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EXISTENCE OF TWO POSITIVE SOLUTIONS FOR INDEFINITE
KIRCHHOFF EQUATIONS IN R3

LING DING, YI-JIE MENG, SHI-WU XIAO, JIN-LING ZHANG

Abstract. In this article we study the Kirchhoff type equation

−
“

1 + b

Z
R3
|∇u|2dx

”
∆u+ u = k(x)f(u) + λh(x)u, x ∈ R3,

u ∈ H1(R3),

involving a linear part −∆u + u − λh(x)u which is coercive if 0 < λ < λ1(h)

and is noncoercive if λ > λ1(h), a nonlocal nonlinear term −b
R

R3 |∇u|2dx∆u
and a sign-changing nonlinearity of the form k(x)f(s), where b > 0, λ > 0 is a

real parameter and λ1(h) is the first eigenvalue of −∆u+ u = λh(x)u. Under

suitable assumptions on f and h, we obtain positives solution for λ ∈ (0, λ1(h))
and two positive solutions with a condition on k.

1. Introduction and statement of main results

In this paper, we consider the Kirchhoff equation

−
(

1 + b

∫
R3
|∇u|2dx

)
∆u+ u = k(x)f(u) + λh(x)u, x ∈ R3,

u ∈ H1(R3),
(1.1)

where b is a positive constant, λ > 0 is a real parameter, k(x) is sign changing in
R3 which is why we call problem (1.1) indefinite Kirchhoff equation, f : R+ → R is
a continuous function and h(x) is a positive function.

When Ω is a smooth bounded domain in RN , the problem

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = g(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.2)

is related to the stationary analogue of the Kirchhoff equation which was proposed
by Kirchhoff in 1883 (see [17]) as an generalization of the well-known d’Alembert’s
wave equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= g(x, u)
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for free vibrations of elastic strings. Kirchhoff’s model takes into account the
changes in length of the string produced by transverse vibrations. Here, L is the
length of the string, h is the area of the cross section, E is the Young modulus of
the material, ρ is the mass density and P0 is the initial tension.

In [3], it was pointed out that the problem (1.2) models several physical systems,
where u describes a process which depends on the average of itself. Nonlocal effect
also finds its applications in biological systems. A parabolic version of equation
(1.1) can, in theory, be used to describe the growth and movement of a particular
species. The movement, modeled by the integral term, is assumed to be dependent
on the energy of the entire system with u being its population density. Alterna-
tively, the movement of a particular species may be subject to the total population
density within the domain (for instance, the spreading of bacteria) which gives rise
to equations of the type ut − a(

∫
Ω
udx)∆u = h. Some early classical studies of

Kirchhoff’s equation were those of Bernstein [9] and Pohožaev [22]. However, equa-
tion (1.2) received great attention only after that Lions [18] proposed an abstract
framework for the problem. Some interesting results for problem (1.2) can be found
in [6, 10, 5] and the references therein.

Some interesting studies by variational methods can be found in [3] and [15]-[12]
for Kirchhoff-type problem (1.2) in a bounded domain Ω of RN . Very recently, some
authors had studied the multiplicity of solutions for the Kirchhoff equation on the
whole space RN . Jin and Wu [16] obtained the existence of infinitely many radial
solutions for problem (1) in RN using the Fountain Theorem. Wu [24] obtained
four new existence results for nontrivial solutions and a sequence of high energy
solutions for (1.1) in RN which was obtained by using the Symmetric Mountain
Pass Theorem. Azzollini, d’Avenia and Pomponio [7] obtained a multiplicity result
concerning the critical points of a class of functionals involving local and nonlocal
nonlinearities, then they apply their result to the nonlinear elliptic Kirchhoff equa-
tion (1.1) in RN assuming that the local nonlinearity satisfies the general hypotheses
introduced by Berestycki and Lions [8]. He and Zou [14] study the existence, multi-
plicity and concentration behavior of positive solutions for the nonlinear Kirchhoff
type problem. They relate the number of solutions with the topology of the set.
Alves and Figueiredo in [4] study a periodic Kirchhoff equation in RN , they get
the nontrivial solution when the nonlinearity is in subcritical case and critical case.
Liu and He [20] get multiplicity of high energy solutions for superlinear Kirchhoff
equations in R3. Recently, Chen in [11] obtained the existence result of a positive
solution for any λ ∈ (0, λ1(h)) and the multiplicity result of two positive solutions
for any λ ∈ (λ1(h), λ1(h) + δ̃) for problem (1.1) with the indefinite nonlinearity
k(x)f(s) = k(x)|s|p−2s (4 < p < 6). Especially, inspired by [11, 13], we shall con-
sider the general f(s) instead of power nonlinearity f(s) = |s|p−2s in the indefinite
nonlinearity k(x)f(s) like as problem (1.1).

