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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR
NONLOCAL p-LAPLACIAN PROBLEMS

BEHROUZ EMAMIZADEH, AMIN FARJUDIAN

Abstract. We study the existence and uniqueness of positive solutions to
a class of nonlocal boundary-value problems involving the p-Laplacian. Our

main tools are a variant of the Schaefer’s fixed point theorem, an inequality

which suitably handles the p-Laplacian operator, and a Sobolev embedding
which is applicable to the bounded domain.

1. Introduction

We study the boundary-value problem

−M(‖u‖p)∆pu = f(x, u) in D,

u = 0 on ∂D.
(1.1)

in which ∆p denotes the p-Laplacian

∆pu = ∇ · (|∇u|p−2∇u)

and ‖·‖ denotes the norm in W 1,p
0 (D), ‖u‖ =

( ∫
D
|∇u|p dx

)1/p. As for the functions
M : [0,∞)→ [0,∞) and f : D×R→ R, we shall refer to the following assumptions:

(A1) M is continuous, and M(t) ≥ m0 > 0, where m0 is a constant. Moreover,
the function:

ξ(t) := M(t)
1

p−1 t1/p

is invertible, and henceforth we let q = p
p−1 .

(A2) Let M̂(t) := M(tp). Then for a constant κ (to be defined by (2.4)), the
function M̂ is uniformly Hölder continuous with exponent p − 1 in the
interval [0, κ). In other words

L := sup
t1,t2∈[0,κ), t1 6=t2

|M̂(t1)− M̂(t2)|
|t1 − t2|p−1

<∞

The principal eigenvalue of −∆p with Dirichlet boundary conditions on ∂D is de-
fined as

Λ := inf
u∈W 1,p

0 (D), u 6=0

∫
D
|∇u|p dx∫
D
|u|p dx

. (1.2)
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The eigenvalue Λ is positive, isolated, and simple [11]. We impose the following
minimum condition on Λ:

(A3) m̂ := m0 − a/Λ > 0, in which m0 comes from (A1), the constant a is
introduced in (A5), and Λ is the principal eigenvalue from (1.2).

(A4) The function f is a Carathéodory function, and for some r ∈ (1, p∗ − 1)

|f(x, s)| ≤ A(x)|s|r +B(x), ∀x ∈ D, ∀s ∈ R, (1.3)

in which:
– A ∈ L∞(D) is a non-negative function
– B ∈ L1+1/r(D)

– p∗ =

{
np
n−p if 1 < p < n

∞ if p ≥ n.
(A5) For some positive constants a and b,

sf(x, s) ≤ a|s|p + b|s|, a.e. x ∈ D, ∀s ∈ R.

(A6) f(x, s) ≥ 0 a.e. x ∈ D, for all s ≥ 0 and f(x, 0) > 0, a.e. x ∈ D.
(A7) For a positive constant A,

(f(x, u)− f(x, v))(u− v) ≤ A|u− v|2, ∀x ∈ D, u, v ∈ R

Remark 1.1. Note that when p ≥ 2, the condition (A2) is satisfied when M is a
constant function, hence the boundary value problem (1.1) is no longer a nonlocal.
Whence, even though the arguments to follow will hold for p ≥ 2 but it is the case
1 < p < 2 which is of interest.

Remark 1.2. Let us mention that a function M that satisfies the conditions (A1)
and (A2) (these are the main conditions on M), for the case p ∈ (1, 2) is M(t) =
m0 + tβ , where β ≥ 1

q . On the other hand, any function f(x, s) which is bounded
and ∂

∂sf(x, s) is uniformly bounded in x satisfies (A4)–(A7).

The main results of this article are the following theorems.

Theorem 1.3. Under assumptions (A1)–(A7), the boundary value problem (1.1)
has a positive solution.

Theorem 1.4. Suppose the conditions (A1)–(A7) are satisfied. Then (1.1) has a
unique positive solution, provided that L is sufficiently small and m0 is sufficiently
large.

The special case of problem (1.1) when p = 2 has been considered in [1], and
[14]. In the former, the authors impose conditions on the functions M and f so
that it is possible to settle the issue of existence of solutions via the Mountain Pass
Theorem. However, in the latter the authors use a different set of conditions, and
apply the Galerkin method to obtain their results (see also [2]).

