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CARLEMAN ESTIMATES AND NULL CONTROLLABILITY OF
DEGENERATE/SINGULAR PARABOLIC SYSTEMS

ABDELKARIM HAJJAJ, LAHCEN MANIAR, JAWAD SALHI

Abstract. We study null controllability properties for parabolic coupled sys-

tems with degeneracy and singularity occurring in the interior of the spatial
domain. This article is the first to consider a problem with singular coupling

terms; previous result cannot be adapted to this situation. In particular, we

focus on the well posedness of the problem and then we prove Carleman esti-
mates for the associated adjoint problem.

1. Introduction

This article concerns the null controllability for the coupled degenerate singular
parabolic system

ut − (a(x)ux)x −
λ1

b1(x)
u− µ

d(x)
v = h1ω, (t, x) ∈ Q, (1.1)

vt − (a(x)vx)x −
λ2

b2(x)
v − µ

d(x)
u = 0, (t, x) ∈ Q, (1.2)

u(t, 0) = u(t, 1) = v(t, 0) = v(t, 1) = 0, t ∈ (0, T ), (1.3)

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, 1), (1.4)

where ω is an open subset of (0, 1), T > 0 fixed, Q := (0, T ) × (0, 1), h ∈ L2(Q)
and 1ω denotes the characteristic function of the set ω.

Moreover, we assume that the constants λi, µ, i = 1, 2, satisfy suitable assump-
tions described below, and the functions a, bi, d, i = 1, 2, degenerate at the same
interior point x0 of the spatial domain (0, 1) that can belong to the control set ω
(for the precise assumptions we refer to section 2).

Let us note that it is just for the sake of simplicity that we focus on problem
(1.1)-(1.4): in fact all the stated results are still valid for the system

ut − (a(x)ux)x −
λ1

b1(x)
u− c11u− c12v −

µ

d(x)
v = h1ω, (t, x) ∈ Q,

vt − (a(x)vx)x −
λ2

b2(x)
v − c22v − c21u−

µ

d(x)
u = 0, (t, x) ∈ Q,

u(t, 0) = u(t, 1) = v(t, 0) = v(t, 1) = 0, t ∈ (0, T ),
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u(0, x) = u0(x), v(0, x) = v0(x), x ∈ (0, 1),

where cij ∈ L∞(Q), i, j = 1, 2.
In recent years an increasing interest has been devoted to the study of degenerate

and/or singular parabolic equations. Indeed many problems coming from physics,
biology and economics are described by degenerate/singular parabolic equations,
whose linear prototype is

∂u

∂t
−Au− λ

b(x)
u = h(t, x), (t, x) ∈ (0, T )× (0, 1) (1.5)

with the associated boundary conditions. Here h belongs to a suitable Lebesgue
space and Au = A1u := (aux)x or Au = A2u := auxx, where a and b can be
degenerate functions.

A common strategy in showing controllability results for (1.5) is to show that
certain global Carleman estimates hold for the operator which is the adjoint of the
given operator.

More recently, several works were done in the controllability of purely (λ = 0)
degenerate equations in divergence or in non divergence form with boundary de-
generacy. The main result of these works is the development of adequate Carleman
inequalities, see [3, 16, 23]. For related systems of degenerate equations we refer
to [1, 2]. To our best knowledge, the first results on Carleman estimates for purely
degenerate problems with an interior degenerate point are obtained in [19], for a
regular degeneracy, and in [18], for a globally non smooth degeneracy.

Another interesting situation is the case of parabolic operators with singular
lower order terms. For instance, in [6, 10, 21], the reader will find a motivating
example of the so-called inverse-square potential that arises for example in quantum
mechanics or linearized combustion problems. Furthermore, while in [5, 27] only the
existence of a solution for the uniformly (a > 0) parabolic problem with singular
potential is considered, in [13, 26] the authors analyze in detail the question of
whether it is possible to control heat equations involving singular inverse-square
potentials.

Moreover, a full analysis has been developed for operators that couple a degen-
erate diffusion coefficient with a singular potential in the case of degeneracy and
singularity located on the boundary of the spatial domain (see [14, 15, 25]).

In this article, we investigate the null controllability of system (1.1)-(1.4). More
precisely, we use the new Carleman estimates for the interior degenerate/singular
parabolic equations in [17] to develop Carleman estimate for the adjoint degener-
ate/singular system associated with (1.1)-(1.4) which yields in turn an observability
inequality. Also, by a standard argument, we deduce the null controllability of sys-
tem (1.1)-(1.4) from any open subset ω. To our knowledge, this is the first null
controllability result for such kind of systems.

In particular, the main result of this paper will be the following.

Theorem 1.1. If hypothesis 2.10 is satisfied, then the coupled degenerate/singular
parabolic system (1.1)-(1.4) with one control force is null controllable.

For our further results, it is important to remind the following fundamental
Hardy-Poincaré inequality.

Theorem 1.2 ([19, Proposition 2.6]). Assume that p is any continuous function
in [0, 1], with p > 0 on [0, 1] \ {x0}, p(x0) = 0 and such that there exists ϑ > 1 such
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that the function

x 7→ p(x)
|x− x0|ϑ

(1.6)

is nonincreasing on the left of x = x0, and is nondecreasing on the right of x = x0.
Then, there exists a constant CHP > 0 such that for any function w locally abso-
lutely continuous on [0, x0) ∪ (x0, 1] and satisfying

w(0) = w(1) = 0 and
∫ 1

0

p(x)|w′(x)|2 dx <∞,

the following inequality holds∫ 1

0

p(x)
(x− x0)2

w2(x) dx ≤ CHP
∫ 1

0

p(x)|w′(x)|2 dx.

This article is organized as follows. In Section 2, we study the well-posedness of
the system (1.1)-(1.4). In Section 3, we derive a Carleman estimate with boundary
terms for the adjoint problem to (1.1)-(1.4). In Section 4, we provide an ω-Carleman
estimate that will be useful to study the null controllability of (1.1)-(1.4) with one
control force. Using the previous Carleman estimates we will deduce in Section
5 observability inequality and null controllability results. The last section is an
appendix which is devoted to the proof of a Caccioppoli’s inequality which plays a
crucial role in the proof of the Carleman estimate.

2. Assumptions and well-posedness

To study the well-posedness of system (1.1)-(1.4), we distinguish four different
types of degeneracy. Towards this end, as in [17], we consider the following cases

Hypothesis 2.1. Double weakly degenerate case (WWD). There exists x0 ∈ (0, 1)
such that a(x0) = bi(x0) = 0, a, bi > 0 in [0, 1] \ {x0}, a, bi ∈ C1([0, 1] \ {x0}) and
there exists K,Li ∈ (0, 1) such that (x− x0)a′ ≤ Ka and (x− x0)b′i ≤ Libi a.e. in
[0, 1].

Hypothesis 2.2. Weakly strongly degenerate case (WSD). There exists x0 ∈ (0, 1)
such that a(x0) = bi(x0) = 0, a > 0 in [0, 1] \ {x0}, a ∈ C1([0, 1] \ {x0}), bi ∈
C1([0, 1]\{x0})∩W 1,∞(0, 1) there existsK ∈ (0, 1), Li ∈ [1, 2) such that (x−x0)a′ ≤
Ka and (x− x0)b′i ≤ Libi a.e. in [0, 1].

Hypothesis 2.3. Strongly weakly degenerate case (SWD). There exists x0 ∈ (0, 1)
such that a(x0) = bi(x0) = 0, a > 0 in [0, 1]\{x0}, a ∈ C1([0, 1]\{x0})∩W 1,∞(0, 1),
bi ∈ C1([0, 1] \ {x0}), ∃K ∈ [1, 2), Li ∈ (0, 1) such that (x − x0)a′ ≤ Ka and
(x − x0)b′i ≤ Libi a.e. in [0, 1] and, if K > 4/3, then there exists θ ∈ (0,K] such
that a

|x−x0|θ is nonincreasing on the left of x = x0 and nondecreasing on the right
of x = x0.

Hypothesis 2.4. Double strongly degenerate case (SSD). There exists x0 ∈ (0, 1)
such that a(x0) = bi(x0) = 0, a > 0 in [0, 1] \ {x0}, a, bi ∈ C1([0, 1] \ {x0}) ∩
W 1,∞(0, 1), there existK,Li ∈ [1, 2) such that (x−x0)a′ ≤ Ka and (x−x0)b′i ≤ Libi
a.e. in [0, 1].

