ ≥ τ0. The moment
τ∗ necessarily exists, since otherwise W (x(t)) would decrease unboundedly, which
is impossible.

Suppose that x(t) reaches the sphere ‖x‖ = Mε after the moment τ∗. Then there
exist τ2 > τ∗ and τ1 ∈ [τ∗, τ2), such that

‖x(τ1)‖ = %, % < ‖x(t)‖ < Mε ∀t ∈ (τ1, τ2), ‖x(τ2)‖ = Mε.

For t ∈ [τ1, τ2], we have

d‖x(t)‖
dt

≤ 〈x, f(x) + εf1(t, x)〉
‖x‖

∣∣
x=x(t)

≤ θ(L‖x(t)‖+ ε),

which implies
d‖x(t)‖/dt

θ(L‖x(t)‖+ ε)
≤ 1

and

W (x(τ2))−W (x(τ1)) =
∫ τ2

τ1

〈∇W (x), f(x) + εf1(t, x)〉
∣∣
x=x(t)

dt

≤
∫ τ2

τ1

θ [−‖x(t)‖+Kε] ‖x(t)‖ d‖x(t)‖/dt
θ(L‖x(t)‖+ ε)

dt

=
∫ Mε

%

(−s+Kε)s
Ls+ ε

ds.

Taking into account that W (x(τ1)) ≤W (0) +K%2/2 and making % tend to Kε, we
obtain the estimate

W (x(τ2)) ≤W (0) +
K3ε2

2
+
[
− s2

2L
+
ε(1 +KL)s

L2
− ε2(1 +KL)

L3
ln
Ls+ ε

L

]Mε

Kε

< W (0) +
K3ε2

2
− ε2

2L
[
M2 − 2(1 +KL)M

L
+

2(1 +KL)K
L

−K2
]
.
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If we introduce a quadratic polynomial of variable ξ,

P(ξ; ε, η) := ξ2 − 2(1 +KL)ε
L

ξ +
2(1 +KL)ηε2

L
− (1 + 2KL)η2ε2,

where ε and η are positive parameters, one can verify that M∗(K,L) is the greatest
root of P(ξ; 1,K). Thus, for any M ≥ M∗(K,L) and any ε < δ/M , we obtain
P(Mε; ε,K) = ε2P(M ; 1,K) ≥ 0. It means that

M2 − 2(1 +KL)M
L

+
2(1 +KL)K

L
−K2 ≥ 2K3L,

W (x(τ2)) < W (0)− K3ε2

2
≤ min{W (x) : ‖x‖ = Kε}.

Hence, the function W (x(t)) keeps on decreasing and satisfies for t > τ2 the inequal-
ity W (x(t)) < W (x(τ2)). This means that x(t) never reaches the sphere ‖x‖ = Kε,
and moreover,

inf
t≥τ2

[‖x(t)‖ −Kε] > 0.

As a consequence, W (x(t)) → −∞ as t → ∞, and we come to a contradiction.
Therefore, such a choice of M and ε guarantees the validity of the inequality
‖x(t)‖ < Mε for all t > τ∗.

In a similar way, one can show that if ‖x(τ ′)‖ ≤ Mε, but there exists τ∗ > τ ′,
such that ‖x(τ∗)‖ = δ, then

W (x(τ∗))

≤W (0) +
KM2ε2

2
−
[ s2

2L
− ε(1 +KL)s

L2

ε2(1 +KL)
L3

ln
Ls+ ε

L

]δ
Mε

≤W (0) +
KM2ε2

2
− 1

2L
[
δ2 − 2(1 +KL)ε

L
δ +

2(1 +KL)Mε2

L
− (Mε)2

]
.

Since N(K,L,M) is the greatest root of P(ξ; 1,M), once 0 < N(K,L,M)ε < δ, we
have P(δ; ε,M) ≥ 0 and

W (x(τ∗)) < W (0)− K(Mε)2

2
≤ min{W (x) : ‖x‖ = Mε}.

Finally, if the point 0 is elliptic and inequalities (3.4) are fulfill, then

〈∇W (x), f(x) + εf1(t, x)〉 ≤ [−θ‖x‖+ εK] ‖x‖ < 0, (3.5)

as soon as β ≤ ‖x‖ ≤ δ. Let the solution belong to B̄dβ at some moment of time.
If by reasoning ad absurdum we supposed that there existed such τ∗ > τ0, that
‖x(τ∗)‖ = δ, then there would exist τ ′′ < τ∗, such that

‖x(τ ′′)‖ = β, β < ‖x(t)‖ < δ ∀t ∈ (τ ′′, τ∗).

Thereby, W (x(τ ′′)) ≤ max‖x‖=βW (x) < min‖x‖=δW (x(τ∗)), which is impossible,
since (3.5) yields that the function W (x(t)) is decreasing on (τ ′, τ∗). �

Lemma 3.2. Let D ⊂ Rd be a bounded domain with a C2-boundary, D̄ := cl(D)
and let W (·) ∈ C2(D̄; R) be a Morse function with a finite set of stationary points
W ⊂ D. Define

K := max
x∈D̄
{‖∇W (x)‖, ‖W ′′(x)‖}

and choose sufficiently small δ > 0 and β ∈ (0, δ) that meet the following require-
ments:
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(1) the δ-neighborhood of W belongs to D;
(2) for any x′∗, x

′′
∗ ∈ W, such that W (x′∗) > W (x′′∗) the following inequality

holds:

min{W (x) : ‖x− x′∗‖ = δ} > max{W (x) : ‖x− x′′∗‖ = δ};

(3) for any elliptic point x∗ ∈W there holds the inequality

max{W (x) : ‖x− x∗‖ = β} < min{W (x) : ‖x− x∗‖ = δ}.

Also, suppose that there is such a vector field f(·) ∈ C1(D̄; Rd), that for some
positive constants θ, L such inequalities fulfill:

〈∇W (x), f(x)〉 < −θδ2 ∀x ∈ D : min
y∈W
‖x− y‖ > δ,

〈∇W (x), f(x)〉 ≤ −θ‖x− y‖2, ‖f ′(x)‖ ≤ θL ∀y ∈W,∀x : ‖x− y‖ ≤ δ.

Then, with the corresponding functions defined by formulae (3.1) and (3.3), for any
M ≥M∗(K,L) and all ε ∈ (0, ε0(K,L,M)), where

ε0(K,L,M) := min{δ
2

K
,

β

N(K,L,M)
},

the following assertion is correct. If f1(·) ∈ C1([τ0,∞) × D̄; B̄dθ ), then for any
such x0 ∈ D, that the corresponding solution x(·) of initial problem (3.2) is defined
on [τ0,∞) and takes values in D, there exist x∗ ∈ W and t∗ > τ0, such that
‖x(t)− x∗‖ < Mε for all t > t∗.

Proof. Under the conditions of this lemma, we have

〈∇W (x), f(x) + εf1(t, x)〉 < 0 ∀x : min
y∈W
‖x− y‖ ≥Mε. (3.6)

Therefore, if the solution x(·) is defined on [τ0,∞) and takes values in D, then there
exist x1

∗ ∈ W and t1 ≥ τ0, such that ‖x(t1) − x1
∗‖ < Mε. Indeed, otherwise, the

function W (x(t)) would decrease unboundedly when t→∞, which is impossible.
By Lemma 3.1, the solution x(·) meets the following alternative: either for all

t ≥ t1 we have ‖x(t)−x∗‖ ≤Mε, or there exists t2 > t1, such that ‖x(t2)−x1
∗‖ = δ

and

W (x(t2)) < W (x1
∗)−

K(Mε)2

2
≤ min{W (x) : ‖x− x1

∗‖ = Mε}.

The first case always takes place if x1
∗ is elliptic. In the second one, on account of

choice of δ and (3.6), there exist such x2
∗ ∈W and t3 > t2, that ‖x(t3)−x2

∗‖ < Mε,
and W (x2

∗) < W (x1
∗). Now, it is clear that eventually the solution enters and then

never leaves an Mε-neighborhood of some point x∗ ∈W. �

For the sake of completeness of our exposition, let us represent the following
result from the theory of non-negative invertible matrices.

Lemma 3.3. Let a real matrix P = {pij}di,j=1 have such properties:

(1) the matrix P + P> is positive definite;
(2) pij ≤ 0 for any i, j ∈ {1, . . . , d}, i 6= j.