Our paper is motivated by [14]. For the result of Theorem 1.3 regarding the
existence of positive solutions, we apply a variant of the Schaefer’s fixed point
theorem coupled with a well known maximum principle. For the uniqueness result
of Theorem 1.4, we use the ideas of [14]. In proving both existence and uniqueness
of solutions we shall use an inequality which is particularly useful in dealing with
the p-Laplace operator. See inequality (2.6) in Lemma 2.5.



EJDE-2016/274 EXISTENCE AND UNIQUENESS OF SOLUTIONS 3

Nonlocal problems have been used in modeling various physical phenomena, and
the problem (1.1) which we have considered in this note is related to the steady
state version of the Kirchhoff equation [12]

utt −M
(∫

D

|∇u|2 dx
)

∆u = f(x, t), (1.4)

where the coefficient of the diffusion term depends on the unknown function u(x, t)
globally. It was the paper [13] by Lions that introduced an abstract setting for (1.4).
Other relevant work are [3, 7, 9]. Some nonlocal problems in statistical mechanics
are studied in [4, 5].

2. Preliminaries

This section contains the basic material that we need for proving Theorems 1.3
and 1.4. We begin with the following definition.

Definition 2.1. We say that u ∈ W 1,p
0 (D) is a solution of (1.1) if the following

integral equation is satisfied:

M(‖u‖p)
∫
D

|∇u|p−2∇u · ∇v dx−
∫
D

vf(x, u) dx = 0, ∀v ∈W 1,p
0 (D). (2.1)

The convergence of the second integral in (2.1) follows from the following general
result regarding Nemytskii mappings.

Lemma 2.2. Let g : D×R→ R be a Carathéodory function and suppose that there
is a constant c > 0, a function l(x) ∈ Lγ(D) (where 1 ≤ γ ≤ ∞) and τ > 0 such
that

|g(x, s)| ≤ c|s|τ + l(x), ∀x ∈ D, ∀s ∈ R.
Then Ng : Lγτ (D) → Lγ(D) defined by Ng(u)(x) = g(x, u(x)) is continuous and
bounded, i.e. it maps bounded sets into bounded sets.

For a proof of the above lemma, see [10, Theorem 2.3]. Let us review some basic
facts regarding the problem

−∆pu = h(x) in D

u = 0 on ∂D,
(2.2)

where h(x) ∈ L1+1/r(D). It is well known, see for example [15], that (2.2) has a
unique solution u ∈ W 1,p

0 (D) which is the unique minimizer of the strictly convex
functional

Φ(w) =
1
p

∫
D

|∇w|p dx−
∫
D

hw dx

relative to w ∈W 1,p
0 (D). Therefore, the inverse mapping

(−∆p)−1 : L1+1/r(D)→W 1,p
0 (D)

which takes every h ∈ L1+1/r(D) to the unique solution of (2.2) is well-defined. It
is straightforward to verify that

(−∆p)−1(ηh) = η1/(p−1)(−∆p)−1(h), ∀h ∈ L1+1/r(D), η > 0

and that the following inequality holds:

‖(−∆p)−1(h)‖ ≤ C‖h‖1/(p−1)
1+1/r , ∀h ∈ L1+1/r(D) (2.3)
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where C is a positive constant. Henceforth we shall use C as a generic symbol for
the several constants which appear in various places in this document, whose values
could be different.

Lemma 2.3. Assume that u ∈W 1,p
0 (D) is a solution of (1.1), and that (A1)–(A6)

hold. Then

‖u‖ ≤
(b|D|1/q
m̂Λ1/p

)q/p
=: κ, (2.4)

where q = p
p−1 . Here |D| denotes the n-dimensional Lebesgue measure of D.

Proof. Setting v = u in (2.1), assumption (A1) implies

m0‖u‖p ≤M(‖u‖p)‖u‖p =
∫
D

f(x, u)u dx

≤ a
∫
D

|u|p dx+ b

∫
D

|u| dx (by assumption (A5))

≤ a‖u‖
p

Λ
+ b|D|1/q‖u‖p (by (1.2) and Hölder)

≤ a‖u‖
p

Λ
+
b|D|1/q‖u‖

Λ1/p
(again by (1.2))

(2.5)

From these inequalities, we infer that

m̂‖u‖p ≤ b|D|1/q‖u‖
Λ1/p

,

which in turn implies the desired estimate (2.4). �

We also need the following variant of the Schaefer’s fixed point theorem, see for
example [16], but we include the proof for the convenience of the reader.

