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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO NONLINEAR
INITIAL-VALUE FRACTIONAL DIFFERENTIAL PROBLEMS

MOHAMMED D. KASSIM, KHALED M. FURATI, NASSER-EDDINE TATAR

Abstract. We study the boundedness and asymptotic behavior of solutions

for a class of nonlinear fractional differential equations. These equations in-
volve two Riemann-Liouville fractional derivatives of different orders. We de-

termine fairly large classes of nonlinearities and appropriate underlying spaces

where solutions are bounded, exist globally and decay to zero as a power type
function. Our results are obtained by using generalized versions of Gronwall-

Bellman inequality, appropriate regularization techniques and several proper-

ties of fractional derivatives. Three examples are given to illustrate our results.

1. Introduction

The field of fractional calculus is concerned with the generalization of the integer
order differentiation and integration to an arbitrary real (or complex) order [31, 32,
34]. Many events in diverse fields of engineering can be portrayed better and more
accurately by differential equations of non-integer order [15, 16].
In this article, we consider the fractional differential problem

Dα
0 y(t) = f(t, y(t), Dβ

0 y(t)), 0 ≤ β < α < 1, t > 0,

I1−α
0 y(t)

∣∣
t=0

= b, b ∈ R,
(1.1)

in an appropriate space of continuous functions, where f is a continuous nonlinear
function with respect to all of its arguments, Iσ0 and Dσ

0 are the Riemann-Liouville
fractional integral and fractional derivative defined by

Iαa f(t) =
1

Γ(α)

∫ t

a

f(s)
(t− s)1−α

ds, t > a, (1.2)

Dα
a f(t) =

d

dt
I1−α
a f(t), t > a, 0 < α < 1, (1.3)

respectively. Here Γ(α) is the Gamma function. When α = 0, we define I0
af = f .

In particular, when α = 1 we have Dα
a f = Df , D = d

dt and when α = 0, D0
af = f .

When β = 0, Problem (1.1) reduces to

Dα
0 y(t) = f(t, y(t)), 0 < α < 1, t > 0,

I1−α
0 y(t)

∣∣
t=0

= b.
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The existence and uniqueness of solutions in a weighted space of continuous
functions for problem (1.1) have been established in [23, p 168, Theorem 3.14]
when f is a real-valued continuous function and satisfies the Lipschitz condition.

The study of the long time behavior of solutions of differential problems is in
general extremely useful in applications. It has attracted many researchers, see
[14, 28, 29, 36] and many other references in [24].

The question of asymptotic behavior of solutions of general differential problems
consists often of determining sufficient conditions ensuring a certain specific (or just
exploring the) behavior for large values of time. This task may be simple for simple
problems. Things become even more complicated when dealing with nonlinear
fractional differential equations. Therefore, observing the behavior through the
explicit solution is not always possible.

The behavior of solutions of various classes of FDEs (fractional differential
equations) has been considered in many papers in the literature, see for exam-
ple [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 18, 19, 20, 21, 22, 24, 27, 39, 40], and the
references therein, to cite but a few. In particular, the behavior of solutions of the
nonlinear equation

Dα
0 y(t) = f(t, y), 0 < α < 1, t > 0,

t1−αy(t)
∣∣
t=0

= b
(1.4)

has been considered by Furati and Tatar in [10]. They proved that solutions de-
cay polynomially on their interval of existence provided that f(t, y) satisfies the
condition

|f(t, y)| ≤ tµe−σtϕ(t)|y|m, µ ≥ 0, m > 1, σ > 0, (1.5)
where ϕ(t) is a continuous function on R+ := [0,∞).

In 2012, Furati, Kassim and Tatar [7] studied the nonlinear fractional differential
problem

Dα,β
0 y(t) = f(t, y), 0 < α < 1, t > 0,

t(1−α)(1−β)y(t)
∣∣
t=0

= b,
(1.6)

where
Dα,β

0 = I
β(1−α)
0 DI

(1−β)(1−α)
0 ,

is the Hilfer fractional derivative of order 0 < α < 1 and type 0 ≤ β ≤ 1. They
showed that solutions of (1.6) decay as a power function under the same condition
(1.5) on the function f(t, y). Notice when β = 0 in (1.6) we obtain the same
derivative in (1.4).