Then for any vector y = (y1, . . . , yd) with the positive elements each component of
the vector x := P−1y satisfies the inequalities

xi ≥
yi
pii
, i ∈ {1, . . . , d}, (3.7)
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|x| ≤ max1≤i≤d yi
p+

, (3.8)

where p+ := min{〈Pξ, ξ〉 : ξ ∈ Rd+, |ξ| = 1, }

Proof. The system ẋ = −Px, in which P has the property 1 is asymptotically
stable. Hence, all eigenvalues of −P have negative real parts. By [16, Theorem 5,
XIII], all of the main minors of P are positive. Thus, according to [36, Theorem
6.3] the matrix P−1 has non-negative elements, and any row of this matrix contains
at least one positive element. Obviously, then x := P−1y ∈ Rd++, once y ∈ Rd++.
Moreover, since

d∑
j=1,j 6=i

pijxj ≥ 0,

the components xi satisfy (3.7), and the inequalities

p+|x|2 ≤ 〈Px, x〉 = 〈y, x〉 ≤ max
1≤i≤d

yi|x|

yield (3.8). �

4. Preliminary results on the behavior of the normalized system

Having introduced the aforementioned lemmas, we may proceed to the investi-
gation of system (2.4) dynamics. This section provides the general description of
the solutions behavior and suggests a way to classify them. Later we will refine this
information. Define

a+ := min{〈A(v)r, r〉 : ∀r ∈ Rn+, |r| = 1, v ∈ cl(V)},
λ+ := max{〈λ(v), r〉 : ∀r ∈ Rn+, |r| = 1, v ∈ cl(V)}.

Proposition 4.1. Assume hypotheses (H1), (H2), (H4) to be true and N = 3.
Then there exist a sufficiently small ρ0 > 0 and sufficiently large ρ∗ > 0, R∗ > 0,
such that for any ρ > ρ∗, R > R∗ one can choose ε0 > 0 in such a way, that once
ε ∈ (0, ε0] and µ ∈ [0, ε], system (2.4) generates a forward semi-flow on the set
A := {(z, v) ∈ Cn×Rm : ‖z‖ ≤ ρ0, v ∈ V}. Furthermore, for any solution (z(t), v(t))
of (2.4) with the initial values (z(0), v(0)) ∈ A, there exist such a stationary point
v∗ of V (·) and an instant of time t∗, that

‖z(t)‖ < ρ
√
ε < ρ0, ‖v(t)− v∗‖ < Rε ∀t ≥ t∗.

Proof. There is a constant c1 > 0, such that if ‖z‖ ≤ ρ0, then a quadratic form
‖z‖2 =

∑n
k=1 |zk|2 and the function V (·) admit the following estimates for their

directional derivatives along the vector field of system (2.4)

‖z‖2
∣∣′
(2.4)
≤ 2ε

n∑
k=1

λk(v)|zk|2 − 2
n∑

k,l=1

akl(v)|zk|2|zl|2

+ c1(µ‖z‖2 + ‖z‖5 + ‖z‖µP+1)

≤
[
(2ελ+ + c1µ)‖z‖ − (2a+ − c1ρ0)‖z‖3 + c1µ

P+1
]
‖z‖,

V (v)
∣∣′
(2.4)
≤ µ

[
V̇g(v) + c1‖∇V (v)‖(‖z‖2 + µ)

]
. (4.1)

It is easily seen that one can choose the positive numbers ρ0 < 2a+/c1, and ρ∗ > 0
in such a way, that for any ρ > ρ∗, µ ∈ [0, ε], v ∈ cl(V), ε ∈ (0, ε1], where
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ε1 := min{1, ρ2
0/ρ

2, µ0}, the inequality

‖z‖2
∣∣′
(2.4)

< 0,

holds as long as z satisfies ρ
√
ε ≤ ‖z‖ ≤ ρ0. It means that A is forward semi-

invariant and, moreover, there exists t0 > 0, such that ‖z(t)‖ < ρ
√
ε for all t > t0.

Now we can regard v(t) as a solution of a system v̇ = µ[g(v) + g̃(t, v, ε, µ)] defined
on [t0,∞)× cl(V) and obtained from the corresponding sub-system of (2.4) via the
substitution z = z(t). Obviously, there exists such a constant c2 > 0, that

‖g̃(t, v, ε, µ)‖ ≤ c2ε ∀(t, v, ε, µ) ∈ [t0,∞)× cl(V)× (0, ε1]× [0, ε].

On account of (H1), (2.1) and (4.1), after an appropriate additional correction
of δ in (2.1), the final part of the proof follows from Lemma 3.2 in the case when
f = µg, f1 = µεg̃, W = V , ε = εc2, θ ∝ µ. In particular, if we find M∗ and ε0 from
the lemma, we can set R∗ = M∗, R = M and ε0 = min{ε0/c2, ε1}. �

Corollary 4.2. Let 0 < µ < εκ/(2c1) and let (t0, t1) ∈ R+ be such an interval,
that

µP < ‖z(t)‖ < ρ0, v(t) ∈ Vκ− ∀t ∈ (t0, t1)

Then ‖z(t)‖ ≤ e−εκ(t−t0)/2‖z(t0)‖ for all t ∈ (t0, t1).

In fact, for µP ≤ ‖z‖ ≤ ρ0, v ∈ Vκ− and 0 < µ < εκ/(2c1), in the same way as in
the proof of Proposition 4.1, we obtain the inequality

‖z‖2
∣∣′
(2.4)
≤
[
(−2εκ+ c1µ)‖z‖ − (2a+ − c1ρ0)‖z‖3 + c1µ

P+1
]
‖z‖

≤
[
− 3εκ

2
‖z‖+

εκ

2
µP
]
‖z‖ ≤ −εκ

2
‖z‖2.

The above corollary proves the statement (2) of the main theorem.
Hypothesis (H3) and Proposition 4.1 allow us to focus on system (2.4) defined

on the set
{(r, v) : ‖z‖ < ρ

√
ε, ‖v − v∗‖ < Rε}.

Hereafter, we will require the numbers ρ and R to be large enough.
Without loss of generality we may suppose that v∗ = 0 in Proposition 4.1. Then,

having applied the scaling z 7→
√
εz, v 7→ εv to (2.4), we obtain the system

żk =
[
iωk(εv) + ελk(εv)− ε

n∑
l=1

(akl(εv) + ibkl(εv))|zl|2
]
zk

+
∑

5≤2|p|+1≤N

ε|p|h0,k,p(εv)
−→
|z|2pzk +

P∑
j=1

µjηj,k(εv)zk

+
P∑
j=1

µj
[ ∑

3≤2|p|+1≤N

ε|p|hj,k,p(εv)
−→
|z|2p

]
zk +O

(
εN/2‖z‖N+1 + µP

)
,

k ∈ {1, . . . , n},

v̇ =
µ

ε

[
g(εv) +

∑
2≤2|p|≤N

ε|p|g0,p(εv)
−→
|z|2p

]

+
µ

ε

P∑
j=1

µj
∑

0≤2|p|≤N

ε|p|gj,p(εv)
−→
|z|2p +O

(
µε(N−1)/2‖z‖N+1 + µP+2/ε

)

(4.2)
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defined on the set

{(z, v, ε, µ) : ‖z‖ ≤ ρ, ‖v‖ ≤ R, ε ∈ (0, ε0], µ ∈ [0, ε]}.

In this system we constrain the parameter µ to be µ = ες with ς being an arbitrary
fixed number satisfying

0 < ς ≤ ς0 :=
1
2

min
1≤j≤n

λj(0)
|η1,j(0)|

.

Note that such a condition ensures the validity of the inequality

αk := λk(0) + ς Re η1,k(0) ≥ λk(0)/2 > 0 ∀k ∈ {1, . . . , n}.

Now, if we recall the earlier imposed condition P ≥ N/2 and if for a vector
x = (x1, . . . , xd) we define D[x] := diag(x1, . . . , xd), then system (4.2) can be
presented in the form

ż = D[i(ω0 + ε(β + Ω′v −B
−→
|z|2))]z

+ [ε(α−A
−→
|z|2) + ε2ĥ(

−→
|z|2, v)]z +O(εN/2),

(4.3)

v̇ = ες[Γv + Υ
−→
|z|2 + εĝ(

−→
|z|2, v) +O(ε(N+1)/2)] (4.4)

where, for the sake of notations simplicity, we assign

ω0 := (ω01(0), . . . ω0n(0)), η1 := (η1,1(0), . . . , η1,n(0)), α := λ(0) + ς Re η1(0),

β := ζ Im η1(0), A :=
{
akl(0)

}n
k,l=1

, B :=
{
bkl(0)

}n
k,l=1

,

Ω′ :=
{∂ω0k(0)

∂vj

}n
k=1,

Γ := g′(0), Υx :=
∑
|p|=1

g0,p(0)xp.

The definitions of the remainder terms ĥ(·) and ĝ(·) inside the square brackets in
the right-hand sides of (4.3), (4.4) is obvious. Recall that we agreed not to mention
ε directly as functions arguments.