In this article, we shall prove that (1.1) has multiple positive solutions for suitable
range λ. We assume that functions k, f, h satisfy the following hypotheses:

(H1) k ∈ C(R3) and k(x) changes sign, i.e., Ω+ 6= ∅, Ω− 6= ∅, where Ω+ =
{x ∈ R3|k(x) > 0}, Ω− = {x ∈ R3|k(x) < 0}. Moreover, let Ω0 = {x ∈
R3|k(x) = 0}.

(H2) There exist positive constants R0, K0 and M such that k(x) < −K0 and
|k(x)| ≤M if |x| > R0.

(H3) f ∈ C(R+,R), f(s) > 0 for any s > 0.
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(H4) lims→0
f(s)
sp−1 = 1, 4 < p < 6

(H5) |f(s)| = |s|q−1 +O(|s|α) as |s| → ∞ for any 4 < q < 6 and some α ∈ [0, 1).
(H6) h ∈ L3/2(R3), h(x) ≥ 0 for any x ∈ R3 and h 6≡ 0.

Furthermore, without loss of generality, we will assume that f(s) is defined for all
s ∈ R as an odd function.

Before stating our main results, we give some notations and remarks. For any
1 ≤ t ≤ +∞, we denote by ‖ · ‖t the usual norm of the Lebesgue space Lt(R3).
Define the function space

H1(R3) := {u ∈ L2(R3) : ∇u ∈ L2(R3)}

with the standard product and norm

(u, v) =
∫

R3
(∇u · ∇v + uv)dx, ‖u‖ :=

(∫
R3

(|∇u|2 + |u|2)dx
)1/2

.

The functional corresponding to problem (1.1) is defined in H1(R3) by

Iλ(u) =
1
2

∫
R3

(|∇u|2 + |u|2)dx+
b

4

(∫
R3
|∇u|2dx

)2

−
∫

R3
k(x)F (u)dx− λ

2

∫
R3
h(x)u2dx,

where F (s) =
∫ s

0
f(σ)dσ. Clearly, Iλ is well defined and is of class C1 in H1(R3)

by (H1)–(H3) and (H5)–(H6). Moreover,

〈I ′λ(u), ϕ〉 =
∫

R3
(∇u · ∇ϕ+ uϕ)dx+ b

(∫
R3
|∇u|2dx

)∫
R3
∇u · ∇ϕdx

−
∫

R3
k(x)f(u)ϕdx− λ

∫
R3
h(x)uϕdx.

There is one to one correspondence between the solution of problem (1.1) and the
critical point of the functional Iλ. So in order to seek for the positive solution
of (1.1), we only need to study the existence of the positive critical point of Iλ.
Furthermore, if (H6) holds, then for every u ∈ H1(R3), there exists a unique
w ∈ H1(R3) such that

−∆w + w = h(x)u.