For the next results we shall make the following hypothesis on the coupling term.
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Hypothesis 2.5. The function d is weakly degenerate, that is, there exists x0 ∈
(0, 1) such that d(x0) = 0, d > 0 on [0, 1] \ {x0}, d ∈ C1([0, 1] \ {x0}) and there
exists M ∈ (0, 1) such that (x− x0)d′ ≤Md a.e. in [0, 1].

Hypothesis 2.6. The function d is strongly degenerate, that is, there exists x0 ∈
(0, 1) such that d(x0) = 0, d > 0 on [0, 1] \ {x0}, d ∈ C1([0, 1] \ {x0}) ∩W 1,∞(0, 1)
and there exists M ∈ [1, 2) such that (x− x0)d′ ≤Md a.e. in [0, 1].

As in [17], we start introducing the following weighted Hilbert spaces, which are
suitable to study all situations, namely the (WWD), (SSD), (WSD) and (SWD)
cases:

H1
a(0, 1) :=

{
u ∈W 1,1

0 (0, 1) :
√
aux ∈ L2(0, 1)

}
,

H1
a,bi(0, 1) :=

{
u ∈ H1

a(0, 1) :
u√
bi
∈ L2(0, 1)

}
endowed with the inner products

〈u, v〉H1
a

:=
∫ 1

0

au′v′ dx+
∫ 1

0

uv dx,

〈u, v〉H1
a,bi

:=
∫ 1

0

au′v′ dx+
∫ 1

0

uv dx+
∫ 1

0

uv

bi
dx,

respectively.
In our situation, due to the presence of singular coupling terms, we shall also

introduce the following Hilbert space

H1
a,bi,d(0, 1) :=

{
u ∈ H1

a,bi(0, 1) :
u√
d
∈ L2(0, 1)

}
.

To study well-posedness of the problem (1.1)-(1.4), we use the following crucial
weighted Hardy-Poincaré inequality.

Theorem 2.7 ([17, Proposition 2.2]). If one of the Hypotheses 2.1, 2.2, 2.3 holds
with K+Li ≤ 2, then there exists a constant Ci > 0 such that for all w ∈ H1

a,bi
(0, 1)

we have ∫ 1

0

w2

bi(x)
dx ≤ Ci

∫ 1

0

a(x)|w′|2 dx. (2.1)

The function d playing a crucial role, it is non surprising that the following
lemma is crucial as well.

Theorem 2.8. If Hypotheses 2.5 or 2.6 holds with K + M ≤ 2, then there exists
a constant C∗HP > 0 such that for all w ∈ H1

a,bi,d
(0, 1) we have∫ 1

0

w2

d(x)
dx ≤ C∗HP

∫ 1

0

a(x)|w′|2 dx. (2.2)

A key step in the proof of Carleman estimates and observability inequalities is
the correct choice of the weight function space in which we will work and a key
ingredient in the proof takes the form of special Hardy-Poincaré inequalities; such
estimates are valid in the following suitable Hilbert space

Hi := H1
a,bi,d(0, 1).

Using the lemmas given above one can prove the next inequality, which turn out
to be key tool to obtain well-posedness and observability properties.
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Proposition 2.9 ([17, Proposition 2.2]). Assume hypothesis 2.10. Then there
exists Λi ∈ (0, 1] such that for all w ∈ Hi,∫ 1

0

a(x)|w′|2 dx− λi
∫ 1

0

w2

bi(x)
dx ≥ Λi

∫ 1

0

a(x)|w′|2 dx. (2.3)

From now on, we make the following assumptions on a, bi, d, λi and µ:

Hypothesis 2.10. (1) One among the definitions 2.1, 2.2 or 2.3 holds with
K + Li ≤ 2.

(2) We shall also admit Hypothesis 2.5 or 2.6 with K +M ≤ 2 .
(3) Setting C∗i the best constant of (2.1) in Hi, we assume that λi, µ 6= 0 and

λi ∈
(
0,

1
C∗i

)
, (2.4)

µ ∈
(
0,
√

Λ1Λ2

C∗HP

)
, (2.5)

where Λi, i = 1, 2 is given in (2.3).

Remark 2.11. (1) It is well known that when K = Li = 1, an inequality of
the form (2.1) does not hold (for other comments on this argument we refer
to [17, Remark 4] and [25]).

(2) The upper bound for λi and µ is required for the well-posedness of the
problem, as will be discussed with more details later.

(3) Under the assumptions of Theorem 2.7 and 2.8, the standard norm ‖ · ‖Hi
is equivalent to ‖w‖o := (

∫ 1

0
aw2

xdx)1/2 for all w ∈ Hi, i = 1, 2.

In the Hilbert space H = L2(0, 1)×L2(0, 1), the system (1.1)-(1.4) can be trans-
formed into the Cauchy problem

X ′(t)− AX(t) = f(t), X(0) =
(
u0

v0

)
, (2.6)

where X =
(
u(t)
v(t)

)
,

A = A+ B, (2.7)

with
D(A) := {XT ∈ H1 ×H2 : (AX)T ∈ H}, (2.8)

where A =
(
A1 0
0 A2

)
, Aiw := (awx)x + λi

bi
w, with

D(Ai) :=H2
a,bi(0, 1)

:={w ∈ H1
a(0, 1) : aw′ ∈ H1(0, 1) and Aiw ∈ L2(0, 1)},

B =
(

0 µ
d

µ
d 0

)
, f(t) =

(
h(t, ·)1ω

0

)
.

Remark 2.12. Observe that if XT ∈ D(A), then (ud ,
v
d ) ∈ H.

As in [20, Lemma 2.1], one can prove the following formula of integration by
parts which is a crucial tool for the rest of this article.
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Lemma 2.13. For all (u, v) ∈ H2
a,bi

(0, 1)×H1
a(0, 1) one has∫ 1

0

(au′)′vdx = −
∫ 1

0

au′v′dx. (2.9)

To show that the operator (A,D(A)) defined by (2.7)-(2.8) generates a contrac-
tion semigroup on the Hilbert H, we need the following technical lemma.

Lemma 2.14. Assume that hypothesis 2.10 is satisfied. Then, the operator A :
D(A)→ H is nonpositive and self-adjoint on H.

Proof. Observe that D(A) is dense in H.
(i) A is symmetric. Indeed, for any X = (w1

w2 ), Y = ( z1z2 ) ∈ D(A), one has

〈Y,AX〉H = 〈Y,AX + BX〉H,

=
〈(z1

z2

)
,

(
A1 0
0 A2

)(
w1

w2

)〉
H

+
〈(z1

z2

)
,

(
0 µ

d
µ
d 0

)(
w1

w2

)〉
H
,

=
〈(A1 0

0 A2

)(
z1

z2

)
,

(
w1

w2

)〉
H

+
〈(0 µ

d
µ
d 0

)(
z1

z2

)
,

(
w1

w2

)〉
H
,

= 〈AY,X〉H.

(ii) A is nonpositive. By Proposition 2.9 and Lemma (2.9), it follows that, for any
X = (w1

w2 ) ∈ D(A) we have

−〈AX,X〉H = −〈AX + BX,X〉H,

= −
〈(A1 0

0 A2

)(
w1

w2

)
,

(
w1

w2

)〉
H
−
〈(0 µ

d
µ
d 0

)(
w1

w2

)
,

(
w1

w2

)〉
H
,

=
∫ 1

0

a(w′1)2 dx− λ1

∫ 1

0

w2
1

b1
dx+

∫ 1

0

a(w′2)2 dx− λ2

∫ 1

0

w2
2

b2
dx

− 2µ
∫ 1

0

w1w2

d
dx,

≥ Λ1

∫ 1

0

a(w′1)2 dx+ Λ2

∫ 1

0

a(w′2)2 dx− 2µ
∫ 1

0

w1w2

d
dx.

Moreover,∣∣ ∫ 1

0

w1w2

d(x)
dx
∣∣ ≤ ∫ 1

0

|w1|√
d(x)

|w2|√
d(x)

dx,

≤ δ
∫ 1

0

w2
1

d(x)
dx+

1
4δ

∫ 1

0

w2
2

d(x)
dx,

≤ δC∗HP
∫ 1

0

a(x)|w′1|2 dx+
C∗HP
4δ

∫ 1

0

a(x)|w′2|2 dx.

Hence,

−〈AX,X〉H ≥ (Λ1 − 2µδC∗HP )
∫ 1

0

a(w′1)2 dx+ (Λ2 − 2µ
C∗HP
4δ

)
∫ 1

0

a(w′2)2 dx.