Proposition 4.3. For all ε ∈ (0, ε0], with ε0 > 0 being sufficiently small, sys-
tem (4.3)–(4.4) has an equilibrium (z0, v0) = (z0(ε), v0(ε)), such that

z0(ε) = O(εN/2), v0(ε) = O(ε). (4.5)

If (z(t), v(t)) is a solution of (4.3)–(4.4), such that ‖z(t)‖ <
√
ε and ‖v(t)‖ < R

for all t > 0, then
lim
t→∞

[
‖z(t)− z0‖+ ‖v(t)− v0‖

]
= 0, (4.6)

and the set of all such solutions forms a manifold whose real dimension equals the
number of eigenvalues of Γ with negative real parts. In the case when all eigenval-
ues of Γ have positive real parts the only solution with the stated property is the
equilibrium (z0, v0).

Proof. The existence of the equilibrium (z0(ε), v0(ε)) satisfying (4.5) directly fol-
lows from the implicit function theorem. If (z(t), v(t)) is a solution of (4.3)–(4.4),
such that ‖z(t)‖ <

√
ε and ‖v(t)‖ < R for all t > 0, then the functions

w(t) := exp
[
− i
∫ t

0

D
[(
ω0 + ε(Ω′v(s)−B

−−−→
|z(s)|2)

)]
ds
]
z(t)
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and v(t) satisfy a system of the form

ẇ = D
[
ε(α−A

−→
|w|2) + ε2ĥ(

−→
|w|2, v)

]
w +O(εN/2), (4.7)

v̇ = ες
[
Γv + Υ

−→
|w|2 + εĝ(

−→
|w|2, v) +O(ε(N+1)/2)

]
, (4.8)

which also has a solution

w = w0(t) := exp
[
− i
∫ t

0

D
[
(ω0 + ε(Ω′v(s)−B

−−−→
|z(s)|2))

]
ds
]
z0,

v = v0, t ≥ 0.

Hence, the realification of system (4.7)–(4.8) has a pair of solutions

ξ(t) := (Rew(t), Imw(t), v(t)), ξ0(t) := (Rew0(t), Imw0(t), v0).

One can consider the difference η(t) := ξ(t)− ξ0(t) to be a bounded solution for
t ≥ 0 of the linear system η̇ = ε[A+A1(t; ε)]η where

A = diag[D[α], D[α], ςΓ],

and supt≥0 ‖A1(t; ε)‖ = O(
√
ε). Such a system is hyperbolic on [0,∞) if ε is small

enough, and each of its bounded solutions approaches zero as t → ∞. This yields
(4.6).

Next, it is not hard to see that at (z0, v0) the Jacobi matrix of the right-hand
side of system (4.3)–(4.4) realification has the form

±iω0k + ε(αk ± iβk) + o(ε), k ∈ {1, . . . , n}, εςγj + o(ε), j ∈ {1, . . . ,m}
where γ1, . . . , γm are the eigenvalues of Γ counted according to multiplicities. All
of these numbers have non-zero real parts. It is well known that in this case the
set of all solutions of the realification of (4.3)–(4.4) which approach the equilibrium
ξ0(ε) forms the so-called stable manifold, whose dimension equals the number of
eigenvalues of A(ε) with negative real parts (see, e. g. [21]). In the case when all
of the eigenvalues of Γ have positive real parts, the equilibrium (Re z0, Im z0, v0) is
completely unstable. �

Proposition 4.4. There exists a constant c3 > 0, such that for sufficiently small
ε0 > 0 and for any ε ∈ (0, ε0] the following assertion is valid. If (z(t), v(t)) is a
solution of (4.3)–(4.4), such that ‖z(0)‖ ≤ ρ, |zk(0)| ≥

√
c3εN−2 for some k ∈

{1, . . . , n} and ‖v(t)‖ < R for all t > 0, then

|zk(t)| >
√
c3εN−2, ‖z(t)‖ < ρ ∀t > 0,

and there exists such t∗ > 0, that

|zk(t)| >
√

αk
2akk

, ‖z(t)‖ <
√

2 max1≤k≤n αk
a0

+

∀t > t∗,

where
a0

+ := min{〈Ar, r〉 : r ∈ Rn+, |r| = 1}.

Proof. It is sufficient to note that there is such c4 > 0, that for sufficiently small
ε0 > 0 and for any ε ∈ (0, ε0] the following inequalities are satisfied.

‖z‖2
∣∣′
(4.3)
≤ 2ε〈

−→
|z|2, α−A

−→
|z|2〉+ c4(ε2‖z‖2 + εN/2‖z‖)

≤ 2ε
[

max
1≤k≤n

αk − a0
+‖z‖2 + c4ε

]
‖z‖2 + c4ε

N/2‖z‖ < 0
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if 2 max1≤k≤n αk/a
0
+ ≤ ‖z‖2 ≤ ρ2, and, in view of (H4),

|zk|2
∣∣′
(4.3)
≥ 2ε|zk|2

[
αk − akk|zk|2 − c4ε− c4ε(N−2)/2/|zk|

]
> 0

if c3εN−2 ≤ |zk|2 ≤ αk/(2akk), where c3 is a sufficiently large positive constant. �

Definition 4.5. Let {i1, . . . , is} be an ordered collection of distinct natural num-
bers not exceeding n. We will say that a solution (z(t), v(t)) of (4.3)–(4.4) is of
type (i1, . . . , is) if

‖v(t)‖ < R, |zk(t)| < ε ∀k 6∈ {i1, . . . , is}, ∀t > 0

and there exists such a moment of time t∗ > 0, that

|zk(t)| >
√

αk
2akk

∀k ∈ {i1, . . . , is}, ‖z(t)‖ <
√

2 max1≤k≤n αk
a0

+

∀t > t∗.

As a consequence of Propositions 4.3 and 4.4, we obtain the following result.

Proposition 4.6. Let (z(t), v(t)) be a solution of (4.3)–(4.4), such that ‖z(0)‖ ≤ ρ
and ‖v(t)‖ ≤ R for all t ≥ 0. If ε0 is sufficiently small and ε ∈ (0, ε0], then either
this solution tends to the equilibrium (z0, v0) as t→∞, or it is of type (i1, . . . , is)
for some s ∈ {1, . . . , n}.

Proof. If ‖z(t)‖ <
√
ε for all t > 0, then (z(t), v(t)) is a solution of (4.3)–(4.4) from

Proposition 4.3, and therefore tends to (z0, v0) as t → ∞. If (z(t), v(t)) does not
possess the aforementioned property, then there exist k ∈ {1, . . . , n} and t1 ≥ 0,
such that |zk(t1)|2 > ε/n ≥ c3εN−2. Hence, the solution (z(t−t1), v(t−t1)) satisfies
the conditions of Proposition 4.4. Now it becomes apparent that in such case, basing
on Proposition 4.4, one can decompose a set {1, . . . , n} into two ordered subsets,
{i1, . . . , is} 3 k and {j1, . . . , jn−s} ⊂ {1, . . . , n} \ {i1, . . . , is}, and choose t∗ > 0 in
such a way, that |zi(t)|2 > αi/(2aii) for all t > t∗ if i belongs to the first subset,
whereas |zj(t)|2 ≤ c3ε

N−2 < ε2 for all t > 0 if j belongs to the second subset,
with the latter being empty when s = n. Besides that, ‖z(t)‖ meets the imposed
requirements for all t > t∗. �

5. Ultimate behavior of solutions of type (1, . . . , n)

To study the final behavior of solutions of type (1, . . . , n), introduce the polar-like
coordinates zk =

√
rkeiϕk , k = 1, . . . , n, and set r = (r1, . . . , rn). This transforms

system (4.3)–(4.4) into

ṙ = 2εD[r] [α−Ar + εâ(r, v)] + εN/2D1/2[r]ã(r, v, ϕ), (5.1)

v̇ = ες
[
Υr + Γv + εĝ(r, v) + ε(N+1)/2g̃(r, v, ϕ)

]
, (5.2)

ϕ̇ = ω0 + ε(β + Ω′v −Br) + ε2b̂(r, v) + εN/2D−1/2[r]b̃(r, v, ϕ) (5.3)

where â(r, v) = Re ĥ(r, v), b̂(r, v) = Im ĥ(r, v), and ã(r, v, ϕ), b̃(r, v, ϕ), g̃(r, v, ϕ)
are defined by the remainder terms of (4.3)–(4.4). On ground of Lemma 3.3 and
Proposition 4.1, we can consider ρ and R to be so large, that

|A−1α| ≤ max1≤k≤n αk
a0

+

<
ρ

2
, ‖Γ−1ΥA−1α‖ < R

2
. (5.4)
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Proposition 5.1. For sufficiently small ε0 > 0 and for any ε ∈ (0, ε0], the system

α−Ar + εâ(r, v) = 0, Υr + Γv + εĝ(r, v) = 0

has a solution

r = r∗(ε) := A−1α+O(ε), v = v∗(ε) := −Γ−1ΥA−1α+O(ε),

such that

r∗k(ε) >
2αk
3akk

, k ∈ {1, . . . , n}, |r∗(ε)| <
3 max1≤k≤n αk

2a0
+

, ‖v∗(ε)‖ <
2R
3
.