In 2013, P lociniczak [35] considered the linear fractional differential equation
cDαy(t) = λ q(t)y(t), 0 < α < 1, t > 0, (1.7)

where cDα is the Caputo derivative of order α and q(t) ∼ Cqt
µ > 0, µ > 0. He

proved that the solution of (1.7) for λ > 0 obeys the asymptotic property

y(t) ∼ C1 exp(λ1/α

∫
q1/ν(t)dt) as t→∞, for some C1,

while for λ < 0,

y(t) ∼ y(0)
1− λΓ(1− α)q(t)tα

as t→∞.

In this article, we study the behavior of solutions of (1.1). We determine sufficient
conditions on the nonlinear term which guarantee that solutions of (1.1) decay for



EJDE-2016/291 ASYMPTOTIC BEHAVIOR OF SOLUTIONS 3

all time in a weighted space of continuous functions. In particular, we prove that
solutions decay like the power function tα−1. We mention here that the right
hand side of (1.1) may contain several “fractional derivatives” but for simplicity we
restrict ourselves to only one derivative. The presence of singular kernels in these
derivatives is one of the main challenges we have to face.

This article is organized as follows. In the next section, we introduce some
material needed in our study. In Section 3, we establish some inequalities involving
some special classes of functions. Sections 4 and 5 are devoted to our results. In
Section 6, we illustrate our findings by three examples.

2. Fractional calculus and preliminaries

In this section we present some definitions, lemmas, properties and notation
related to our results. For more details, we refer the reader to [23, 34, 37]. For
a finite interval [a, b], let C[a, b] and Cn[a, b] denote the spaces of continuous and
n-times continuously differentiable functions on [a, b], respectively.

Definition 2.1. We consider the weighted spaces of continuous functions

Cγ [a, b] = {f : (a, b]→ R : (t− a)γf(t) ∈ C[a, b]}, 0 < γ < 1,

C[a, b] = C0[a, b],

and

Cnγ [a, b] = {f ∈ Cn−1[a, b] : f (n) ∈ Cγ [a, b]}, n ∈ N,
Cγ [a, b] = C0

γ [a, b].

Remark 2.2. Note that Cnγ [a, b] ⊂ ACn[a, b] for n ≥ 1, where

ACn[a, b] = {f : [a, b]→ R and f (n−1) ∈ AC[a, b]},
and AC[a, b] is the space of absolutely continuous functions on [a, b].

Lemma 2.3 ([25]). Let α > 0 and 0 ≤ γ < 1. Then, Iαa is bounded from Cγ [a, b]
into Cγ [a, b].

Lemma 2.4 ([17]). Let g be a continuous function on (a, b]. Then, g(n) ∈ Cγ [a, b]
if and only if g ∈ Cnγ [a, b], 0 ≤ γ < 1.

For power functions we have the following property.

Property 2.5 ([23]). If α ≥ 0 and β > 0, then

Dα
a (t− a)β−1 =

Γ(β)
Γ(β − α)

(t− a)β−α−1, t > a.

A composition property between the fractional differentiation operator and the
fractional integration operator is given next.

Property 2.6 ([23]). Let 0 < β < α and 0 ≤ γ < 1. If f ∈ Cγ [a, b], then the
relation

Dβ
a I

α
a f(t) = Iα−βa f(t)

holds at any point t ∈ (a, b]. When f ∈ C[a, b] this relation is valid at any point
t ∈ [a, b].

The following result provides another composition of the fractional integration
operator Iαa with the fractional differentiation operator Dα

a .
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Lemma 2.7 ([23]). Let 0 < α < 1, 0 ≤ γ < 1. If f ∈ Cγ [a, b] and I1−α
a f ∈ C1

γ [a, b],
then the equality

IαaD
α
a f(t) = f(t)− (I1−α

a f)(a)
Γ(α)

(t− a)α−1, (2.1)

holds at any point t ∈ (a, b].