Now, by (2.5) one can find δ such that

µC∗HP
2Λ2

< δ <
Λ1

2µC∗HP
.
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So, there exists Σ > 0 such that

−〈AX,X〉H ≥ Σ‖X‖2H1×H2
.

(iii) A is self-adjoint. Let T : H→ H be the mapping defined in the following usual
way: to each f ∈ H associate the weak solution X = T (f) ∈ H1 ×H2 of

−〈AX,Y 〉H = 〈f, Y 〉H,

for every Y ∈ H1 × H2. Note that T is well defined by Lax-Milgram Lemma
via the part (ii), which also implies that T is continuous. Now, it is easy to see
that T is injective and symmetric. Thus it is self adjoint. As a consequence,
A = T−1 : D(A)→ H is self-adjoint (for example, see [24, Proposition A.8.2]).
(iv) A is m-dissipative. Being A non positive and selfadjoint, this is a straight-
forward consequence of [11, Corollary 2.4.8]. Then (A,D(A)) generates a cosine
family and an analytic contractive semigroup of angle π

2 on H (see, for instance, [4,
Examples 3.14.16 and 3.7.5]). �

As a consequence of the previous lemmas, we have the following well-posedness
and regularity results

Proposition 2.15. (i) The operator A generates a contraction strongly continuous
semigroup (T (t))t≥0.

(ii) For all h ∈ L2(Q) and u0, v0 ∈ L2(0, 1), there exists a unique weak solution
(u, v) ∈ C([0, T ]; H) ∩ L2(0, T ;H1 ×H2) of (1.1)-(1.4) and

sup
t∈[0,T ]

‖(u, v)(t)‖2H +
∫ T

0

(
‖u‖2H1

+‖v‖2H2

)
dt ≤ CT (‖(u0, v0)‖2H +‖h‖2L2(Q)), (2.10)

for a positive constant CT .
(iii) Moreover, if (u0, v0) ∈ D(A), then

(u, v) ∈ H1(0, T ; H) ∩ L2(0, T ;D(A)) ∩ C([0, T ];H1 ×H2), (2.11)

and there exists a positive constant C such that

sup
t∈[0,T ]

(
‖(u, v)(t)‖2H1×H2

)
+
∫ T

0

(∥∥(ut, vt)
∥∥2

H +
∥∥(u, v)

∥∥2

D(A)

)
dt

≤ C
(
‖(u0, v0)‖2H1×H2

+ ‖h‖2L2(Q)

)
.

(2.12)

3. Carleman estimates with boundary observation

In this section we prove one of the main result of this paper, i.e. a new Carleman
estimate with boundary terms for solutions of the singular/degenerate problem

Ut + (a(x)Ux)x +
λ1

b1
U +

µ

d
V = h1, (t, x) ∈ Q, (3.1)

Vt + (a(x)Vx)x +
λ2

b2
V +

µ

d
U = h2, (t, x) ∈ Q, (3.2)

U(t, 1) = U(t, 0) = V (t, 1) = V (t, 0) = 0, t ∈ (0, T ), (3.3)

U(T, x) = UT (x), V (T, x) = VT (x), x ∈ (0, 1), (3.4)

which is the adjoint of problem (1.1)–(1.4).
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To prove our Carleman estimates, as in [17] or in [19], let us introduce the
function ϕ(t, x) := θ(t)ψ(x), where

θ(t) :=
1

[t(T − t)]4
and ψ(x) := c

[ ∫ x

x0

y − x0

a(y)
dy − d

]
, (3.5)

with d > d∗ := sup[0,1]

∫ x
x0

y−x0
a(y) dy and c > 0.

The main result of this section reads as follows.

Theorem 3.1. Let T > 0 be given. Assume Hypothesis 2.10 is satisfied. Then there
exist two positive constants C and s0 such that every solution (U, V ) of (3.1)-(3.4)
in

V = L2
(

0, T ;D(A)
)
∩H1

(
0, T ;H1 ×H2

)
(3.6)

satisfies, for all s ≥ s0,∫ T

0

∫ 1

0

[
sθa(U2

x + V 2
x ) + s3θ3 (x− x0)2

a
(U2 + V 2)

]
e2sϕ(t,x) dx dt

≤ C
(∫ T

0

∫ 1

0

[
h2

1 + h2
2

]
e2sϕ dx dt+ sc

∫ T

0

[
aθe2sϕ(x− x0)(U2

x + V 2
x )
]x=1

x=0
dt
)
.

Proof. First, let us re-write the problem (3.1)-(3.4) as follows:
Yt +AY + BY = H,

Y (t, 0) = Y (t, 1) =
(

0
0

)
,

Y (T, x) = YT (x) =
(
UT (x)
VT (x)

)
,

(3.7)

where Y = ( UV ) and H =
(
h1
h2

)
. Now, for s > 0, define the function

Z(t, x) = esϕ(t,x)Y (t, x) :=
(
w
z

)
,

where Y is any solution of (3.7). Then Z satisfies

(e−sϕZ)t +A(e−sϕZ) + B(e−sϕZ) = H, (t, x) ∈ Q,

Z(t, 0) = Z(t, 1) =
(

0
0

)
, t ∈ (0, T ),

Z(T, x) = Z(0, x) =
(

0
0

)
, x ∈ (0, 1).

(3.8)

The previous problem can be recast as follows: setting

LW = Wt +AW + BW and LsZ = esϕL(e−sϕZ),

then (3.8) becomes

LsZ = esϕH, (t, x) ∈ Q,

Z(t, 0) = Z(t, 1) =
(

0
0

)
, t ∈ (0, T ),

Z(T, x) = Z(0, x) =
(

0
0

)
, x ∈ (0, 1).

Computing LsZ, one has
LsZ = L+

s Z + L−s Z,
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where

L+
s =

(
L+
s 0
0 L+

s

)
+ B and L−s =

(
L−s 0
0 L−s

)
,

with

L+
s ū := (aūx)x + λi

ū

bi
− sϕtū+ s2aϕ2

xū,

L−s ū := ūt − 2saϕxūx − s(aϕx)xū.

Moreover,

2〈L+
s Z,L−s Z〉HT ≤ 2〈L+

s Z,L−s Z〉HT + ‖L+
s Z‖2HT + ‖L−s Z‖2HT

= ‖LsZ‖2HT = ‖esϕH‖2HT ,
(3.9)

where 〈·, ·〉HT denotes the usual scalar product in HT := (L2(Q))2. Of course,

〈L+
s Z,L−s Z〉HT =

〈(L+
s

µ
d

µ
d L+

s

)(
w
z

)
,

(
L−s 0
0 L−s

)(
w
z

)〉
HT
,

=
〈(L+

s w + µ
d z

L+
s z + µ

dw

)
,

(
L−s w
L−s z

)〉
HT
,

= 〈L+
s w,L

−
s w〉L2(Q) + 〈L+

s z, L
−
s z〉L2(Q)

+ µ〈z
d
, L−s w〉L2(Q) + µ〈w

d
,L−s z〉L2(Q).

Observe that the operators L+
s and L−s are exactly the ones of [17]. Using [17,

Lemmas 3.2 and 3.3], we deduce immediately that there exist two positive constants
C and s0, such that for all s ≥ s0,

〈L+
s Z,L−s Z〉HT

≥ C
∫ T

0

∫ 1

0

[
sθaw2

x + s3θ3 (x− x0)2

a
w2
]
dx dt

+ C

∫ T

0

∫ 1

0

[
sθaz2

x + s3θ3 (x− x0)2

a
z2
]
dx dt

− s
∫ T

0

[
θa2
(
w2
x + z2

x

)
ψ′
]x=1

x=0
dt+ µ〈z

d
, L−s w〉L2(Q) + µ〈w

d
,L−s z〉L2(Q).

By several integrations by parts in space and in time, the scalar product

〈z
d
, L−s w〉L2(Q) + 〈w

d
,L−s z〉L2(Q),

may be written as a sum of a distributed term DT and a boundary term BT where

DT = −2s
∫ T

0

∫ 1

0

aϕxd
′

d2
wzdx dt,

BT =
∫ 1

0

1
d

[wz]t=Tt=0 dx− 2s
∫ T

0

[aϕx
d
wz
]x=1

x=0
dt.

Proceeding as in [17], using the definition of ϕ and the boundary conditions on
w = esϕU and z = esϕV , one has that

BT = 0.



10 A. HAJJAJ, L. MANIAR, J. SALHI EJDE-2016/292

We conclude now the proof of our Carleman inequality by producing a lower bound
for the distributed term DT. It is simply a matter of computation to show that,
with this choice of ϕ and the assumption on d, one has

DT = −2cs

∫ T

0

∫ 1

0

θ
(x− x0)d′

d2
wz dx dt ≥ −2cMs

∫ T

0

∫ 1

0

θ
wz

d
dx dt.