Proof. Taking into account hypothesis (H4), Lemma 3.3 and inequalities (5.4), the
desired result follows from the implicit function theorem. �

Proposition 5.2. There exist such positive numbers c5, ς0 and ε0, that for any
ς ∈ (0, ς0), ε ∈ (0, ε0) the following assertion is true. If (z(t), v(t)) is a solution of

type (1, . . . , n) of system (4.3)–(4.4) and r(t) :=
−−−→
|z(t)|

2
then there is such t∗ > 0,

that √
‖r(t)− r∗(ε)‖2 + ‖v(t)− v∗(ε)‖2 <

c5ε
(N−2)/2

ς
∀t > t∗.

Proof. Let (r(t), v(t), ϕ(t)) represent the solution (z(t), v(t)) of type (1, . . . , n) in
the polar-like coordinates. On account of (5.1)–(5.3) and Proposition 5.1, the pair
(r(t), v(t)) satisfies the system

ṙ = 2εD[r]
[
(−A+ εÂr(r, v))(r − r∗) + εÂv(r, v)(v − v∗)

]
+ εN/2D1/2[r]ã(r, v, ϕ(t)),

v̇ = ες
[
(Υ + εĜr(r, v))(r − r∗) + (Γ + εĜv(r, v))(v − v∗)

+ ε(N+1)/2g̃(r, v, ϕ(t))
]
,

where

Âr(r, v) :=
∫ 1

0

∂â(r, v)
∂r

∣∣∣ r 7→sr+(1−s)r∗
v 7→sv+(1−s)v∗

ds,

Âv(r, v) :=
∫ 1

0

∂â(r, v)
∂v

∣∣∣ r 7→sr+(1−s)r∗
v 7→sv+(1−s)v∗

ds,

Ĝr(r, v) :=
∫ 1

0

∂ĝ(r, v)
∂r

∣∣∣ r 7→sr+(1−s)r∗
v 7→sv+(1−s)v∗

ds,

Ĝv(r, v) :=
∫ 1

0

∂ĝ(r, v)
∂v

∣∣∣ r 7→sr+(1−s)r∗
v 7→sv+(1−s)v∗

ds.

By Definition 4.5, there exists t∗ > 0, such that for all t > t∗ a point (r(t), v(t))
belongs to the domain

D :=
{

(r, v) ∈ Rn+ × Rm : rk >
αk

2akk
∀k ∈ {1, . . . , n},

|r| < 2 max1≤k≤n αk
a0

+

, ‖v‖ < R
}
,
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which contains the unique equilibrium (r∗, v∗) of the system

ṙ = 2εD[r]
[(
−A+ εÂr(r, v)

)
(r − r∗) + εÂv(r, v)(v − v∗)

]
,

v̇ = ες
[
(Υ + εĜr(r, v))(r − r∗) +

(
Γ + εĜv(r, v)

)
(v − v∗)

]
,

(5.5)

This equilibrium is the unique stationary point of the Morse function

W (r, v) :=
n∑
i=1

(
ri + r∗i ln(

r∗i
ri

)− r∗i
)

+
1
2
〈V ′′(0)(v − v∗), v − v∗〉

in cl(D).
The first inequality (2.1) yields 〈V ′′(0)Γv, v〉 ≤ −ν∗‖v‖2 for any v ∈ Rm. There-

fore, there is such a constant c6 > 0, that for sufficiently small ε0 and for all
ε ∈ (0, ε0), (r, v) ∈ cl(D) the following inequality holds.

W (r, v)|′(5.5)

≤ 2ε〈r − r∗,
(
−A+ εÂr(r, v)

)
(r − r∗) + εÂv(r, v)(v − v∗)〉

+ ες〈V ′′(0)(v − v∗),
(
Υ + εĜr(r, v)

)
(r − r∗) + (Γ + εĜv(r, v))(v − v∗)〉

≤ −εa0‖r − r∗‖2 + 2c6(ε2 + ες)‖r − r∗‖‖v − v∗‖ −
εςν∗

2
‖v − v∗‖2,

where
a0 := min{〈Aζ, ζ〉 : ζ ∈ Rn, ‖r‖ = 1}.

Now, observe that for sufficiently small positive ς0 and ε0, and for any ς ∈ (0, ς0)
and ε ∈ (0, ε0) the smallest eigenvalue of the matrix(

a0 −c6(ε+ ς)
−c6(ε+ ς) ςν∗/2

)
exceeds ςκ, where

κ0 :=
1
2
· a0ν∗

2a0 + ςν∗
.

Hence,
W (r, v)

∣∣′
(5.5)
≤ −εςκ0

[
‖r − r∗‖2 + ‖v − v∗‖2

]
,

as soon as (r, v) ∈ cl(D), ς ∈ (0, ς0) and ε ∈ (0, ε0). It only remains to apply
Lemma 3.2 in the case of unique stationary point of Morse function with θ ∝ ες
and ε ∝ εN/2 to finish this proof. �

Next, we are going to utilize results on the existence of invariant tori obtained
in [19]. To do so, we introduce a new vector variable ξ ∈ Rn+m via the formula

(r, v) = (r∗, v∗) + εσξ

with 0 < σ < 1/2, and define the block matrices

B :=
(
−2D[r∗]A 0

ςΥ ςΓ

)
, B1(εσξ) :=

(
−2D[r − r∗]A 0

0 0

) ∣∣∣
(r,v)=(r∗,v∗)+εσξ

,

B̂(εσξ) :=
(

2D[r]Âr(r, v) 2D[r]Âv(r, v)
ςĜr(r, v) ςĜv(r, v)

) ∣∣∣
(r,v)=(r∗,v∗)+εγξ

,

the vector functions

f̃(εσξ, ϕ) :=
(
D1/2[r]ã(r, v, ϕ), ε3/2ςg̃(r, v, ϕ)

)∣∣
(r,v)=(r∗,v∗)+εσξ

,
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Φ̂(εσξ, ϕ) := b̂(r, v)
∣∣
(r,v)=(r∗,v∗)+εσξ

,

Φ̃(εσξ, ϕ) := ε(N−4)/2D−1/2[r]b̃(r, v, ϕ)
∣∣
(r,v)=(r∗,v∗)+εσξ

,

the vector ω∗ := ω0 + ε(β+ Ω′v∗−Br∗) and, finally, the (n× (n+m))-matrix Ξ :=
[−B; Ω′]. After that, system (5.1)–(5.3) takes the following form in the variables
(ξ, ϕ).

ξ̇ = ε[B + B1(εσξ) + εB̂(εσξ)]ξ + εN/2−γ f̃(εσξ, ϕ), (5.6)

ϕ̇ = ω∗ + ε1+γΞξ + ε2Φ̂(εσξ) + εN/2Φ̃(εσξ, ϕ). (5.7)

Assuming that ε is small enough for ω∗ to be positive, we hereby arrive at the
perturbation problem for the trivial invariant torus ξ = 0 of the system

ξ̇ = εBξ, ϕ̇ = ω∗.

Note, that the quadratic forms 〈D[r∗(0)]A·, ·〉 and 〈V ′′(0)Γ·, ·〉 are positive and
negative definite respectively, which means that the eigenvalues of B have non-zero
real parts. The Lipschitz constants for the right-hand sides of (5.6)–(5.7) are o(ε).
Under such circumstances, one can easily verify that system (5.6)–(5.7) satisfies all
conditions of [19, Lemma 2.1] (There is a misprint in condition (ii) on page 507:
in Lip(θ, y, z; Σσ,µ; η(ε, σ, µ)) the symbol η should be replaced by λ.) according
to which, there exists sufficiently small ε0 > 0, such that for any ε ∈ (0, ε0) sys-
tem (5.6)–(5.7) has an invariant torus given by the equation ξ = ξ̃(ϕ; ε), where
ξ̃(·; ε) : Tn → Rn+m is a Lipschitzian mapping, such that maxϕ∈Tn ‖ξ(ϕ; ε)‖ → 0
as ε→ 0. Therefore, we have shown that system (5.1)–(5.3) has an invariant torus
T nε located in D.

Also, if ξ(t) is a solution of system (5.1)–(5.3) corresponding to (r(t), v(t)), then

‖ξ(t)‖ < c5ε
(N−2)/2−γ

ς
∀t > t∗.