Lemma 2.8 ([17]). Let 0 < α < 1 and 0 ≤ γ < 1. If f ∈ Cγ [a, b] and I1−α
a f ∈

C1
γ [a, b], then for 0 < β ≤ α < 1 we have

Dβ
af(t) = Iα−βa Dα

a f(t) +
I1−α
a f(a)

Γ(α− β)
(t− a)α−β−1, t > a.

3. Useful inequalities

In this section we establish some inequalities involving special classes of functions.
These inequalities are used in a crucial manner to prove our main results.

Remark 3.1. In the rest of the paper we use the following equivalency. If p, q > 1
and 1

p + 1
q = 1, then

p(α− 1) + 1 > 0⇐⇒ qα > 1, α > 0. (3.1)

Lemma 3.2 ([30]). If λ, ν, ω > 0, then for any t > 0, we have∫ t

0

(t− s)ν−1sλ−1e−ωsds ≤ Ctν−1,

where
C = max{1, 21−ν}Γ(λ)(1 + λ(λ+ 1)/ν)ω−λ > 0.

Based on this result we prove here the following result.

Lemma 3.3. Let w > 0 and υ, λ > 1/q, for some q > 1. Then, for any t > 0 and
any nonnegative continuous function h defined on R+, we have∫ t

0

(t− s)υ−1sλ−1e−wsh(s)ds ≤ Ctυ−1
(∫ t

0

hq(s)ds
)1/q

, (3.2)

where

C =
[

max{1, 21−λ1}Γ(λ2)
(

1 +
(λ2)(λ2 + 1)

λ1

)
(pw)−λ2

]1/p
,

1/p+ 1/q = 1, λ1 = p(υ − 1) + 1, and λ2 = p(λ− 1) + 1.

Proof. Applying Hölder inequality to the left hand side of (3.2), for t > 0, we obtain∫ t

0

(t− s)υ−1sλ−1e−wsh(s)ds

≤
(∫ t

0

(t− s)p(υ−1)sp(λ−1)e−pws
)1/p(∫ t

0

hq(s)ds
)1/q

.

(3.3)

From the hypotheses stated in the lemma, we have

λ1 = p(υ − 1) + 1 > 0 and λ2 = p(λ− 1) + 1 > 0.

Applying Lemma 3.2 to (3.3) (with υ replaced by λ1, λ replaced by λ2 and w
replaced by pw), gives the result. �
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Lemma 3.4 ([1, 26]). Let a > 0 and b > 0. Then

ar + br ≤ (a+ b)r ≤ 2r−1(ar + br), r ≥ 1,

2r−1(ar + br) ≤ (a+ b)r ≤ ar + br, 0 ≤ r ≤ 1.

We recall now the Bihari inequality.

Theorem 3.5 ([33]). Let u and f be nonnegative continuous functions defined on
R+. Let w(u) be a continuous nondecreasing function defined on R+ and w(u) > 0
on (0,∞). If

u(t) ≤ k +
∫ t

0

f(s)w(u(s))ds,

for t ∈ R+, where k is a nonnegative constant, then for 0 ≤ t ≤ t1,

u(t) ≤ G−1
(
G(k) +

∫ t

0

f(s)ds
)
,

where

G(r) =
∫ r

r0

ds

w(s)
, r > 0, r0 > 0,

G−1 is the inverse function of G, and t1 ∈ R+ is chosen so that

G(k) +
∫ t

0

f(s)ds ∈ Dom(G−1),

for 0 ≤ t ≤ t1.

From Theorem 3.5 we have the following corollaries.