Moreover, the operator Fh : H1(R3) → H1(R3) defined by Fh(u) = w is positive
and compact. Using this and the spectral theory of compact symmetric operator
on Hilbert space, there exists a sequence of eigenvalues λn(h) going to infinity for
problem

−∆u+ u = λh(x)u, u ∈ H1(R3)

with 0 < λ1(h) < λ2(h) ≤ · · · ≤ λn(h) ≤ . . . and each eigenvalue being of fi-
nite multiplicity. The first eigenvalue λ1(h) is simple, has a positive eigenfunction.
The associated normalized eigenfunctions to sequence of eigenvalues are denoted
by e1, e2, . . . with ‖ei‖ = 1. In addition, we have the following variational charac-
terization of λn(h):

λ1(h) = inf
u∈H1(R3)\{0}

‖u‖2∫
R3 h(x)u2dx

, λn(h) = inf
u∈S⊥n−1\{0})

‖u‖2∫
R3 h(x)u2dx

, (1.3)

where S⊥n−1 = {span{e1, e2, . . . , en−1}}⊥.
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Let us consider the closed subspace of H1(R3) defined by

H1
( 1√

1 + a
Ω0
)

=
{
u ∈ H1(R3)|u(x) = 0 a. e. in R3 \ 1√

1 + a
Ω0
}

for some a > 0. Let u(x) = w(x/
√

1 + a), then the equation

−(1 + a)∆u+ u = λh(x)u, x ∈ Ω0

becomes

−∆w + w = λh(
√

1 + ax)w, x ∈ 1√
1 + a

Ω0,

which has a sequence of eigenvalues λn(a, h) with 0 < λ1(a, h) < λ2(a, h) ≤ · · · ≤
λn(a, h) ≤ . . . , each eigenvalue being of finite multiplicity and

λ1(a, h) = inf
u∈H1(R3)\{0}

∫
R3 [(1 + a)|∇u|2 + |u|2]dx∫

R3 h(x)u2dx
.

Clearly, we have
λ1(a, h) > λ1(h).

Especially, λ1(a, h) = λ1(h) if a = 0. Let δ∗ = λ1(a, h)− λ1(h). If δ ∈ [0, δ∗), then

λ 6∈ σ(−∆,
1√

1 + a
Ω0, h(

√
1 + ax)) if λ ∈ (0, λ1(h) + δ),

where σ(−∆, 1√
1+a

Ω0, h(
√

1 + ax)) denotes by the collection of eigenvalues of −(1+
a)∆ + Id in H1

0 ( 1√
1+a

Ω0). If the Lebesgue measure of Ω0 is zero, i.e., |Ω0| = 0, and
a = 0, then σ(−∆,Ω0, h(x)) = ∅. If |Ω0| 6= 0 and H1( 1√

1+a
Ω0) 6= {0}, it follows

that σ(−∆, 1√
1+a

Ω0, h(
√

1 + ax)) is discrete set and the equation∫
Ω0

[(1 + a)∇u · ∇ϕ+ uϕ]dx = λ

∫
Ω0
h(x)uϕdx, ∀ϕ ∈ H1(Ω0)

has a nontrivial solution u ∈ H1
0 (Ω0) if and only if λ ∈ σ(−∆, 1√

1+a
Ω0, h(

√
1 + ax)).

Our main result is as follows.

Theorem 1.1. Suppose that (H1)–(H6) hold. Then
(1) for 0 < λ ≤ λ1(h), problem (1.1) has at least one positive solution in

H1(R3);
(2) there exists δ̃ > 0, for λ1(h) < λ < λ1(h) + δ̃, problem (1.1) has at least

two positive solutions in H1(R3).

Remark 1.2. Theorem 1.1 generalizes [11, Theorem 1.1] with f(s) = |s|p−2s to
general form f(s) satisfying (H3)-(H5). Furthermore, if |Ω0| 6= 0, Theorem 1.1 still
holds in this paper, which is not considered in [11], and conditions of (H1) and (H2)
are weaker than the corresponding ones in [11] because the existence of limit of k(x)
at |x| → ∞ is not necessary. Moreover, it is not difficult to find some functions f
satisfying (H3)-(H5). The typical example is that f(s) = |s|p−2s. More generally,
taking ψ ∈ C∞0 (R3, [0, 1]) such that ψ(x) = 1 if |x| < 1 and ψ(x) = 0 if |x| > 2. Let

f(s) = ψ(x)sp−1 + (1− ψ(x))
[
sq−1 + P (x)/P̃ (x)sα

]
for s > 0,

where P (x) and P̃ (x) are two polynomials with the same degree. Clearly, f satisfies
(H3)-(H5).
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Remark 1.3. For elliptic equations with indefinite nonlinearity, Alama and Taran-
tello [2] also have studied the existence of multiple positive solutions of