Lemma 2.3 in [19] claims that the trajectory corresponding to the solution ξ(t)
belongs to the stable invariant manifold of the invariant torus. This yields the
inequality

‖ξ̃(ϕ; ε)‖ ≤ c5ε
(N−2)/2−γ

ς
∀ψ ∈ Tn.

Furthermore, if N ≥ 5 and V ′′(0) is positive definite, then it was shown in [37]
that not only does the trajectory corresponding to the solution from Proposition 5.2
approach the torus T nε as t→∞, but it is also attracted by some trajectory on T nε
when t→∞.

Hence, we have proved the part of statements (3)–(5) from the main theorem
concerning n-dimensional tori.

6. Ultimate behavior of solutions of type (i1, . . . , is)

Now, we will cover the case when solutions are of type (1, . . . , s). Obviously,
results that we are going to obtain will be applicable to other possible types
(i1, . . . , is), too.

We introduce new variables p := (p1, . . . , ps) ∈ Rs+, ϑ := (ϑ1, . . . , ϑs) ∈ Ts and
ζ = (ζ1, . . . , ζn−s) ∈ Cn−s via the formulae

zk =
√
pkeiϑk , k ∈ {1, . . . , s}, zk+s = εζk, k ∈ {1, . . . , n− s}.
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If we denote

α′ = (α1, . . . , αs), α′′ = (αs+1, . . . , αn),

β′ = (β1, . . . , βs), β′′ = (βs+1, . . . , βn),

ω′0 = (ω01, . . . , ω0s), ω′′0 = (ω0,s+1, . . . , ω0n)

and decompose into blocks, the matrices

A :=
(
A11 A12

A21 A22

)
, B :=

(
B11 B12

B21 B22

)
, Ω′ =

(
Ω′1
Ω′2

)
, Υ =

(
Υ1 Υ2

)
,

where dimA11 = dimB11 = s× s, dim Ω′1 = s×m, dim Υ1 = m× s, we will get a
smooth system of the form

ṗ = 2εD[p]
[
α′ −A11p+ εā

(
p,
−→
|εζ|2, v

)
− ε2A12

−→
|ζ|2
]

+ εN/2D1/2[p]ă(p,Re ζ, Im ζ, v, ϑ),
(6.1)

v̇ = ες
[
Υ1p+ Γv + εḡ(p,

−→
|εζ|2, v) + ε2Υ2

−→
|ζ|2

+ ε(N+1)/2ğ(p,Re ζ, Im ζ, v, ϑ)
]
,

(6.2)

ζ̇ = D
[
i(ω′′0 + ε(β′′ + Ω′2v −B21p)) + ε(α′′ −A21p)

]
ζ

+ ε2D
[
− (iB22 +A22)

−→
|ζ|2 + h̄(p,

−→
|εζ|2, v)

]
ζ + ε(N−2)/2h̆(p,Re ζ, Im ζ, v, ϑ),

ϑ̇ = ω′0 + ε(β′ + Ω′1v −B11p) + ε2
[
−B12

−→
|ζ|2 + b̄(p,

−→
|εζ|2, v)

]
+ εN/2D−1/2[p]b̆(p,Re ζ, Im ζ, v, ϑ),

whose domain contains the set cl(D1) × {ζ ∈ Cn−s : ‖ζ‖ ≤ 1} × Ts, with D1 ⊂
Rs+ × Rm being defined by the inequalities

pk >
αk

2akk
, k ∈ {1, . . . , s}, |p| < 2 max1≤k≤s αk

a0
+

, ‖v‖ < R.

Let (p(t), v(t), ζ(t), ϑ(t)) be a solution of this system which corresponds to a
solution of type (1, . . . , s), so that

(p(t), v(t), ζ(t)) ∈ D1 × {ζ ∈ Cn−s : ‖ζ‖ ≤ 1} ∀t > t∗

if t∗ > 0 is large enough.
The following is an analogue of Proposition 5.1.

Proposition 6.1. For sufficiently small ε0 > 0 and for any ε ∈ (0, ε0], the system

α′ −A11p+ εā(p, 0, v) = 0, Υ1p+ Γv + εḡ(p, 0, v)

has a solution

p = p̄∗(ε) := A−1
11 α

′ +O(ε), v = v̄∗(ε) := −Γ−1Υ1A
−1
11 α

′ +O(ε),

such that

p̄∗k(ε) >
2αk
3akk

, k ∈ {1, . . . , s}, |p̄∗(ε)| <
3 max1≤k≤n αs

2a0
+

, ‖v̄∗(ε)‖ <
2R
3
.

Note that the equilibrium (p̄∗, v̄∗) of the system

ṗ = 2εD[p][α′ −A11p+ εā(p, 0, v)],

v̇ = ες[Υ1p+ Γv + εḡ(p, 0, v)]
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is the unique stationary point in D1 of the Morse function

W̄ (p, v) :=
s∑
i=1

(
pi + p̄∗i ln(

p̄∗i
pi

)− p̄∗i
)

+
1
2
〈V ′′(0)(v − v̄∗), v − v̄∗〉.

Proposition 6.2. There are positive numbers c7, ς0 and ε0, such that for any
ς ∈ (0, ς0), ε ∈ (0, ε0) the following assertion is valid. If (z(t), v(t)) is a solution of
type (1, . . . , s) of system (4.3)–(4.4) and

p(t) :=
(
|z1(t)|2, . . . , |zs(t)|2

)
, ζ(t) :=

1
ε

(zs+1(t), . . . , zn(t)),

then there exists t∗ > 0, such that√
‖p(t)− p̄∗(ε)‖2 + ‖v(t)− v̄∗(ε)‖2 <

c7ε
(N−2)/2

ς
, ‖ζ(t)‖ ≤ c7ε(N−4)/2 ∀t > t∗.

Proof. Since all elements of the matrix A21 are non-positive, then the minimal
element of α′′ − A21p is not less than the minimal element of α′′. Thus, there
exists a constant c8 > 0, such that for all sufficiently small ε > 0 there hold the
inequalities

d
dt
‖ζ(t)‖2 ≥ ‖ζ(t)‖

[
ε min
s+1≤k≤n

αk‖ζ(t)‖ − c8ε(N−2)/2
]
, ‖ζ(t)‖ ≤ 1 ∀t ≥ t∗,

and consequently,

‖ζ(t)‖ ≤ c8ε
(N−4)/2

mins+1≤k≤n αk
for all t ≥ t∗.

Now observe that for

‖ζ‖ ≤ c8ε
(N−3)/2

mins+1≤k≤n αk

sub-system (6.1)–(6.2) takes the form

ṗ = 2εD[p] [α′ −A11p+ εā(p, 0, v)] +O(εN/2),

v̇ = ες [Υ1p+ Γv + εḡ(p, 0, v)] +O(ε(N+3)/2).

Using Lemma 3.2 for the function W̄ (p, v), one can obtain the inequality for p(t)
and v(t) precisely in the same way as we did in Proposition 5.2. �

If we introduce new variables η ∈ Rs+m and ξ ∈ Rs+m × Cn−s via the formulae

(p, v) = (p̄∗, v̄∗) + εση,

then again we come to the perturbation problem for the trivial hyperbolic invariant
torus of the system

η̇ = ε

(
−2D[p̄∗(0)]A11 0

ςΥ1 ςΓ

)
η,

ζ̇ = D [i(ω′′0 + ε(β′′ + Ω′2v̄∗(0)−B21p̄∗(0))) + ε(α′′ −A12p̄∗(0))] ζ,

ϑ̇ = ω′0 + ε [β′ + Ω′1v̄∗(0)−B11p̄∗(0)] .

The real parts of the eigenvalues of this system’s matrix are non-zero, since they
are defined by the eigenvalues of the matrix

εdiag(−2D[p̄∗(0)]A11, ςΓ, α′′ −A12p̄∗(0)).
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It is not hard to see that the perturbation terms satisfy the conditions of [19, Lemma
2.1]. Using the same arguments as above for the realification of the perturbed sys-
tem in the variables η,Re ζ, Im ζ, ϑ, we can prove the existence of an s-dimensional
truly hyperbolic invariant torus T sε (1, . . . , s), which attracts the trajectories corre-
sponding to the solutions of type (1, . . . , s). In the coordinates (p, v, ζ, ϑ) this torus
is given by the equations

(p, v) = (p̄∗(ε), v̄∗(ε)) + εση∗(ϑ; ε), ζ = ζ∗(ϑ; ε),

where η∗(·; ε) : Ts → Rs+m and ζ∗(·; ε) : Ts → Cn−s are Lipschitzian mappings
satisfying the conditions

max
ϑ∈Ts

‖η∗(ϑ; ε)‖ ≤ c8ε
(N−2)/2−γ

ς
, max

ϑ∈Ts
‖ζ∗(ϑ; ε)‖ ≤ c8ε(N−4)/2.