Corollary 3.6. Let z and h be nonnegative continuous functions defined on R+.
Let w(z) be a continuous nondecreasing function defined on R+ and w(z) > 0 on
(0,∞). If

z(t) ≤ K1 +K2(
∫ t

0

h(s)w(z(s))ds)1/q, q > 1, t > 0, (3.4)

where Ki, i = 1, 2, are nonnegative constants, then for 0 ≤ t ≤ t1

z(t) ≤
[
G−1

(
G(2q−1K1) + 2q−1K2

∫ t

0

h(s)ds
)]1/q

,

where

G(x) =
∫ x

x0

ds

w(s1/q)
, x > x0 > 0,

and G−1 is the inverse function of G, and t1 ∈ R+ is chosen so that

G(2q−1K1) + 2q−1K2

∫ t

0

h(s)ds ∈ Dom(G−1),

for 0 ≤ t ≤ t1.

Proof. Raising both sides of (3.4) to the power q and using Lemma 3.4, we have

zq(t) ≤ B1 +B2

∫ t

0

h(s)w(z(s))ds, t > 0, (3.5)

where Bi = 2q−1Ki, i = 1, 2. Now, let u(t) = zq(t), then (3.5) can be written as

u(t) ≤ B1 +B2

∫ t

0

h(s)g(u(s))ds, t > 0, (3.6)



6 M. D. KASSIM, K. M. FURATI, N.-E. TATAR EJDE-2016/291

where

g(r) = w(r1/q). (3.7)

Since w is a continuous and nondecreasing functions, then g is a continuous and
nondecreasing function. Applying Bihari’s inequality (Theorem3.5) to (3.6), we
obtain the result. �

Corollary 3.7. Let z, hi, wi, i = 1, 2, and q be as in Corollary 3.6. If

z(t) ≤ K1 +K2

[( ∫ t

0

h1(s)w1(z(s))ds
)1/q

+
(∫ t

0

h2(s)w2(z(s))ds
)1/q]

, (3.8)

for t > 0, then, for 0 ≤ t ≤ t1,

z(t) ≤
[
G−1

(
G(2q−1Kq

1 ) + 22(q−1)Kq
2

∫ t

0

[h1(s) + h2(s)]ds
)]1/q

, (3.9)

where

G(x) =
∫ x

x0

ds

g(s)
=
∫ x

x0

ds

w1(s1/q) + w2(s1/q)
, x > x0 > 0,

and G−1 is the inverse function of G, and t1 ∈ R+ is chosen so that

G(2q−1Kq
1) + 22(q−1)Kq

2

∫ t

0

[h1(s) + h2(s)]ds ∈ Dom(G−1),

for 0 ≤ t ≤ t1.

Proof. Raising both sides of (3.8) to the power q, we have

zq(t) ≤ B1 +B2[
∫ t

0

h1(s)w1(z(s))ds+
∫ t

0

h2(s)w2(z(s))ds], t > 0, (3.10)

where

B1 = 2q−1Kq
1 , B2 = 22(q−1)Kq

2 .

Furthermore, we have

h1(s)w1(z(s)) + h2(s)w2(z(s)) ≤ [h1(s) + h2(s)][w1(z(s)) + w2(z(s))]. (3.11)

Now, let u(t) = zq(t), then by (3.10) and (3.11) we can write

u(t) ≤ B1 +B2

∫ t

0

[h1(s) + h2(s)]g(u(s))ds, t > 0, (3.12)

where

g(r) = w1(r1/q) + w2(r1/q). (3.13)

Since wi, i = 1, 2, are continuous and nondecreasing functions, then g is a continu-
ous, nondecreasing function. Applying Bihari’s inequality to (3.12), we obtain the
result. �
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4. Preliminaries

In this section we prove some lemmas which will be used to prove the main
results. In the sequel, we consider the following assumptions:

(A1) The function f : (0,∞)× R2 → R is such that f(·, u(·), v(·)) ∈ C1−α[0,∞)
for any u, v ∈ C1−α[0,∞).