Now, using Young inequality, we can estimate
∫ T

0

∫ 1

0
sθwzd dx dt thanks to the Hardy-

Poincaré inequality (2.2),

∫ T

0

∫ 1

0

sθ
wz

d
dx dt =

∫ T

0

∫ 1

0

(√
sθ

w√
d

)(√
sθ

z√
d

)
dx dt,

≤ 1
2

∫ T

0

∫ 1

0

sθ
w2

d
dx dt+

1
2

∫ T

0

∫ 1

0

sθ
z2

d
dx dt,

≤ C∗HP
2

∫ T

0

∫ 1

0

sθaw2
xdx dt+

C∗HP
2

∫ T

0

∫ 1

0

sθaz2
xdx dt.

Hence, putting all together and taking into account the fact that one can assume C
as large as desired, provided that s0 increases as well, it is straightforward to check
that, taking s large enough, one has

〈L+
s Z,L−s Z〉HT

≥ C
∫ T

0

∫ 1

0

[
sθaw2

x + s3θ3 (x− x0)2

a
w2
]
dx dt

+ C

∫ T

0

∫ 1

0

[
sθaz2

x + s3θ3 (x− x0)2

a
z2
]
dx dt

− 2µcM
C∗HP

2

∫ T

0

∫ 1

0

sθaw2
xdx dt− 2µcM

C∗HP
2

∫ T

0

∫ 1

0

sθaz2
xdx dt

− s
∫ T

0

[
θa2
(
w2
x + z2

x

)
ψ′
]x=1

x=0
dt

≥ C
∫ T

0

∫ 1

0

[
sθaw2

x + s3θ3 (x− x0)2

a
w2
]
dx dt

+ C

∫ T

0

∫ 1

0

[
sθaz2

x + s3θ3 (x− x0)2

a
z2
]
dx dt

− C

2

∫ T

0

∫ 1

0

sθaw2
xdx dt−

C

2

∫ T

0

∫ 1

0

sθaz2
xdx dt

− s
∫ T

0

[
θa2(w2

x + z2
x)ψ′

]x=1

x=0
dt

=
C

2

∫ T

0

∫ 1

0

sθa(w2
x + z2

x) dx dt+ C

∫ T

0

∫ 1

0

s3θ3 (x− x0)2

a
(w2 + z2) dx dt

− s
∫ T

0

[
θa2(w2

x + z2
x)ψ′

]x=1

x=0
dt.

(3.10)
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From (3.9) and (3.10), we finally obtain∫ T

0

∫ 1

0

[
sθa(w2

x + z2
x) + s3θ3 (x− x0)2

a
(w2 + z2)

]
dx dt

≤ C
(∫ T

0

∫ 1

0

[
h2

1 + h2
2

]
e2sϕ dx dt+ s

∫ T

0

[
θa2
(
w2
x + z2

x

)
ψ′
]x=1

x=0
dt
)
.

(3.11)

Recalling the definition of w and z, we have

U = e−sϕw,

V = e−sϕz,

and

Ux = −sθψ′e−sϕw + e−sϕwx,

Vx = −sθψ′e−sϕz + e−sϕzx.

Thus, substituting in (3.11), Theorem 3.1 follows. �

4. Carleman estimates with distributed observation

As it is by now classical, for proving Theorem 1.1 we will apply the Hilbert
Uniqueness Method (HUM, [22]); hence the controllability property will be equiva-
lent to the observability of the homogeneous adjoint system associated to (1.1)-(1.4),
namely

Ut + (a(x)Ux)x +
λ1

b1
U +

µ

d
V = 0, (t, x) ∈ Q, (4.1)

Vt + (a(x)Vx)x +
λ2

b2
V +

µ

d
U = 0, (t, x) ∈ Q, (4.2)

U(t, 1) = U(t, 0) = V (t, 1) = V (t, 0) = 0, t ∈ (0, T ), (4.3)

U(T, x) = UT (x), V (T, x) = VT (x), x ∈ (0, 1). (4.4)

We show now an intermediate Carleman-type estimate which could be used to show
the null controllability for parabolic systems with two control forces. As a first step,
consider the adjoint problem with more regular final datum

Ut + (a(x)Ux)x +
λ1

b1
U +

µ

d
V = 0, (t, x) ∈ Q, (4.5)

Vt + (a(x)Vx)x +
λ2

b2
V +

µ

d
U = 0, (t, x) ∈ Q, (4.6)

U(t, 1) = U(t, 0) = V (t, 1) = V (t, 0) = 0, t ∈ (0, T ), (4.7)(
U(T, x) = UT (x), V (T, x) = VT (x)

)
∈ D(A2), x ∈ (0, 1). (4.8)

where D(A2) = {XT ∈ D(A) : (AX)T ∈ D(A)}. Observe that D(A2) is densely
defined in D(A) for the graph norm (see, e.g., [9, Lemma 7.2]) and hence in H.
As in [18] or [19], letting (UT , VT ) vary in D(A2), we define the following class of
functions:

W :=
{

(U, V ) is a solution of (4.5)-(4.8)
}
.

Obviously (see, e.g., [9, Theorem 7.5]) W ⊂ C1
(
[0, T ];D(A)

)
⊂ V ⊂ U , where V is

defined in (3.6) and

U := C
(
[0, T ]; H

)
∩ L2

(
0, T ;H1 ×H2

)
.
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Now we are ready to state Carleman estimates with distributed observation of U
and V related to (4.5)-(4.8).

Theorem 4.1. Let T > 0 be given. Assume Hypothesis 2.10 is satisfied. Then there
exist two positive constants C and s0 such that every solution (U, V ) of (4.5)-(4.8)
satisfies, for all s ≥ s0,

∫ T

0

∫ 1

0

[
sθa(U2

x + V 2
x ) + s3θ3 (x− x0)2

a
(U2 + V 2)

]
e2sϕ(t,x) dx dt

≤ C
∫ T

0

∫
ω

s3θ3[U2 + V 2]e−2sΦ(t,x) dx dt.

For the proof of the previous Theorem, we shall use the following non degenerate
non singular classical Carleman estimate in suitable interval (A,B) (see [19]).

Proposition 4.2. Let z be the solution of

zt + (azx)x +
λ

b(x)
z = h ∈ L2((0, T )× (A,B)), x ∈ (A,B), t ∈ (0, T ),

z(t, A) = z(t, B) = 0, t ∈ (0, T ),

where a ∈ C1([A,B]) is a strictly positive function and b ∈ C([A,B]) is such that
b ≥ b0 > 0 in [A,B]. Then there exist two positive constants r and s0 such that for
any s > s0∫ T

0

∫ B

A

sθerζz2
xe
−2sΦ dx dt+

∫ T

0

∫ B

A

s3θ3e3rζz2e−2sΦ dx dt

≤ c
(∫ T

0

∫ B

A

h2e−2sΦ dx dt−
∫ T

0

[
σ(t, ·)z2

x(t, ·)e−2sΦ(t,·)
]x=B

x=A
dt
)
,

(4.9)

for some positive constant C. Here the functions θ, Φ and ζ are defined as follows:
For x ∈ [A,B]:

Φ(t, x) = θ(t)Ψ(x), Ψ(x) = e2ρ − erζ(x),

where ζ(x) =
∫ B

x

dy√
a(y)

, ρ = rζ(A),
(4.10)

and σ(t, x) := rsθ(t)erζ(x), for r, s > 0.

Proof of Theorem 4.1. First of all, to simplify the presentation, we assume that
ω = (α, β) ⊂ (0, 1) is lying on one side of the degeneracy point x0, that can always
be done, taking if necessary a smaller set. Let us suppose that 0 < x0 < α < β < 1
(the proof is analogous if we assume that 0 < α < β < x0 < 1 with obvious
adaptation); moreover, set α̃ := 2α+β

3 and β̃ := α+2β
3 , so that α < α̃ < β̃ < β.

Now, we consider a smooth function η : [0, 1]→ [0, 1] such that

η(x) = 1, x ∈ [β̃, 1]

η(x) = 0, x ∈ [0, α̃].

Then, define p̂ = ηU and q̂ = ηV , where (U, V ) is the solution of (4.5)-(4.8).
Hence, p̂ and q̂ satisfy the system

p̂t + (ap̂x)x +
λ1

b1
p̂ = −µ

d
q̂ + (aηxU)x + aηxUx, (t, x) ∈ Q,
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q̂t + (aq̂x)x +
λ2

b2
q̂ = −µ

d
p̂+ (aηxV )x + aηxVx, (t, x) ∈ Q,

p̂(t, α) = p̂(t, 1) = q̂(t, α) = q̂(t, 1) = 0, t ∈ (0, T ).