Hence, we have proved the part of statements (3)–(5) from the main theorem
concerning the tori of dimensions less then n. Note, that those forward semi-
trajectories in A that are not attracted by stable n-dimensional tori lie on stable
manifolds of truly hyperbolic tori, and thus form the set of zero Lebesgue measure.

7. Excitation of two-frequency oscillations in a system of two
coupled generators due to slow cooling

Let us now provide an example of a hypothetical device where the described phe-
nomenon can be observed. Consider a system of two coupled generators (Figure 1).

Figure 1. Coupled generators

Here, the i-th generator consists of the following elements: a thermistor Ri, a
magneto resistor ρi, magnetically connected inductors Li, L′i having a negative
mutual induction Mi = γi

√
LiL′i, a capacitor Ci, and an active feedback element

Ai. We suppose that the I-V characteristics χi of Ai is a smooth function of voltage
difference Vi on L′i and admits the expansion

χi = χi(Vi) := χi1Vi − χi3V 3
i +O(V 4

i ), χi1 > 0, χi3 > 0.

We assume that the i-th thermistor has a positive temperature coefficient and that
its resistance depends on the thermistor’s temperature Ti by the relation

Ri = Ri(Ti) := εRi0 + µRi1Ti, i ∈ {1, 2},
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where Ri0, Ri1 are positive constants and ε and µ are small parameters. We also
suppose the inductances Li, L′i and the capacities Ci to be constant.

The resistance of the magneto resistor depends on an external magnetic field.
If the latter is orthogonal to the direction of the current in the resistor, then the
change of its resistance is approximately proportional to the square of the magnetic
field magnitude [25].

The generators interact with each other in the following way. The current Ii in
the inductor Li produces a magnetic field of a magnitude proportional to Ii, and
this magnetic field influences the resistance of the magneto resistor ρj . Thus, it is
natural to consider the case where

ρj = ρj(Ii) = ρj0 + ρj2(LiIi)2, ρj0 > 0, ρj2 > 0, i ∈ {1, 2}. (7.1)

Taking into account the Newton law of cooling and the Joule – Lenz law of ohmic
heating and assuming the environment temperature to be zero, we adopt the next
equation for the resistor Ri temperature change

Ṫi = −µkiTi +KiI
2
i Ri, (7.2)

where ki and Ki are some positive coefficients.
Our goal is to show that under an appropriate choice of the generators param-

eters one can observe such a phenomenon. If the described device of the coupled
generators with the sufficiently high initial temperatures Ti(0) of the resistances
Ri is placed into the environment, then first for a long period of time this device
remains in the sleep mode. However, when the resistances temperatures drop al-
most to zero, the device wakes up and after a transient process, in general, it starts
producing two-frequency oscillations. Such a kind of behavior can be treated as a
phenomenon of dynamical bifurcation.

Denote by qi the charge of the capacitor Ci, and let Ii, ICi , Iρi and IAi stand for
the currents through the resistor Ri, the capacitor Ci, the magneto resistor ρi and
the active element Ai respectively. The Kirchhoff laws yield that

Ii + ICi + Iρi = IAi = χi, (7.3)

Liİi +RiIi =
qi
Ci

= ρiIρi . (7.4)

Since q̇i = ICi , by differentiation of (7.4) we obtain

LiÏRi +Riİi + ṘiIi =
ICi
Ci

.

But from (7.4) and (7.3) we can find

Iρi = [Liİi +RiIi]/ρi,

ICi = χi − Ii −
1
ρi

[Liİi +RiIi].

Hence,

Ïi +
Ri
Li
İi +

Ii
LiCi

+
1

ρiLiCi
[Liİi +RiIi] =

χi
LiCi

− Ṙi
Li
Ii,

and on account of (7.2)

Ïi + [
Ri
Li

+
1

ρiCi
]İi +

1
LiCi

[1 +
Ri
ρi

]Ii =
χi
LiCi

− µRi1
Li

[−µkiTi +KiI
2
i Ri]Ii.
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Introducing new variables Ii = √ρj0wi, Ti = Ri0ui/(ςRi1), imposing the constraint
ςε = µ with the constant ς playing the same role as in section 4 and taking into
account (7.1) and (7.2), we finally reach the system

ẅi +
[εRi0(1 + ui)

Li
+

1
Ciρi0(1 + ρi2L2

jw
2
j )

]
ẇi +

1
LiCi

[
1 +

εRi0(1 + ui)
ρi0(1 + ρi2L2

jw
2
j )

]
wi

=
1

LiCi
√
ρj0

χi(Mi
√
ρj0ẇi)−

µεRi0
Li

[−kiui +KiRi1(1 + ui)ρj0w2
i ]wi,

u̇i = µ[−kiui +Ri1Kiρj0(1 + ui)w2
i ], i ∈ {1, 2}, j ∈ {1, 2}, i 6= j.

This system can be represented in the form (2.3) if the parameters of the generators
are chosen in such a way, that

χi1Mi

LiCi
− 1
Ciρi0

= εbi, i ∈ {1, 2},

where b1, b2 are positive constants satisfying the inequalities

bi > Ri0/Li, i ∈ {1, 2}. (7.5)

In fact, we have

ω0i(u) =
√

1
LiCi

+O(ε), λi(u) = bi −
Ri0(1 + ui)

Li
, i ∈ {1, 2},

and

Fi(w1, w2, ẇ1, ẇ2, u, 0)

=
∑

k+l+m+n=3

fi,jklmw
j
1ẇ

k
1w

l
2ẇ

m
2 +O(‖w‖4 + ‖ẇ‖4), i ∈ {1, 2},

where the only non-zero coefficients are

f1,0300 = −χ13ρ20M
3
1

LiCi
, f1,0120 =

ρ12L
2
1

C1ρ10
,

f2,2001 =
ρ22L

2
2

C2ρ20
, f2,0003 = −χ23ρ10M

3
2

LiCi
.

Therefore, performing the change of variables (2.2), we obtain

F̂ (x, u, ςε) =


0

1
ω01(u)F1(x1, x3, ω01(u)x2, ω02(u)x4, u, 0)

0
1

ω02(u)F2(x1, x3, ω01(u)x2, ω02(u)x4, u, 0)

+O(ε).

It is easily seen the eigenvectors of the matrix J(u) are

s+
1 =


−i
1
0
0

 , s+
2 =


0
0
−i
1

 , s−1 =


i
1
0
0

 , s−2 =


0
0
i
1

 .

If we now introduce new complex variables z1, z2 ∈ C via

x1 = −iz1 + iz̄1, x2 = z1 + z̄1, x3 = −iz2 + iz̄2, x4 = z2 + z̄2,



24 I. PARASYUK, B. REPETA EJDE-2016/233

we will be able to find the elements of the matrix A(u) by extraction of the resonant
terms from cubic nonlinearities:

1
2ω01(u)

F1(−iz1 + iz̄1,−iz2 + iz̄2, ω01(u)(z1 + z̄1), ω02(u)(z2 + z̄2), u, 0)

= −a11(u)|z1|2z1 − a12(u)|z2|2z1 + [nonresonant terms]
1

2ω02(u)
F2(−iz1 + iz̄1,−iz2 + iz̄2, ω01(u)(z1 + z̄1), ω02(u)(z2 + z̄2), u, 0)

= −a21(u)|z1|2z2 − a22(u)|z2|2z2 + [nonresonant terms].

It turns out that

a11(u) = −1
2
f1,2100 −

3
2
ω2

01(u)f1,0300,

a12(u) = −f1,0120 − ω2
02(u)f1,0102,

a21(u) = −f2,2001 − ω2
01(u)f2,0201,

a22(u) = −1
2
f2,0021 −

3
2
ω2

02(u)f2,0003.

In our case, when ε = 0, these elements does not depend on u:

a11 =
3χ13ρ20M

3
1

2(C1L1)2
, a12 = −ρ12L

2
2

C1ρ10
,

a21 = −ρ22L
2
1

C2ρ20
, a22 =

3χ23ρ10M
3
2

2(C2L2)2
.