(A2) There exist continuous functions h, ϕ1, ϕ2 : R+ → R+, such that

|f(t, u, v)| ≤ tγe−δth(t)ϕ1(t1−α|u|)ϕ2(t1−(α−β)|v|), (4.1)

where h ∈ Lq(0,∞) for some q > 1
α−β , γ > 1

q − 1, δ > 0, and ϕi, i = 1, 2,
are nondecreasing functions.

(A3) There exist continuous functions hi, ϕi : R+ → R+, such that

|f(t, u, v)| ≤ tγ1e−δ1th1(t)ϕ1(t1−α|u|) + tγ2e−δ2th2(t)ϕ2(t1−(α−β)|v|), (4.2)

where hi ∈ Lq(0,∞) for some q > 1
α−β , γi > 1

q − 1, δi > 0, and ϕi, i = 1, 2,
are nondecreasing functions.

The following results provide useful estimates for the solutions of (1.1).

Lemma 4.1. Assume that y ∈ C1−α[0,∞) is a global solution of (1.1) and f
satisfies (A1) and (A2). Then

max
{
t1−α|y(t)|, t1−(α−β)|Dβy(t)|

}
≤ z(t), t > 0,

where

z(t) = K1 +K2

(∫ t

0

hq(s)ϕq1(s1−α|y(s)|)ϕq2(s1−(α−β)|Dβ
0 y(s)|)ds

)1/q

, (4.3)

K1 = |b|max
{ 1

Γ(α)
,

1
Γ(α− β)

}
, K2 = max

{
C1, C2

}
,

C1 =
1

Γ(α)

(
max{1, 2p(1−α)}Γ(pγ + 1)

(
1 +

(pγ + 1)(pγ + 2)
p(α− 1) + 1

)
(pδ)−(pγ+1)

)1/p

,

C2 =
1

Γ(α− β)

(
max{1, 2p(1−(α−β))}Γ(pγ + 1)

×
(

1 +
(pγ + 1)(pγ + 2)
p(α− β − 1) + 1

)
(pδ)−(pγ+1)

)1/p

.

Proof. Since f ∈ C1−α[0,∞), Equation (1.1) implies that Dα
0 y = DI1−α

0 y ∈
C1−α[0,∞). By Lemma 2.4, we have I1−α

0 y ∈ C1
1−α[0,∞). Applying Iα0 to (1.1) and

using Lemma 2.7, having in mind that y ∈ C1−α[0,∞) and I1−α
0 y ∈ C1

1−α[0,∞),
we obtain

y(t) =
b

Γ(α)
tα−1 +

1
Γ(α)

∫ t

0

(t− s)α−1f(s, y(s), Dβ
0 y(s))ds, t > 0. (4.4)

Next, multiplying both sides of (4.4) by t1−α and using the assumption (4.1), we
obtain

t1−α|y(t)| ≤ |b|
Γ(α)

+
t1−α

Γ(α)

∫ t

0

(t− s)α−1sγe−δsh(s)ϕ1(s1−α|y(s)|)

× ϕ2(s1−(α−β)|Dβ
0 y(s)|)ds, t > 0.

(4.5)
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In view of Lemma 3.3, we find

t1−α|y(t)| ≤ |b|
Γ(α)

+ C1

(∫ t

0

hq(s)ϕq1(s1−α|y(s)|)

× ϕq2(s1−(α−β)|Dβ
0 y(s)|)ds

)1/q

, t > 0.

(4.6)

Since 0 < β < α < 1, by Lemma 2.8, we see that

Dβ
0 y(t) =

btα−β−1

Γ(α− β)
+

1
Γ(α− β)

∫ t

0

(t− s)α−β−1Dα
0 y(s)ds

=
btα−β−1

Γ(α− β)
+

1
Γ(α− β)

∫ t

0

(t− s)α−β−1f(s, y(s), Dβ
0 y(s))ds,

(4.7)

for t > 0. Multiplying both sides of (4.7) by t1−(α−β) and using the assumption
(4.1), for t > 0, we deduce

t1−(α−β)|Dβ
0 y(t)| ≤ |b|

Γ(α− β)
+
t1−(α−β)

Γ(α− β)

∫ t

0

(t− s)α−β−1sγe−δsh(s)

× ϕ1(s1−α|y(s)|)ϕ2(s1−(α−β)|Dβ
0 y(s)|)ds.