Observe that the system above is a nondegenerate nonsingular problem, hence, we
can apply the classical Carleman estimate stated in Proposition 4.2, with A = α
and B = 1, obtaining∫ T

0

∫ 1

α

[
sθerζ p̂2

x + s3θ3e3rζ p̂2
]
e−2sΦ dx dt

≤ c̃
∫ T

0

∫ 1

α

q̂2e−2sΦ dx dt+ C

∫ T

0

∫
ω̂

[U2 + U2
x ]e−2sΦ dx dt,

for all s ≥ s0 with ω̂ = [α̃, β̃]. Let us remark that the boundary term in x = 1
is nonpositive, while the one in x = α is 0, so that they can be neglected in the
classical Carleman estimate.

Analogously, one can prove that q̂ satisfies∫ T

0

∫ 1

α

[
sθerζ q̂2

x + s3θ3e3rζ q̂2
]
e−2sΦ dx dt

≤ c̃
∫ T

0

∫ 1

α

p̂2e−2sΦ dx dt+ C

∫ T

0

∫
ω̂

[V 2 + V 2
x ]e−2sΦ dx dt.

Thus combining the last two inequalities, it follows∫ T

0

∫ 1

α

[
sθerζ(p̂2

x + q̂2
x) + s3θ3e3rζ(p̂2 + q̂2)

]
e−2sΦ dx dt

≤ C̃
∫ T

0

∫ 1

α

[p̂2 + q̂2]e−2sΦ dx dt+ C

∫ T

0

∫
ω̂

[U2 + V 2 + U2
x + V 2

x ]e−2sΦ dx dt.

Taking s such that C̃ ≤ 1
2s

3θ3e3rζ and using Caccioppoli inequality (6.1), we obtain∫ T

0

∫ 1

α

[
sθerζ(p̂2

x + q̂2
x) + s3θ3e3rζ(p̂2 + q̂2)

]
e−2sΦ dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V 2]e−2sΦ dx dt.

Now, choose the constant c in (3.5) so that

c ≥ max{ e2rζ(α) − 1

d− (1−x0)2

a(1)(2−k1)

,
e2rζ(α) − 1

d− x2
0

a(0)(2−k1)

} (4.11)

Then, by definition of ϕ and the choice of c, one can prove that there exists a
positive constant C such that for every (t, x) ∈ [0, T ]× [α, 1]

a(x)e2sϕ(t,x) ≤ Cerζe−2sΦ,
(x− x0)2

a(x)
e2sϕ(t,x) ≤ Ce3rζe−2sΦ. (4.12)

Consequently,∫ T

0

∫ 1

α

[
sθa(p̂2

x + q̂2
x) + s3θ3 (x− x0)2

a
(p̂2 + q̂2)

]
e2sϕ dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V 2]e−2sΦ dx dt.
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By the definition of p̂ and q̂, we obtain∫ T

0

∫ 1

β̃

[
sθa(U2

x + V 2
x ) + s3θ3 (x− x0)2

a
(U2 + V 2)

]
e2sϕ dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V 2]e−2sΦ dx dt,

(4.13)

for a positive constant C and for s large enough.
On the other hand, by the properties of the weight functions, calculations show

that

s3θ3 (x− x0)2

a
e2sϕ ≤ Cs2θ2e−2sΦ, ∀(t, x) ∈ (0, T )× (α̃, β̃) (4.14)

for a positive constant C. In addition, arguing as in the proof of Caccioppoli
inequality 6.1, one can easily show that∫ T

0

∫ β̃

α̃

sθ[U2
x + V 2

x ]e2sϕdxdt ≤ C
∫ T

0

∫
ω

s3θ3[U2 + V 2e−2sΦdxdt, (4.15)

for some constant C > 0.
By (4.14) and (4.15) we can find a positive constant C such that∫ T

0

∫ β̃

α̃

[
sθa(U2

x + V 2
x ) + s3θ3 (x− x0)2

a
(U2 + V 2)

]
e2sϕ dx dt

≤ C
∫ T

0

∫
ω

s3θ3[U2 + V 2]e−2sΦ dx dt.

(4.16)

Thus (4.13) and (4.16) imply∫ T

0

∫ 1

α̃

[
sθa(U2

x + V 2
x ) + s3θ3 (x− x0)2

a
(U2 + V 2)

]
e2sϕ dx dt

≤ C
∫ T

0

∫
ω

s3θ3[U2 + V 2]e−2sΦ dx dt,

(4.17)

for a positive universal constant C and for s large enough.
To complete the proof, it is sufficient to prove a similar inequality on the interval

[0, α̃]. To this aim, we follow a reflection procedure. Consider the functions

W (t, x) :=

{
U(t, x), x ∈ [0, 1],
U(t,−x), x ∈ [−1, 0],

Z(t, x) :=

{
V (t, x), x ∈ [0, 1],
V (t,−x), x ∈ [−1, 0],

where (U, V ) solves (4.5)-(4.8) and

ψ̃(x) :=

{
ψ(x), x ∈ [0, 1],
c[
∫ x
−x0

y+x0
ã(y) dy − d], x ∈ [−1, 0],

ã(x) =

{
a(x), x ∈ [0, 1],
a(−x), x ∈ [−1, 0],

b̃i(x) :=

{
bi(x), x ∈ [0, 1],
bi(−x), x ∈ [−1, 0],

d̃(x) =

{
d(x), x ∈ [0, 1],
d(−x), x ∈ [−1, 0].
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Therefore, (W,Z) solves the system

Wt + (ãWx)x +
λ1

b̃1
W +

µ

d̃
Z = 0, x ∈ (−1, 1), t ∈ (0, T ),

Zt + (ãZx)x +
λ2

b̃2
Z +

µ

d̃
W = 0, x ∈ (−1, 1), t ∈ (0, T ),

W (t,−1) = W (t, 1) = Z(t,−1) = Z(t, 1) = 0, t ∈ (0, T ).

(4.18)

Now, consider a smooth function τ : [−1, 1]→ [0, 1] such that

τ(x) =

{
1, x ∈ [−x0/3, α̃],
0, x ∈ [−1,−x0/2] ∪ [β̃, 1],

and define the functions p̄ = τW and q̄ = τZ, where (W,Z) is the solution of
(4.18). Then (p̄, q̄) satisfies

p̄t + (ãp̄x)x +
λ1

b̃1
p̄+

µ

d̃
q̄ = (ãτxW )x + ãτxWx, x ∈ (−1, 1), t ∈ (0, T ),

q̄t + (ãq̄x)x +
λ2

b̃2
q̄ +

µ

d̃
p̄ = (ãτxZ)x + ãτxZx, x ∈ (−1, 1), t ∈ (0, T ),

p̄(t,−2x0

3
) = p̄(t, 1) = q̄(t,−2x0

3
) = q̄(t, 1) = 0, t ∈ (0, T ).

Now, define ϕ̃ := θ(t)ψ̃(x), where ψ̃ is defined as above. Using the analogue of
Theorem 3.1 on (− 2x0

3 , 1) in place of (0, 1) and with ϕ replaced by ϕ̃, by the
equalities p̄x(t,− 2x0

3 ) = p̄x(t, 1) = q̄x(t,− 2x0
3 ) = q̄x(t, 1) = 0 and the definition of

(W,Z), we obtain∫ T

0

∫ 1

−2x0/3

[
sθã
(
p̄2
x + q̄2

x

)
+ s3θ3 (x− x0)2

ã

(
p̄2 + q̄2

)]
e2sϕ̃ dx dt

≤ C
∫ T

0

∫ − x03
− x02

[W 2 +W 2
x + Z2 + Z2

x]e2sϕ̃ dx dt

+ C

∫ T

0

∫ β̃

α̃

[W 2 +W 2
x + Z2 + Z2

x]e2sϕ dx dt

≤ C
∫ T

0

∫ x0
2

x0
3

[U2 + U2
x + V 2 + V 2

x ]e2sϕ dx dt︸ ︷︷ ︸
J

+ C

∫ T

0

∫ β̃

α̃

[U2 + U2
x + V 2 + V 2

x ]e2sϕ dx dt.