Hence, when ε = 0, the positive definiteness condition of the symmetric part of
the matrix A takes the form

9χ13χ23(ρ10ρ20M1M2)3 >
[
L1L2(ρ12ρ20C2L

2
2 + ρ10ρ22C1L

2
1)
]2
. (7.6)

Since g(u) = (−k1u1,−k2u2), the Morse function can be chosen as V (u) =
u2

1 + u2
2. It has a unique stationary point u∗ = (0, 0). The instability and stability

sets are defined as follows

V+ = {(u1, u2) ∈ R2 : u2
1 + u2

2 < V ∗, ui < biLi0/Ri0 − 1, i ∈ {1, 2}},
V− = {(u1, u2) ∈ R2 : u2

1 + u2
2 < V ∗, ui > biLi0/Ri0 − 1, i ∈ {1, 2}},

where V ∗ > 0 is large enough.
Thus, if the numbers

√
C1L1,

√
C2L2 are rationally independent and condi-

tions (7.5) and (7.6) fulfill, then hypotheses (H1)–(H5) hold, and Theorem 2.2
implies that under the appropriate choice of ς0 > 0, 0 < ς∗ < ς0, ε0 > 0 the afore-
mentioned changes in behavior of the coupled generators can actually be observed,
once ε ∈ (0, ε0), µ ∈ (ς∗ε, ς0ε).

8. Addendum

Consider the formal system

ẋ = J(u)x+
∑
i≥0

µiFi(x, u),

u̇ = µ
[
g(u) +

∑
i≥0

µiGi(x, u)
] (8.1)
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obtained from (2.3) by expanding its right-hand sides into the Taylor series expan-
sions in powers of µ. Our goal is to simplify this system with aid of the formal
change of variables

x = y +
∑
i≥0

µiXi(y, v), u = v + µ
∑
i≥0

µiUi(y, v). (8.2)

Construction of such a transformation consists in solving homological equations
of the form

LJ(v)y[Yj(v)yj ] = Pj(v)yj −Rj(v)yj , (8.3)

∂J(v)y[Zj(v)yj ] = Qj(v)yj − Sj(v)yj . (8.4)

Here Pj(v)yj and Qj(v)yj are known j-th order homogeneous forms which take val-
ues in R2n and Rm respectively and smoothly depend on the parameter v, whereas
∂J(v)y and LJ(v)y are, respectively, the directional and the Lie derivatives along the
vector field J(v)y. Namely,

∂J(v)yZ(y) :=
∂Z(y)
∂y

J(v)y ∀Z(·) ∈ C1(R2n; Rm),

LJ(v)yY (y) :=
∂Y (y)
∂y

J(v)y − J(v)Y (y) ∀Y (·) ∈ C1(R2n; R2n).

The forms Yj(v),Rj(v)yj , Zj(v) and Sj(v)yj are determined in such a way, that
they smoothly depend on v and satisfy the corresponding equations.

If j = 0, equation (8.3) has obvious solutions

R0(v) ≡ 0, Y0(v) = −J−1(v)P0(v), S0(v) = Q0(v), Z0(v) = 0. (8.5)

In the case when j ≥ 1, in the same manner as in [37], we can introduce a suitable
basis in the space of vector-valued polynomial forms. Note, that the matrix J(v)
has constant linearly independent eigenvectors s±j ∈ C2n, j = 1, . . . , n, such that

J(v)s±j = [ελj(v)± iωj(v)]s±j ,

with vectors s−j and s+
j being complex conjugate for all j = 1, . . . , n. Denote by

S the matrix with the columns s+
1 , . . . , s

+
n , s
−
1 , . . . , s

−
n , and define the homogeneous

forms
sq(y) := [S−1y]q, e±j,q(y) = sq(y)s±j ,

where q := (q1, . . . , q2n) ∈ Z2n
+ and xq := xq11 · · ·x

q2n
2n for x = (x1, . . . , x2n). This

gives us the following expansions.

Pj(v)yj =
n∑
k=1

∑
|q|=j

[P+
k,q(v)e+

k,q(y) + P−k,q(v)e−k,q(y)], Qj(v)yj =
∑
|q|=j

sq(y)Qq(v),

Rj(v)yj =
n∑
k=1

∑
|q|=j

[R+
k,q(v)e+

k,q(y) +R−k,q(v)e−k,q(y)], Sj(v)yj =
∑
|q|=j

sq(y)Sq(v).

Proposition 8.1. Let DN ⊂ Rm be such a domain, that for any k ∈ {1, . . . , n}
and σ ∈ {0, 1} the equality

min
v∈cl(DN )

∣∣ n∑
l=1

(ql − ql+n − σδkl)ω0l(v)
∣∣ = 0,
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where q ∈ Z2n
+ , 1 ≤ |q| :=

∑2n
k=1 qk ≤ N and δkl is Kronecker’s delta, holds if and

only if
ql − ql+n − σδkl = 0 ∀l ∈ {1, . . . , n}.

Suppose also that the forms Pj(v)yj and Qj(v)yj smoothly depend on v ∈ cl(DN )
and assign

R±k,q(v) =

{
P±k,q(v) if

∑n
l=1 |ql − ql+n ∓ δkl| = 0,

0 if
∑n
l=1 |ql − ql+n ∓ δkl| 6= 0,

Sq(v) =

{
Qq(v) if

∑n
l=1 |ql − ql+n| = 0,

0 if
∑n
l=1 |ql − ql+n| 6= 0.

Then, for sufficiently small ε0 > 0 and for all ε ∈ [0, ε0], there exist an R2n-valued
form Yj(v)yj and an Rm-valued form Zj(v)yj, which satisfy equations (8.3) and
(8.4) respectively. The coefficients of these forms are smooth functions in cl(DN ).

Proof. Since

S−1J(v)S = diag
[
ελ1(v) + iω1(v), . . . , ελn(v) + iωn(v), ελ1(v)

− iω1(v), . . . , ελn(v)− iωn(v)
]
,

we have

∂J(v)ysq(y) =
d
dt

∣∣
t=0

[(S−1eJ(v)ty)q]

=
[
ε

n∑
l=1

(ql + ql+n)λl(v) + i
n∑
l=1

(ql − ql+n)ωl(v)
]
sq(y)

and

LJ(v)ye
±
k,q(y) =

d
dt

∣∣
t=0

e−J(v)te±k,q
(
eJ(v)ty

)
=
[
ε

n∑
l=1

(ql + ql+n − δkl)λl(v) + i
n∑
l=1

(ql − ql+n ∓ δkl)ωl(v)
]
e±k,q(y).

After expanding the forms

Yj(v)yj =
n∑
k=1

∑
|q|=j

[
Y +
k,q(v)e+

k,q(y) + Y −k,q(v)e−k,q(y)
]
,

Zj(v)yj =
∑
|q|=j

sq(y)Zq(v),

the homological equations are reduced to[
ε

n∑
l=1

(ql + ql+n − δkl)λl(v) + i
n∑
l=1

(ql − ql+n ∓ δkl)ωl(v)
]
Y ±k,q(v)

= P±k,q(v)−R±k,q(v),[
ε

n∑
l=1

(ql + ql+n)λl(v) + i
n∑
l=1

(ql − ql+n)ωl(v)
]
Zq(v) = Qq(v)− Sq(v).

Taking into account the definitions of R±k,q(v) and Sq(v), these equations are soluble
for any ε ∈ [0, ε0] with sufficiently small ε0 > 0, and, as a consequence, the same is
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true for equations (8.3). Although the coefficients Y ±k,q(v) and Zq(v) are complex-
valued, one can make the forms Yj(v)yj and Zj(v)yj take values, respectively, in
R2n and Rm by setting Y ±k,q(v) ≡ 0 for any q, such that

∑n
l=1 |ql − ql+n ∓ δkl| = 0,

and Zq(v) ≡ 0 for any q, such that
∑n
l=1 |ql−ql+n| = 0. The smoothness properties

of Yj(v)yj ,Zj(v)yj are obvious. �

Remark 8.2. For q ∈ Z2n
+ with |q| = 1, the equality

∑n
l=1 |ql − ql+n ∓ δkl| = 0 is

satisfied if and only if q = e±k , where e+
k ∈ Z2n

+ (e−k ∈ Z2n
+ ) is a vector whose k-th

((k + n)-th) coordinate equals 1 while the other are 0. Hence, in such case,

R±k,q(v) 6= 0 if and only if q = e±k .

Let

ẏ = J(v)y +
∑
i≥0

µiHi(y, v),

v̇ = µ
[
g(v) +

∑
i≥0

µiCi(y, v)
]
,

be the system obtained from (8.1) by means of the formal change of variables (8.2).
In view of (1.3) and the definition of g(v), we have

F0(y, v) = O(y2), G0(y, v) = O(y).

Therefore, we require that

X0(y, v) = O(y2), H0(y, v) = O(y2), C0(y, v) = O(y), U0(y, v) = O(y).