Lemma 2.4. Let X be a Banach space and assume that:
(a) P ⊆ X is a non-empty, closed, and convex subset of X.
(b) T : P → P is a strongly continuous mapping, i.e. T is continuous and for

every bounded sequence (un) ⊆ P, the image (Tun) has a strongly conver-
gent subsequence.

(c) The set S = {x ∈ P | x = λTx, for some λ ∈ [0, 1]} is bounded.
Then T has a fixed point, i.e. there exists x ∈ P such that Tx = x.

Proof. Consider the orthogonal projection P : X → P of X on P. This projection
satisfies:

∀x ∈ X : ‖Px− x‖ = inf
m∈P

‖x−m‖,

The mapping T ◦ P : X → P ⊆ X is clearly strongly continuous. Define S′ = {x ∈
X : x = λ(T ◦ P )x, for some λ ∈ [0, 1]}. Hence, S′ ⊆ S and S′ is bounded.

Now we can invoke the classical Schaefer’s fixed point theorem, applied to T ◦P ,
and deduce that T ◦ P has a fixed point, say x0 ∈ X. Thus:

x0 = T (Px0)⇒ x0 ∈ range(T )
⇒ x0 ∈ P
⇒ x0 = Px0

⇒ x0 = Tx0

Thus, x0 is a desired fixed point of T . �
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We shall also need the following result, see for example [8] and [6]

Lemma 2.5. For any vectors X,Y ∈ Rn, the following inequalities hold:

Cp〈|X|p−2X − |Y |p−2Y,X − Y 〉 ≥

|X − Y |
p if p ≥ 2

|X−Y |2
(|X|+|Y |)2−p if 1 ≤ p ≤ 2,

(2.6)

in which 〈·, ·〉 denotes the usual dot product in Rn, and Cp is a constant depending
on p.

The following lemma is elementary, so we omit its proof.

Lemma 2.6. Let tn
R→ t and fn

Lp

→ f . Then tnfn
Lp

→ tf .

Lemma 2.7. If fn
L1+1/r

→ f , then (−∆p)−1(fn)
W 1,p

0→ (−∆p)−1(f).

Proof. Set vn = (−∆p)−1(fn) and v = (−∆p)−1(f). Thus:

−∆pvn = fn in D

vn = 0 on ∂D

and

−∆pv = f in D

v = 0 on ∂D

The derivation of the following equation is then straightforward.∫
D

(|∇vn|p−2∇vn − |∇v|p−2∇v) · (∇vn −∇v) dx

=
∫
D

(fn − f)(vn − v) dx.
(2.7)

Applying the Hölder’s inequality and the embedding W 1,p
0 (D) → L1+1/r(D), a

bound on the integral on the right hand side of (2.7) is obtained as follows:∫
D

(fn − f)(vn − v) dx ≤ ‖fn − f‖1+1/r‖vn − v‖r+1

≤ C‖fn − f‖1+1/r‖vn − v‖.
(2.8)

Now we consider two cases:
Case p ≥ 2. From Lemma 2.5 (setting X = ∇vn, Y = ∇v), (2.7) and (2.8), we
obtain

‖∇vn −∇v‖pp ≤ C‖fn − f‖1+1/r‖vn − v‖,

hence ‖vn − v‖ ≤ C‖fn − f‖1/(p−1)
1+1/r . Thus, vn → v in W 1,p

0 (D).

Case 1 ≤ p ≤ 2. This case requires more work. We begin with the observation

‖∇vn −∇v‖pp

=
∫
D

|∇vn −∇v|p

(|∇vn|+ |∇v|)
p(2−p)

2

(|∇v|+ |∇v|)
p(2−p)

2 dx

≤
(∫

D

|∇vn −∇v|2

(|∇vn|+ |∇v|)2−p
dx
)p/2(∫

D

(|∇vn|+ |∇v|)p dx
)(2−p)/2

(2.9)
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This follows from Hölder’s inequality which is applicable since 2
p ≥ 1. Applying

inequality (2.3), we obtain ‖vn‖ ≤ C‖fn‖1/(p−1)
1+1/r and ‖v‖ ≤ C‖f‖1/(p−1)