Again, by Lemma 3.3, we conclude that

t1−(α−β)|Dβ
0 y(t)| ≤ |b|

Γ(α− β)
+ C2

(∫ t

0

hq(s)ϕq1(s1−α|y(s)|)

× ϕq2(s1−(α−β)|Dβ
0 y(s)|)ds

)1/q

, t > 0.

(4.8)

Therefore, the result follows from (4.3), (4.6) and (4.8). �

Lemma 4.2. Assume that y ∈ C1−α[0,∞) is a global solution of (1.1) and f
satisfies (A1) and (A3). Then

max
{
t1−α|y(t)|, t1−(α−β)|Dβy(t)|

}
≤ z(t), t > 0,

where, for t > 0,

z(t) = K1 +K2

[( ∫ t

0

hq1(s)ϕq1(s1−α|y(s)|)ds
)1/q

+
(∫ t

0

hq2(s)ϕq2(s1−(α−β)|Dβ
0 y(s)|)ds

)1/q]
,

(4.9)

K1 = |b|max
{ 1

Γ(α)
,

1
Γ(α− β)

}
, K2 = max{C3, C

′
3},

C3 = max{C1, C2}, C ′3 = max{C ′1, C ′2},

Ci =
1

Γ(α)

(
max{1, 2p(1−α)}Γ(pγi + 1)

(
1 +

pγi + 1
p(α− 1) + 1

)
(pδi)−(pγi+1)

)1/p

,

C ′i =
(max{1, 2p(1−(α−β))}Γ(pγi + 1)

Γp(α− β)

(
1 +

pγi + 1
p(α− β − 1) + 1

)
(pδi)−(pγi+1)

)1/p

,

for i = 1, 2.

Proof. Multiplying both sides of (4.4) by t1−α and using the assumption (4.2), we
obtain

t1−α|y(t)|
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≤ |b|
Γ(α)

+
t1−α

Γ(α)

∫ t

0

(t− s)α−1sγ1e−δ1sh1(s)ϕ1(s1−α|y(s)|)ds

+
t1−α

Γ(α)

∫ t

0

(t− s)α−1sγ2e−δ2sh2(s)ϕ2(s1−(α−β)|Dβ
0 y(s)|)ds, t > 0.

Since q > 1
α−β , γi > 1

q − 1, δi > 0, then p(α− 1) + 1 > 0, pγi + 1 > 0 and pδi > 0,
i = 1, 2, so we can apply Lemma 3.3, for t > 0, we obtain

t1−α|y(t)| ≤ |b|
Γ(α)

+ C3

[( ∫ t

0

hq1(s)ϕq1(s1−α|y(s)|)ds
)1/q

+
(∫ t

0

hq2(s)ϕq2(s1−(α−β)|Dβ
0 y(s)|)ds

)1/q]
.

(4.10)

Multiplying both sides of (4.7) by t1−(α−β) and using (4.2), we obtain

t1−(α−β)|Dβ
0 y(t)|

≤ |b|
Γ(α− β)

+
t1−(α−β)

Γ(α− β)

∫ t

0

(t− s)α−β−1sγ1e−δ1sh1(s)ϕ1(s1−α|y(s)|)ds

+
t1−(α−β)

Γ(α− β)

∫ t

0

(t− s)α−β−1sγ2e−δ2sh2(s)ϕ2

(
s1−(α−β)|Dβ

0 y(s)|
)
ds, t > 0.

By Lemma 3.3, for t > 0, we can write

t1−(α−β)|Dβ
0 y(t)|

≤ |b|
Γ(α− β)

+ C ′3

[( ∫ t

0

hq1(s)ϕq1(s1−α|y(s)|)ds
)1/q

+
(∫ t

0

hq2(s)ϕq2
(
s1−(α−β)|Dβ

0 y(s)|
)
ds
)1/q]

.