Substituting (8.2) in (8.1) and equating coefficients near like powers of µ, we obtain
the following chain of homological equations for the unknown coefficients

LJ(v)yX0(y, v) = F0(y +X0(y, v), v)− ∂X0(y, v)
∂y

H0(y, v)−H0(y, v),

∂J(v)yU0(y, v) = G0(y +X0(y, v), v)− ∂U0(y, v)
∂y

H0(y, v)− C0(y, v),

and, for i > 0,

LJ(v)yXi(y, v)

=
∂Xi−k(y, v)

∂y
Hk(y, v)− ∂Xi−1(y, v)

∂v
g(v)

−
i−1∑
k=0

∂Xi−k−1(y, v)
∂v

Ck(y, v) +
[∂F0(x, v)

∂x
Xi(y, v)

]
x=y+X0(y,v)

+
1
i!
∂i

∂µi
∣∣
µ=0

[
J
(
v + µ

i−1∑
j=0

µjUj(y, v)
)(
y +

i−1∑
k=0

µkXk(y, v)
)]

+
1
i!
∂i

∂µi
∣∣
µ=0

i∑
l=0

µlFl

(
y +

i−1∑
k=0

µkXk(y, v), v + µ

i−1∑
j=0

µjUj(y, v)
)
−Hi(y, v),

∂J(v)yUi(y, v)

= −
i∑

k=0

∂Ui−k(y, v)
∂y

Hk(y, v)− ∂Ui−1(y, v)
∂v

g(v)
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−
i−1∑
k=0

∂Ui−k−1(y, v)
∂v

Ck(y, v) +
[∂G0(v, x)

∂x
Xi(y, v)

]
x=y+X0(y,v)

+
1
i!
∂i

∂µi
∣∣
µ=0

g
(
v + µ

i−1∑
j=0

µjUj(y, v)
)

+
1
i!
∂i

∂µi
∣∣
µ=0

i∑
l=0

µlGl

(
y +

i−1∑
k=0

µkXk(y, v), v + µ

i−1∑
j=0

µjUj(y, v)
)
− Ci(y, v).

On account of (1.3) and the definition of g(v), we have the following expansions.

F0(y, v) =
∑
j≥2

F0j(v)yj , Fi(y, v) =
∑
j≥0

Fij(v)yj , i ≥ 1,

G0(y, v) =
∑
j≥1

G0j(v)yj , Gi(y, v) =
∑
j≥0

Gij(v)yj , i ≥ 1.

Thus, the unknown functions can be sought in the form

X0(y, v) =
∑
j≥2

X0j(v)yj , Xi(y, v) =
∑
j≥0

Xij(v)yj , i ≥ 1,

H0(y, v) =
∑
j≥2

H0j(v)yj , Hi(y, v) =
∑
j≥0

Hij(v)yj , i ≥ 1,

U0(y, v) =
∑
j≥1

U0j(v)yj , Ui(y, v) =
∑
j≥0

Uij(v)yj , i ≥ 1,

C0(y, v) =
∑
j≥1

C0j(v)yj , Ci(y, v) =
∑
j≥0

Cij(v)yj , i ≥ 1,

It is easily seen that the coefficients of these expansions satisfy the chain of equations

LJ(v)y[Xij(v)yj ] = Pij(v)yj −Hij(v)yj , ∂J(v)y[Uij(v)yj ] = Qij(v)yj − Cij(v)yj ,

where Pij(v) and Qij(v) can be determined subsequently. In fact, P02(v) := F02(v),
Q01(v) := G01(v), and now, if v ∈ DN , one can use Proposition 8.1 to get H02 = 0,
X02, C01 = 0, U01, and then subsequently find P0j , H0j , X0j for j = 3, . . . , N ,
and Q0j , C0j , U0j for j = 2, . . . , N . If 0 ≤ k < i, l ≤ N and the coefficients
Xkl(v), Hkl(v), Ukl(v), Ckl(v) are already known, then one can determine Pi0(v)
and subsequently find Hij(v), Xij(v), Pi,j+1(v) for j = 0, . . . , N . (Note that (8.5)
yields Hi0(v) = 0.) After that, Qi0(v) can be determined, and subsequently Cij(v),
Uij(v), Qi,j+1(v) may be found for j = 0, . . . , N . At last, for any j > N , we assign
Hij(v) ≡ Pij(v), Xij(v) ≡ 0, Cij(v) ≡ Qij(v) and Uij(v) ≡ 0.

This result can be summed up as the following proposition.

Proposition 8.3. Suppose that P ≥ 2, N ≥ 3 and DN satisfy the conditions of
Proposition 8.1. Then there exist δ0 > 0 and µ0 > 0, such that for any ε ∈ [0, ε0]
the smooth diffeomorphic change of variables

x = y +
N∑
j=2

X0j(v)yj +
P∑
i=1

µi
N∑
j=0

Xij(v)yj ,

u = v +
N∑
j=1

U0j(v)yj +
P∑
i=1

µi
N∑
j=0

Uij(v)yj
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defined on the set {(y, v, µ) : ‖y‖ < δ0, v ∈ DN , µ ∈ [0, µ0]} transforms system (2.3)
into

ẏ = J(v)y +
N∑
j=3

H0j(v)yj +
P∑
i=1

µi
N∑
j=1

Hij(v)yj +O(‖y‖N+1 + µP+1),

v̇ = µ
[
g(v) +

N∑
j=2

C0j(v)yj +
P∑
i=1

µi
N∑
j=0

Cij(v)yj +O(‖y‖N+1 + µP+1)
]
.

(8.6)

Here the homogeneous forms in the right-hand sides admit the expansions

Hij(v)yj =
n∑
k=1

[∑
|q|=j

+
h+
i,k,q(v)e+

k,q(y) +
∑
|q|=j

−
h−i,k,q(v)e−k,q(y)

]
,

Cij(v)yj =
n∑
k=1

∑
|q|=j

′
sq(y)ci,q(v),

where h±i,k,q(·) ∈ C∞(DN ; C), ci,q(·) ∈ C∞(DN ; Cm) and the summations
∑+
|q|=j,∑−

|q|=j,
∑′
|q|=j are performed on all vectors q ∈ Z2n

+ with |q| = j whose components
satisfy, respectively, the equalities ql = ql+n + 1, ql+n = ql + 1 and ql = ql+n for all
l ∈ {1, . . . , n}.

Remark 8.4. In view of Remark 2.1, under hypothesis (H2) the assertion of Propo-
sition 8.3 is true for N = 3 and D3 = V. If hypothesis (H3) is valid, then this
proposition is correct in a sufficiently small neighborhood of any stationary point
v∗ ∈ W.

On account of Remark 8.2,

sq(S(z, z̄)) = (z, z̄)q, S−1e+
k,q(Sz) = (z, z̄)qe+

k , S−1e+
k,q(Sz) = (z, z̄)qe−k ,

S−1Hi1(v)(S(z, z̄))1 =
n∑
k=1

[
zkh

+

i,k,e+
k

(v)e+
k + z̄kh

−
i,k,e−k

(v)e−k
]
,

which means that the matrices of each of the linear form S−1Hi1(v)(S(z, z̄))1 are
diagonal and the change of variables

y = S(z, z̄) =
n∑
k=1

(zksk + z̄ks̄k), ‖z‖ < ‖S‖δ0 =: δ1,

reduces system (8.6) to the form (2.4), where

ηj,k(v) := h+

i,k,e+
k

(v), hj,k,p(v) := h+

j,k,(p,p)+e+
k

(v), gj,p(v) := cj,(p,p)(v),

and (p,p) := (p1, . . . , pn, p1, . . . , pn).

9. Summary

In this article we have examined a system of oscillators with weak and slow
coupling which demonstrates a dynamic bifurcation of multi-frequency oscillations.
Having adopted results of the static bifurcation theory, we have shown that when
the system’s parameters slowly evolve and the static parameters are sufficiently
small, then certain general conditions guarantee occurrence of the following tran-
sient process for typical forward trajectories within a small neighborhood of the
slow surface. While the slow component u(t) is far from the stationary points of
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the Morse function V and lies inside the stability zone of the fast subsystem, the
fast component (w(t), ẇ(t)) exhibits damping oscillations with the amplitude ap-
proaching zero. However, as soon as u(t) leaves the stability zone and later enters
the zone of instability of the fast subsystem, the amplitude starts to grow and
eventually the forward trajectory is attracted by an invariant torus, which means
establishment of some multi-frequency oscillatory regime.

It was shown that almost all forward trajectories, in terms of the Lebesgue
measure, starting from the neighborhood of the slow surface demonstrate such
a behavior. More than that, they are attracted by trajectories on the stable n-
dimensional invariant tori, whereas all other forward trajectories of the system lie
on the stable manifolds of hyperbolic tori of dimensions less than n. This enables
us to easily categorize the trajectories by the type of their ultimate behavior.

At last, we have also considered a practical example which depicts occurrence of
the multi-frequency bifurcation in a circuit of two coupled oscillators.
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