1+1/r . Since
(fn) is bounded in L1+1/r(D), we infer that max(‖vn‖, ‖v‖) ≤ C, for all n ∈ N.
Thus, from (2.9) we obtain

‖∇vn −∇v‖pp ≤ C
(∫

D

|∇vn −∇v|2

(|∇vn|+ |∇v|)2−p
)p/2

(2.10)

Now, by setting X = ∇vn and Y = ∇v in Lemma 2.5, together with (2.7), (2.8),
and (2.10) we find that

‖vn − v‖p = ‖∇vn −∇‖pp ≤ C‖fn − f‖1+1/r‖vn − v‖,

This implies that ‖vn− v‖ ≤ C‖fn− f‖1/(p−1)
1+1/r . So, vn → v in W 1,p

0 (D), as desired.
The proof is complete. �

3. Proofs of main theorems

To prove Theorem 1.3 we shall apply Lemma 2.4. To this end, we set P =
Lr+1

+ (D). Note that by Lemma 2.2 we have ∀u ∈ P : Nf (u) ∈ L1+1/r(D). From
assumption (A6) we infer that Nf (u) is non-negative. For every u ∈ P, we define:

Tu = t1/p
v

‖v‖
,

in which v := (−∆p)−1(Nf (u)) and t := ξ−1(‖v‖). Observe that w = Tu satisfies

−M(‖w‖p)∆pw = f(x, u) in D

w = 0 on ∂D.
(3.1)

Since Tu ∈ W 1,p
0 (D), the embedding W 1,p

0 (D) → Lr+1(D) implies Tu ∈ Lr+1(D).
Thus, by applying a classical maximum principle (see for example [17]) to (3.1), we
deduce that w is positive, i.e. Tu ∈ Lr+1

+ (D).
The above discussion ensures that the mapping T : P → P is well defined. Note

that if u is a fixed point of T , then u will be a solution of (1.1). The existence of
such a fixed point will confirm the assertion of Theorem 1.3.

3.1. Proof of Theorem 1.3. We just need to verify that the mapping T satisfies
the hypotheses of Lemma 2.4.

Continuity. Let (un) ⊆ P be a sequence such that un → u in Lr+1(D). Note that
since P is closed then u must be non-negative. We need to show that Tun → Tu
in Lr+1(D). In view of the embedding W 1,p

0 (D) → Lr+1(D), it suffices to show
Tun → Tu in W 1,p

0 (D). To this end, we first recall Lemma 2.2 which ensures that
Nf (un)→ Nf (u) in L1+1/r(D). Whence, by Lemma 2.7:

(−∆p)−1(Nf (un))→ (−∆p)−1(Nf (u)) in W 1,p
0 (D).

By the continuity of the norm we also have

‖(−∆p)−1(Nf (un))‖ → ‖(−∆p)−1(Nf (u))‖.

On the other hand,

Tun = t1/pn

(−∆p)−1(Nf (un))
‖(−∆p)−1(Nf (un))‖

,
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in which tn = ξ−1(‖(−∆p)−1(Nf (un))‖). Since ξ is continuous, we obtain

tn → t := ξ−1(‖(−∆p)−1(Nf (u))‖).

Now we apply Lemma 2.6 to conclude that Tun → Tu in W 1,p
0 (D), as desired.

Compactness. Consider a bounded sequence (un) ⊆ P. Setting wn = Tun, we
will have

−M(‖wn‖p)∆pwn = f(x, un) in D

wn = 0 on ∂D.
(3.2)

From (3.2) we obtain

M(‖wn‖p)‖wn‖p =
∫
D

f(x, un)wn dx.

An application of Hölder’s inequality then gives

M(‖wn‖p) ‖wn‖p ≤ ‖Nf (un)‖1+1/r‖wn‖r+1. (3.3)

The inequality (3.3), the embedding W 1,p
0 (D) → Lr+1(D), and the assumption

(A1) together lead to

m0‖wn‖p ≤ C‖Nf (un)‖1+1/r‖wn‖,

Hence, we get ‖wn‖ ≤ C‖Nf (un)‖
1

p−1

1+1/r. This, coupled with the boundedness of

the operator Nf (see Lemma 2.2), implies that (wn) is bounded in W 1,p
0 (D). So,

there exists a subsequence (wnj
) ⊆ (wn) such that wnj

⇀ w in W 1,p
0 (D), for some

w ∈ W 1,p
0 (D). Since the embedding W 1,p

0 (D) → Lr+1(D) is compact, we deduce
that wnj

→ w in Lr+1(D). This means that (Tunj
) is strongly convergent in

Lr+1(D) and as a result T : P → P is compact.