To absorb J , let ε > 0 be small enough. Since

inf
t∈[0,T ]

θ(t) > 0, inf
x∈[

x0
3 ,

x0
2 ]
a(x) > 0, inf

x∈[
x0
3 ,

x0
2 ]

(x− x0)2

a(x)
> 0,

taking s large enough, it follows that∫ T

0

∫ x0
2

x0
3

[U2 + U2
x + V 2 + V 2

x ]e2sϕ dx dt
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≤ ε
∫ T

0

∫ x0
2

x0
3

[
sθa
(
U2
x + V 2

x

)
+ s3θ3 (x− x0)2

a

(
U2 + V 2

)]
e2sϕ dx dt

≤ ε
∫ T

0

∫ α̃

0

[
sθa
(
U2
x + V 2

x

)
+ s3θ3 (x− x0)2

a

(
U2 + V 2

)]
e2sϕ dx dt.

Therefore, by Caccioppoli inequality (6.1), we obtain∫ T

0

∫ 1

−2x0/3

[
sθã
(
p̄2
x + q̄2

x

)
e2sϕ̃ + s3θ3 (x− x0)2

ã

(
p̄2 + q̄2

)]
e2sϕ̃ dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V 2]e−2sΦ dx dt

+ ε

∫ T

0

∫ α̃

0

[
sθa
(
U2
x + V 2

x

)
+ s3θ3 (x− x0)2

a

(
U2 + V 2

)]
e2sϕ dx dt,

(4.19)

for a universal positive constant C. Hence, by (4.19), the definition of W , Z, p̄ and
q̄, we obtain∫ T

0

∫ α̃

0

[
sθa(U2

x + V 2
x ) + s3θ3 (x− x0)2

a
(U2 + V 2)

]
e2sϕ dx dt

=
∫ T

0

∫ α̃

0

[
sθa(W 2

x + Z2
x) + s3θ3 (x− x0)2

a
(W 2 + Z2)

]
e2sϕ dx dt

≤
∫ T

0

∫ α̃

−x0/3

[
sθã(W 2

x + Z2
x) + s3θ3 (x− x0)2

ã
(W 2 + Z2)

]
e2sϕ̃ dx dt

=
∫ T

0

∫ α̃

−x0/3

[
sθã(p̄2

x + q̄2
x) + s3θ3 (x− x0)2

ã
(p̄2 + q̄2)

]
e2sϕ̃ dx dt

≤
∫ T

0

∫ 1

−2x0/3

[
sθã(p̄2

x + q̄2
x) + s3θ3 (x− x0)2

ã
(p̄2 + q̄2)

]
e2sϕ̃ dx dt

≤ C
∫ T

0

∫
ω

s2θ2(U2 + V 2)e−2sΦ dx dt

+ ε

∫ T

0

∫ α̃

0

[
sθa(U2

x + V 2
x ) + s3θ3 (x− x0)2

a
(U2 + V 2)

]
e2sϕ dx dt.

(4.20)

Finally adding up (4.17) and (4.20), the proof is complete. �

To study the null controllability of the parabolic system (4.5)-(4.8) with one
control force, we need to show the following Carleman estimate.

Theorem 4.3. Let T > 0. Then there exist two positive constants C and s0 such
that, for all s ≥ s0, the solution (U, V ) ∈ W of (4.5)-(4.8) satisfies∫ T

0

∫ 1

0

[
sθa(U2

x + V 2
x ) + s3θ3 (x− x0)2

a
(U2 + V 2)

]
e2sϕ(t,x) dx dt

≤ C
∫ T

0

∫
ω

U2 dx dt.

(4.21)

The above theorem is a consequence of Theorem 4.1 applied to some open subset
ω1 ⊂⊂ ω and of the following Lemma.



EJDE-2016/292 CONTROLLABILITY OF DEGENERATE/SINGULAR SYSTEMS 17

Lemma 4.4. For each ε > 0 there is Cε > 0 such that∫ T

0

∫
ω1

s3θ3V 2e−2sΦ(t,x) dx dt ≤ εJ(v) + Cε

∫ T

0

∫
ω

U2 dx dt,

where ε > 0 is small enough, s is large enough and

J(V ) =
∫ T

0

∫ 1

0

(sθaV 2
x + s3θ3 (x− x0)2

a
V 2)e2sϕ dx dt.

As usual, in order to prove such a Lemma, the parameters d, ρ, and c will be
chosen such that

d > 16d?, ρ > 2 ln(2), (4.22)

e2ρ − 1
d− d?

≤ c <
4
3d

(e2ρ − eρ). (4.23)

Remark 4.5. The interval [e2ρ − 1
d− d?

,
4(e2ρ − eρ)

3d

)
is not empty. In fact, from ρ > 2 ln 2, and d > 16d?, we have

d?

d
<

1
16
⇔ 1

4
<

1
3
− 4d?

3d

⇔ e−ρ <
1
3
− 4d?

3d

⇔ e2ρ − 1
e2ρ − eρ

<
4(d− d?)

3d

⇔ e2ρ − 1
d− d?

<
4
3d

(e2ρ − eρ).

Lemma 4.6. By (4.22)-(4.23), for (t, x) ∈ [0, T ]× [0, 1], we have

ϕ(t, x) ≤ −Φ(t, x) and

4Φ(t, x) + 3ϕ(t, x) > 0.
(4.24)

Proof. (1) ϕ ≤ −Φ: Since c ≥ e2ρ−1
d−d? , we have max{ψ(0), ψ(1)} ≤ −Ψ(1) and the

conclusion follows immediately.
(2) 4Φ(t, x)+3ϕ(t, x) > 0: This follows easily from the assumption cd < 4Ψ(0)/3.

�

Proof of Lemma 4.4. The choice of the weight functions satisfying (4.24) will play a
crucial role. Let χ ∈ C∞(0, 1), such that supp(χ) ⊂ ω and χ ≡ 1 on ω1. Multiplying
the first equation of system (4.5)-(4.8) by s3θ3χe−2sΦV and integrating over Q, we
obtain ∫

Q

s3θ3µ

d
χe−2sΦV 2 dx dt =

∫
Q

s3θ3χe−2sΦUtV dx dt

−
∫
Q

s3θ3χe−2sΦ(aUx)xV dx dt

−
∫
Q

s3θ3λ1

b1
χe−2sΦUV dx dt.

(4.25)
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Integrating by parts and using the second equation in (4.5)-(4.8), we obtain∫
Q

s3θ3χe−2sΦUtV dx dt

=
∫
Q

s3θ3aχe−2sΦUxVx dx dt

+
∫
Q

s3θ3a(χe−2sΦ)xUVx dx dt

−
∫
Q

[
s3θ3λ2

b2
+ 2s4θ3θ̇Ψ + 3s3θ2θ̇

]
χe−2sΦUV dx dt

−
∫
Q

s3θ3µ

d
χe−2sΦU2 dx dt,

(4.26)

and ∫
Q

s3θ3χe−2sΦ(aUx)xV dx dt = −
∫
Q

s3θ3aχe−2sΦUxVx dx dt

+
∫
Q

s3θ3a(χe−2sΦ)xUVx dx dt

+
∫
Q

s3θ3(a(χe−2sΦ)x)xUV dx dt.

(4.27)

So, combining (4.25)-(4.27), we obtain∫
Q

s3θ3µ

d
χe−2sΦV 2 dx dt = I1 + I2 + I3,

where

I1 = 2
∫
Q

s3θ3aχe−2sΦUxVx dx dt,

I2 = −
∫
Q

s3θ3µ

d
χe−2sΦU2 dx dt,

I3 = −
∫
Q

[
s3θ3(

λ1

b1
+
λ2

b2
) + 2s4θ3θ̇Ψ + 3s3θ2θ̇

]
χe−2sΦUV dx dt

−
∫
Q

s3θ3(a(χe−2sΦ)x)xUV dx dt.

For ε > 0, we have

|I1| = 2
∫
Q

(
√
sθaesϕVx)((sθ)5/2a1/2χe−s(2Φ+ϕ)Ux) dx dt

≤ ε
∫
Q

sθae2sϕV 2
x dx dt+

1
ε

∫
Q

s5θ5aχ2e−2s(2Φ+ϕ)U2
x dx dt︸ ︷︷ ︸

L

.

The integral L should be estimated by an integral in U2. For this, we multiply
the first equation in (4.5)-(4.8) by s5θ5χ2e−2s(2Φ+ϕ)U and we integrate by parts,
obtaining

L = L1 + L2 + L3 + L4,
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where

L1 =
1
2

∫
Q

s5(5θ4 − 2sθ5(2Ψ + ψ))θ̇χ2e−2s(2Φ+ϕ)U2 dx dt,

L2 =
1
2

∫
Q

s5θ5(a(χ2e−2s(2Φ+ϕ))x)xU2 dx dt,

L3 =
∫
Q

s5θ5χ2λ1

b1
e−2s(2Φ+ϕ)U2 dx dt,

L4 =
∫
Q

s5θ5χ2µ

d
e−2s(2Φ+ϕ)UV dx dt.