(4.11)

Therefore, the result follows from (4.9), (4.10) and (4.11). �

5. Power-type decay

We consider the space

Cα1−α[0,∞) = {y ∈ C1−α[0,∞) : Dα
0 y ∈ C1−α[0,∞)}. (5.1)

Theorem 5.1. Suppose that f satisfies (A1) and (A2), then, for any global solution
y ∈ C1−α[0,∞) of (1.1), there exists a positive constant C such that

|y(t)| ≤ Ctα−1 and |Dβ
0 y(t)| < Ctα−β−1, t > 0,

provided that ∫ ∞
x0

ds

ϕq1(s1/q)ϕq2(s1/q)
=∞, x0 > 0.

Proof. From Lemma 4.1 we conclude

ϕ1(t1−α|y(t)|) ≤ ϕ1(z(t)), ϕ2(t1−(α−β)|Dβy(t)|) ≤ ϕ2(z(t)), t > 0, (5.2)

where z(t) is as in (4.3). Using the inequalities in (5.2), from (4.3) it follows that

z(t) ≤ K1 +K2

( ∫ t

0

hq(s)ϕq1(z(s))ϕq2(z(s))ds
)1/q

, t > 0.



10 M. D. KASSIM, K. M. FURATI, N.-E. TATAR EJDE-2016/291

Therefore, by Corollary 3.6 with w(t) = ϕq1(t)ϕq2(t), we deduce that

z(t) ≤
[
G−1

(
G(2q−1K1) + 2q−1K2

∫ t

0

hq(s)ds
)]1/q

, t > 0.

Since h ∈ Lq(0,∞), we have

z(t) ≤ C =
[
G−1

(
G(2q−1K1) + 2q−1K2

∫ ∞
0

hq(s)ds
)]1/q

<∞.

Again, by Lemma 4.1,

|y(t)| ≤ Ctα−1 and |Dβ
0 y(t)| < Ctα−β−1, t > 0.

�

Theorem 5.2. Suppose that f satisfies (A1) and (A3). Then, for each global
solution y ∈ C1−α[0,∞) of (1.1), there exists a positive constant C such that

|y(t)| ≤ Ctα−1 and |Dβ
0 y(t)| < Ctα−β−1, t > 0,

provided that ∫ ∞
x0

ds

ϕq1(s1/q) + ϕq2(s1/q)
=∞, x0 > 0.

Proof. By Lemma 4.2 we see that

ϕ1(t1−α|y(t)|) ≤ ϕ1(z(t)), ϕ2(
(
t1−(α−β)|Dβy(t)|

)
≤ ϕ2(z(t)), t > 0. (5.3)

Taking into account (4.9) and (5.3), we have

z(t) ≤ K1 +K2

[( ∫ t

0

hq1(s)ϕq1(z(s))ds
)1/q

+
(∫ t

0

hq2(s)ϕq2(z(s))ds
)1/q

], t > 0.

Therefore, by Corollary 3.7 with wi(t) = ϕqi (t), i = 1, 2, we find

z(t) ≤
[
G−1

(
G(2q−1Kq

1) + 22(q−1)Kq
2

∫ t

0

[hq1(s) + hq2(s)]ds
)]1/q

, t > 0.

Since hi ∈ Lq(0,∞),

z(t) ≤ C =
[
G−1

(
G(2q−1K1) + 2q−1K2

∫ ∞
0

hq(s)ds
)]1/q

<∞.

Thus

|y(t)| ≤ Ctα−1 and |Dβ
0 y(t)| < Ctα−β−1, t > 0.

�

6. Examples

In this section, we provide three examples, where we apply Theorems 5.1 and
5.2 to show that all global solutions decay like tα−1. Unlike the first example, the
solutions of the second and third examples may not be available explicitly.
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Example 1. Consider the problem

Dα
0 y(t) = −λt

α−1
q [Eα,α(−λtα)]1/q(y(t))1−1/q t > 0,

I1−α
0 y(t)|t=0 = 1, 0 < α < 1, q > 1, λ > 0,

(6.1)

where Eα,β(z) is the Mittag-Leffler function

Eα,β(z) =
∞∑
k=0

zk

Γ(kα+ β)
, α, β > 0.