Boundedness of S. The final step is to prove the boundedness of the set

S = {u ∈ P : u = λTu, for some λ ∈ [0, 1]}.
To that end, let us fix a u ∈ S and assume that u = λTu for some λ ∈ [0, 1]. Thus,
we must have

u = λt1/p
(−∆p)−1(Nf (u))
‖(−∆p)−1(Nf (u))‖

,

where t = ξ−1(‖(−∆p)−1(Nf (u))‖). Since ‖u‖ = λt1/p and assuming that λ 6= 0,
then t = ‖u‖p/λp and M(‖u‖

p

λp ) = M(t). So, we obtain

−M
(‖u‖p
λp

)
∆pu =

M(t)λp−1t1/q

‖(−∆p)−1(Nf (u))‖p−1
f(x, u)

= λp−1f(x, u),
(3.4)

where q = p
p−1 . Since u ∈W 1,p

0 (D), from (3.4), (A1), and (A5) one gets

m0‖u‖p ≤M
(‖u‖p
λp

)
‖u‖p = λp−1

∫
D

f(x, u)u dx

≤ λp−1
(
a

∫
D

|u|p dx+ b

∫
D

|u| dx
)

≤ a‖u‖
p

Λ
+
b|D|1/q‖u‖

Λ1/p
.

(3.5)
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From (3.5) and (A3) we obtain ‖u‖ ≤ κ (which was defined in (2.4)). Note that in
case λ = 0, this last inequality trivially holds.

Finally, by invoking the embedding W 1,p
0 (D)→ Lr+1(D), we infer that ‖u‖r+1 ≤

C. Whence, S is bounded, as desired. This completes the proof.

3.2. Proof of Theorem 1.4. The existence of solutions is guaranteed by Theorem
1.3. We prove uniqueness by contradiction. Let us assume that u1 and u2 are two
solutions of (1.1), satisfying

−M(‖ui‖p)∆pui = f(x, ui) in D

ui = 0 on ∂D,
(3.6)

for i = 1, 2. From (3.6) we obtain∫
D

(M(‖u1‖p)‖∇u1‖p−2∇u1 −M(‖u2‖p)‖∇u2‖p−2∇u2) · ∇w dx

=
∫
D

(f(x, u1)− f(x, u2))w dx.
(3.7)

By rearranging terms, we obtain

M(‖u2‖p)
∫
D

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · ∇w dx

= (M(‖u2‖p)−M(‖u1‖p))
∫
D

|∇u1|p−2∇u1 · ∇w dx

+
∫
D

(f(x, u1)− f(x, u2))w dx

≤ L
∣∣ ‖u2‖ − ‖u1‖

∣∣p−1‖u1‖p−1‖w‖+A‖w‖pp,

(3.8)

where we have used (A2) and (A7) in the last inequality. Note that

L| ‖u2‖ − ‖u1‖ |p−1 ‖u1‖p−1‖w‖+A‖w‖pp ≤
(
Lκp−1 +

A

Λ

)
‖w‖p. (3.9)

On the other hand, using similar arguments as in the proof of Lemma 2.7, we obtain
the estimate ∫

D

(|∇u1|p−2∇u1 − |∇u2|p−2∇u2) · ∇w dx ≥ C‖w‖p, (3.10)

in which the constant C depends on κ if p < 2, otherwise it does not. From (3.8),
(3.9), and (3.10) we obtain

m0C‖w‖p ≤
(
Lκp−1 +

A

Λ

)
‖w‖p. (3.11)

Since u1 6= u2, (3.11) implies

m0C −AΛ−p ≤ Lκp−1. (3.12)

Now, if m0 is large enough, and L is small enough as

m0 > AC−1Λ−p and L <
m0C −AΛ−p

κp−1
.

then we obtain the desired contradiction, and the proof is complete.
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