Since supp(χ) ⊂ ω, we observe that the functions a, bi, d, χ, ψ, Ψ and their
derivatives are bounded on ω. Then, by the fact that |θ̇| ≤ Cθ2, we deduce that,
for i ∈ {1, 2, 3}

|Li| ≤ C
∫ T

0

∫
ω

s7θ7e−2s(2Φ+ϕ)U2 dx dt.

For i = 4 we have

|L4| =
∫
Q

[
(sθ)

3
2

(x− x0)√
a

esϕV
][

(sθ)
7
2
µ

d
χ2

√
a

(x− x0)
e−s(4Φ+3ϕ)U

]
dx dt

≤ ε2

∫
Q

s3θ3 (x− x0)2

a
e2sϕV 2 dx dt

+
1

4ε2

∫
Q

s7θ7
(µ
d

)2
χ4 a

(x− x0)2
e−2s(4Φ+3ϕ)U2 dx dt

≤ ε2

∫
Q

s3θ3 (x− x0)2

a
e2sϕV 2 dx dt+ Cε

∫ T

0

∫
ω

s7θ7e−2s(4Φ+3ϕ)U2 dx dt.

Hence,

|L| ≤ Cε
∫ T

0

∫
ω

s7θ7e−2s(4Φ+3ϕ)U2 dx dt+ ε2

∫
Q

s3θ3 (x− x0)2

a
e2sϕV 2 dx dt.

Furthermore

|I1| ≤ Cε
∫ T

0

∫
ω

s7θ7e−2s(4Φ+3ϕ)U2 dx dt+ εJ(V ).

Using the fact that χ′ and χ are supported in ω and x0 6∈ ω, proceeding as before,
one has

|I2| ≤ C
∫ T

0

∫
ω

s3θ3e−2sΦU2 dx dt,

|I3| ≤ C
∫
Q

s5θ5(χ′′ + χ′ + χ)e−2sΦUV dx dt

≤ C
∫
Q

(s
3
2 θ

3
2
x− x0√

a
esϕV )((sθ)7/2

√
a

x− x0
(χ′′ + χ′ + χ)e−s(2Φ+ϕ)U) dx dt

≤ ε
∫
Q

s3θ3 (x− x0)2

a
V 2e2sϕ dx dt+ Cε

∫ T

0

∫
ω

s7θ7e−2s(2Φ+ϕ)U2 dx dt.

So, thanks to Lemma 4.6, we have

e−2sΦ ≤ e−2s(2Φ+ϕ) ≤ e−2s(4Φ+3ϕ) ≤ 1,
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sup
(t,x)∈Q

srθr(t)e−2s(4Φ+3ϕ) <∞, r ∈ R.

Then, for ε small enough and s large enough, we have∣∣ ∫
Q

s3θ3µ

d
χe−2sΦV 2 dx dt

∣∣ ≤ Cε ∫ T

0

∫
ω

U2 dx dt+ 2εJ(V ).

Finally, by the definition of χ and the previous inequality, it follows that

µ

maxx∈ω1 d(x)

∫ T

0

∫
ω1

s3θ3e−2sΦV 2 dx dt ≤ |
∫ T

0

∫
ω̄1

s3θ3µ

d
χe−2sΦV 2 dx dt|

≤ |
∫
Q

s3θ3µ

d
χe−2sΦV 2 dx dt|

≤ Cε
∫ T

0

∫
ω

U2 dx dt+ εJ(V ).

This completes the proof. �

5. Observability and null controllability results

In this section we prove, as a consequence of the Carleman estimates established
in the above section, observability inequalities for the adjoint problem (4.1)-(4.4).

Theorem 5.1. Let T > 0 be given. Then there exists a positive constant CT such
that every (U, V ) solution of (4.1)-(4.4) satisfies∫ 1

0

[U2(0, x) + V 2(0, x)] dx ≤ CT
∫ T

0

∫
ω

U2(t, x) dx dt.

To prove the above theorem, we need the following result.

Lemma 5.2. Let T > 0 be given. Then there exists a positive constant CT such
that every (U, V ) ∈ W solution of (4.5)-(4.8) satisfies∫ 1

0

[
U2(0, x) + V 2(0, x)

]
dx ≤ CT

∫ T

0

∫
ω

U2(t, x)dxdt.

Proof. Multiplying the first and the second equations in (4.5)-(4.8) respectively by
Ut and Vt, integrating by parts over (0, 1), it is easy to see that

0 =
∫ 1

0

[U2
t + V 2

t ] dx+ [a(x)
(
UxUt + VxVt

)
]10 −

1
2
d

dt

∫ 1

0

a[U2
x + aV 2

x ] dx

+
∫ 1

0

[λ1

b1
UUt +

λ2

b2
V Vt

]
dx+

∫ 1

0

µ

d

(
UVt + V Ut

)
dx

=
∫ 1

0

[U2
t + V 2

t ] dx− 1
2
d

dt

∫ 1

0

a[U2
x + aV 2

x ] dx

+
1
2
d

dt

∫ 1

0

[λ1

b1
U2 +

λ2

b2
V 2
]
dx+ µ

d

dt

∫ 1

0

UV

d
dx

≥ −1
2
d

dt

∫ 1

0

a[U2
x + aV 2

x ] dx+
1
2
d

dt

∫ 1

0

[λ1

b1
U2 +

λ2

b2
V 2
]
dx+ µ

d

dt

∫ 1

0

UV

d
dx.

Hence the function

t 7→
∫ 1

0

a[U2
x + V 2

x ] dx−
∫ 1

0

[
λ1

b1
U2 +

λ2

b2
V 2] dx− 2µ

∫ 1

0

UV

d
dx
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is non decreasing for all t ∈ [0, T ]. In particular, using Young’s inequality and by
Theorem 2.8, we obtain∫ 1

0

a(x)
[
U2
x(0, x) + V 2

x (0, x)
]
dx−

∫ 1

0

[λ1

b1
U2(0, x) +

λ2

b2
V 2(0, x)

]
dx

− 2µ
∫ 1

0

U(0, x)V (0, x)
d(x)

dx

≤
∫ 1

0

a(x)[U2
x(t, x) + V 2

x (t, x)] dx−
∫ 1

0

[λ1

b1
U2(t, x) +

λ2

b2
V 2(t, x)

]
dx

− 2µ
∫ 1

0

U(t, x)V (t, x)
d(x)

dx

≤
∫ 1

0

a(x)[U2
x(t, x) + V 2

x (t, x)] dx

+ λC∗
∫ 1

0

a(x)[U2
x(t, x) + V 2

x (t, x)] dx

+ µC∗HP

∫ 1

0

a(x)[U2
x(t, x) + V 2

x (t, x)] dx

= (1 + λC∗ + µC∗HP )
∫ 1

0

a(x)[U2
x(t, x) + V 2

x (t, x)] dx,

where λ = max{λ1, λ2} and C∗ = max{C∗1 , C∗2}.
Next, integrating the previous inequality over [T4 ,

3T
4 ], θ being bounded therein,

and using the Carleman estimate (4.21), we find that∫ 1

0

[
a(x)U2

x(0, x)− λ1

b1
U2(0, x)

]
dx+

∫ 1

0

[
a(x)V 2

x (0, x)− λ2

b2
V 2(0, x)

]
dx

− 2µ
∫ 1

0

U(0, x)V (0, x)
d(x)

dx

≤ 2
T

(1 + λC∗ + µC∗HP )
∫ 3T

4

T
4

∫ 1

0

a(x)[U2
x(t, x) + V 2

x (t, x)] dx dt

≤ CT
∫ 3T

4

T
4

∫ 1

0

sθa(x)[U2
x(t, x) + V 2

x (t, x)]e2sϕ dx dt

≤ CT
∫ T

0

∫
ω

U2(t, x) dx dt.