We can rewrite the right-hand side of (6.1) as

| − λt
α−1
q [Eα,α(−λtα)]1/q(y(t))1−1/q|

= λt
α−1
q −(1−α)(1− 1

q )[Eα,α(−λtα)]1/q(t1−αy(t))1−
1
q

= λtα−1[Eα,α(−λtα)]1/q(t1−αy(t))1−1/q

= h(t)ϕ(t1−αy(t)),

where h(t) = λtα−1[Eα,α(−λtα)]1/q and ϕ(t) = t1−1/q. Notice that h ∈ Lq(0,∞)
since [38, p 44, equation (1.8.33)]∫ ∞

0

ts−1Eα,β(−wt)dt =
1
ws

Γ(s)Γ(1− s)
Γ(β − αs)

, α, β, s, w > 0, (6.2)

and ϕ is a positive, continuous and nondecreasing function. Clearly, all conditions
of Theorem 5.1 are satisfied. Therefore, any global solution y ∈ C1−α[0,∞) of (6.1)
satisfies

|y(t)| ≤ Ctα−1, t > 0.

In fact the function

y(t) = tα−1[Eα,α(−λtα)], t > 0,

is a global solution in C1−α[0,∞) of (6.1) and clearly

|y(t)| = |tα−1[Eα,α(−λtα)]| ≤ Ctα−1, t > 0.

Example 2. Consider the problem

D
1/2
0 y(t) = t2e−2t(cos y2)(y(t))1/5(D1/3

0 y(t))1/3, t > 0,

I
1/2
0 y(t)

∣∣
t=0

= b.
(6.3)

Then the right-hand side satisfies

|f(t, y(t), D1/3
0 y(t))| = |t2e−2t(cos y2)(y(t))1/5

(
D

1/3
0 y(t)

)1/3|
≤ tγe−th(t)ϕ1(t1−1/2y(t))ϕ2

(
t1−(1/2−1/3)D

1/3
0 y(t)

)
,

where γ = 73/45, h(t) = e−t, ϕ1(t) = t1/5 and ϕ2(t) = t1/3. All the conditions of
Theorem 5.1 are satisfied. Therefore, any global solution y ∈ C1/2[0,∞) of (6.3)
satisfies

|y(t)| ≤ Ctα−1 and |Dβ
0 y(t)| < Ctα−β−1, α = 1/2, β = 1/3.
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Example 3. Consider the problem

D
1/2
0 y(t) = t2e−2t(cos y)

(
y(t)

)1/3 + t3e−4t(sin t3)
(
D

1/4
0 y(t)

)1/3
, t > 0,

I
1/2
0 y(t)

∣∣
t=0

= b.
(6.4)

Note that this example is different from the previous ones. In fact, the right hand
side of (6.4) is sum of two terms, similar to that of the assumption (A3). We can
rewrite the right hand side of (6.4) as follows

|t2e−2t(cos y)(y(t))1/3 + t3e−4t(sin t3)
(
D

1/4
0 y(t)

)1/3|
≤ tγ1e−th1(t)ϕ1

(
t1−1/2y(t)

)
+ tγ2e−2th2(t)ϕ2

(
t1−(1/2−1/4)D

1/4
0 y(t)

)
,

where γ1 = 11/6, γ2 = 33/12, h1(t) = e−t, h2(t) = e−2t and ϕ1(t) = ϕ2(t) = t1/3.
All the conditions of Theorem 5.2 are satisfied and therefore any global solution
y ∈ C1/2[0,∞) of (6.4) satisfies

|y(t)| ≤ Ctα−1, |Dβ
0 y(t)| < Ctα−β−1, α = 1/2, β = 1/4, t > 0.
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