From the previous inequality and Propositions 2.9, for δ > 0, we obtain

Λ1

∫ 1

0

a(x)U2
x(0, x) dx+ Λ2

∫ 1

0

a(x)V 2
x (0, x) dx

≤ CT
∫ T

0

∫
ω

U2(t, x) dx dt+ 2µ
∫ 1

0

U(0, x)V (0, x)
d(x)

dx

≤ CT
∫ T

0

∫
ω

U2(t, x) dx dt+ 2µδC∗HP

∫ 1

0

a(x)U2
x(0, x) dx

+ µ
C∗HP
2δ

∫ 1

0

a(x)V 2
x (0, x) dx.
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Thus (
Λ1 − 2µδC∗HP

) ∫ 1

0

a(x)U2
x(0, x) dx+

(
Λ2 − µ

C∗HP
2δ

) ∫ 1

0

a(x)V 2
x (0, x) dx

≤ CT
∫ T

0

∫
ω

U2(t, x) dx dt.

Proceeding again as in the proof of Lemma 2.14, by (2.5) there exists C > 0 such
that ∫ 1

0

a(x)[U2
x(0, x) + V 2

x (0, x)] dx ≤ C
∫ T

0

∫
ω

U2(t, x) dx dt. (5.1)

On the other hand, by [19, Lemma 2.1], the map x 7→ (x−x0)2

a(x) is nonincreasing on
[0, x0) and nondecreasing on (x0, 1], then( (x− x0)2

a(x)

)1/3

≤ max
{( x2

0

a(0)

)1/3

,
( (1− x0)2

a(1)

)1/3}
.

Hence, applying the Hardy-Poincaré inequality given in Theorem 1.2 and the pre-
vious inequality, one has∫ 1

0

[U2(0, x) + V 2(0, x)] dx

≤ C0

∫ 1

0

a1/3(x)
(x− x0)

2
3

[
U2(0, x) + V 2(0, x)

]
dx

≤ C0

∫ 1

0

p

(x− x0)2

[
U2(0, x) + V 2(0, x)

]
dx

≤ C0CHP

∫ 1

0

p
[
U2
x(0, x) + V 2

x (0, x)
]
dx

≤ C0 max{C1, C2}CHP
∫ 1

0

a(x)[U2
x(0, x) + V 2

x (0, x)] dx.

(5.2)

Here p(x) = (a(x)|x − x0|4)1/3 if K > 4/3 or p(x) = max[0,1] a(x)1/3|x − x0|4/3
otherwise,

C0 := max
[( x2

0

a(0)

)1/3

,
( (1− x0)2

a(1)

)1/3]
,

C1 := max
{( x2

0

a(0)

)2/3

,
( (1− x0)2

a(1)

)2/3}
,

C2 := max
{x4/3

0

a(0)
,

(1− x0)4/3

a(1)

}
and CHP is the Hardy-Poincaré constant. Combining (5.1) and (5.2) the conclusion
follows. �

The proof of Theorem 5.1 is now standard using Lemma 5.2 and proceeding as
in [19, Proposition 4.1], but we give it for the reader’s convenience.

Proof of Proposition 5.1. Let (UT , VT ) ∈ H and let (U, V ) be the solution of (4.1)-
(4.4) associated to (UT , VT ). Since D(A2) is densely defined in H, there exists a
sequence (UnT , V

n
T )n ⊂ D(A2) which converge to (UT , VT ) in H. Now, consider the

solution (Un, Vn) associated to (UnT , V
n
T ). Since the semigroup generated by A is
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analytic, hence A is closed (e.g., see [12, Theorem I.1.4]), thus, by [12, Theorem
II.6.7], we obtain that (Un, Vn)n converges to a certain (U, V ) in C([0, T ]; H), so
that

lim
n→+∞

∫ 1

0

U2
n(0, x) dx =

∫ 1

0

U2(0, x) dx,

lim
n→+∞

∫ 1

0

V 2
n (0, x) dx =

∫ 1

0

V 2(0, x) dx,

lim
n→+∞

∫ T

0

∫
ω

U2
n dx dt =

∫ T

0

∫
ω

U2 dx dt.

But, by Lemma 5.2 we know that∫ 1

0

[
U2
n(0, x) + V 2

n (0, x)
]
dx ≤ CT

∫ T

0

∫
ω

U2
n(t, x) dx dt.

Thus Theorem 5.1 is now proved. �

6. Appendix

We show a Caccioppoli type inequality for linear coupled systems corresponding
to our singular/degenerate situation.

Lemma 6.1 (Caccioppoli’s inequality). Let ω′ and ω two open subintervals of (0, 1)
such that ω′ ⊂⊂ ω ⊂ (0, 1) and x0 6∈ ω. Then, there exist two positive constants
C and s0 such that every solution (U, V ) ∈ W of the adjoint problem (4.5)-(4.8)
satisfies ∫ T

0

∫
ω′

[U2
x(t, x) + V 2

x (t, x)]e−2sΦdxdt

≤ C
∫ T

0

∫
ω

s2θ2[U2(t, x) + V 2(t, x)]e−2sΦdxdt,

(6.1)

for all s ≥ s0.

Proof. Define a smooth cut-off function ξ ∈ C∞(0, 1) such that supp ξ ⊂ ω and
ξ ≡ 1 on ω′. Since (U, V ) solves (4.5)-(4.8), We have

0 =
∫ T

0

d

dt

[ ∫ 1

0

ξ2e−2sΦ(U2 + V 2)dx
]
dt

=− 2
∫ T

0

∫ 1

0

sΦ̇ξ2e−2sΦ(U2 + V 2) dx dt− 2
∫ T

0

∫ 1

0

ξ2e−2sΦa(x)U2
x dx dt

− 2
∫ T

0

∫ 1

0

(ξ2e−2sΦ)xa(x)UUx dx dt+ 2λ1

∫ T

0

∫ 1

0

ξ2e−2sΦU
2

b1
dx dt

− 2µ
∫ T

0

∫ 1

0

ξ2e−2sΦUV

d
dx dt− 2

∫ T

0

∫ 1

0

ξ2e−2sΦa(x)V 2
x dx dt

− 2
∫ T

0

∫ 1

0

(ξ2e−2sΦ)xa(x)V Vx dx dt+ 2λ2

∫ T

0

∫ 1

0

ξ2e−2sΦV
2

b2
dx dt

− 2µ
∫ T

0

∫ 1

0

ξ2e−2sΦUV

d
dx dt.
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Then, integration by parts yields∫ T

0

∫ 1

0

ξ2e−2sΦa(x)
[
U2
x + V 2

x

]
dx dt

= −
∫ T

0

∫ 1

0

sΦ̇ξ2e−2sΦ(U2 + V 2) dx dt

−
∫ T

0

∫ 1

0

a(x)(ξ2e−2sΦ)x(UUx + V Vx)dx dt

+
∫ T

0

∫ 1

0

ξ2e−2sΦ(
λ1

b1
U2 +

λ2

b2
V 2) dx dt− 2µ

∫ T

0

∫ 1

0

ξ2e−2sΦUV

d
dx dt

= −
∫ T

0

∫ 1

0

sΦ̇ξ2e−2sΦ(U2 + V 2) dx dt

+
1
2

∫ T

0

∫ 1

0

(
a(x)(ξ2e−2sΦ)x

)
x
(U2 + V 2)dx dt

+
∫ T

0

∫ 1

0

ξ2e−2sΦ(
λ1

b1
U2 +

λ2

b2
V 2) dx dt− 2µ

∫ T

0

∫ 1

0

ξ2e−2sΦUV

d
dx dt.

Since minx∈ω′ a(x) > 0, bi, d ∈ C1(ω̄,R), i = 1, 2, supp ξ ⊂ ω, ξ ≡ 1 on ω′ and
|θ̇| ≤ cθ2 then, using the Young’s inequality, we obtain

min
x∈ω′

a(x)
∫ T

0

∫
ω′
e−2sΦ[U2

x + V 2
x ] dx dt

≤
∫ T

0

∫ 1

0

ξ2e−2sΦa(x)[U2
x + V 2

x ] dx dt

≤ C
∫ T

0

∫
ω

(1 + s2θ2 + s|θ̇|)[U2 + V 2]e−2sΦ dx dt

≤ C
∫ T

0

∫
ω

s2θ2[U2 + V 2]e−2sΦ dx dt,

and the proof is complete. �
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1, Contrôlabilité exacte. Tome 2, Perturbations). Recherches en mathematiques appliquees,

Masson, 1988.
[23] P. Martinez, J. Vancostenoble; Carleman estimates for one-dimensional degenerate heat

equations, J. Evol. Equ. 6 (2006), no. 2, 325-362.

[24] M. E. Taylor; Partial Differential Equations I. Basic theory. Second edition. Applied Math-
ematical Sciences 115. Springer, New York, 2011.

[25] J. Vancostenoble; Improved Hardy-Poincaré inequalities and sharp Carleman estimates for
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