−∆u− λ̃u = W (x)f(u), u ∈ H1
0 (Ω)

under the suitable assumptions f behaving like |t|p−1t(p ∈ (2, 2N/(N − 2))) near
zero with

∫
Ω
W (x)ẽp1dx < 0, where Ω is a smooth bounded domain of RN (N ≥ 3),

W is sign changing on Ω and ẽ1 is the positive eigenfunction corresponding to the
first eigenvalue λ̃1 of the problem −∆u = λ̃u, u ∈ H1

0 (Ω). Costa and Tehrani [13]
obtained existence results of positive solutions for

−∆u− λ̂h(x)u = A(x)g(u), u ∈ D1,2(RN )

for suitable h, sign changing A and g with
∫

RN A(x)ep1dx < 0, where e1 is the
positive eigenfunction corresponding to the first eigenvalue λ1 of problem −∆u =
λh(x)u, u ∈ D1,2(RN ) and A has “thick” zero set. But for Kirchhoff equations with
indefinite nonlinerity like as (1.1), this kind of condition such as

∫
RN a(x)ep1dx < 0

and
∫

Ω
W (x)ẽp1dx < 0 and so on is not necessary, because the nonlocal nonlinear

term−b
∫

R3 |∇u|2dx∆u dominated over indefinite nonlinear term k(x)f(s)(see [11]).
Furthermore, this yields that the condition: A has “thick” zero set in [13] or |Ω0| = 0
like as in [11] is also not necessary.

To obtain our result, we have to overcome various difficulties. First of all,
since the equation is considered in the whole space R3 and the Sobolev embedding
H1(R3) ↪→ Ls(R3)(2 ≤ s < 6) is no longer compact, the concentration-compactness
lemma in [19] is applied to restore compactness properties to prove that Iλ satisfies
(PS) condition by constructing sequences of “almost critical points” at those energy
levels where compactness is available. On the other hand, because of the general
term f in indefinite nonlinearity k(x)f(s), we use the concentration-compactness
lemma in [19] and not use Brezis-Lieb Lemma to prove (PS) condition like as in
[11]. When λ ∈ (0, λ1(h)), the linear part −∆u + u − λh(x)u of problem (1.1)
is coercive, we can use standard variational techniques to find that zero is a local
minimizer of the corresponding functional Iλ. But when λ ∈ (λ1(h), λ1(h) + δ̃),
the linear part −∆u + u − λh(x)u of problem (1.1) is not coercive, this case with
indefinite nonlinearity k(x)f(s) involving general f and the nonlocal nonlinear term
−b
∫

R3 |∇u|2dx∆u makes us to face more difficult than the case of λ ∈ (0, λ1(h))
such as the proofs of the boundedness of (PS) sequence and the mountain pass
geometry of Iλ. To overcome these difficulties, we need more analysis technical to
delicately analyze the behavior of the nonlocal nonlinear term −b

∫
R3 |∇u|2dx∆u

and the indefinite nonlinear term k(x)f(s).
This paper is organized as follows. In section 2, we prove a (PS) condition. In

section 3, we obtain the proof of our main result. In the following discussion, we
denote various positive constants by C or Ci(i = 1, 2, 3, . . . ) for convenience.

2. Palais-Smale condition

In this section, we shall prove that the functional Iλ satisfies the (PS) condition,
that is, any (PS)c sequence has a convergent subsequence in H1(R3), where (PS)c
sequence for the functional Iλ is referred to a sequence {un} ⊂ H1(R3) such that
Iλ(un)→ c and I ′λ(un)→ 0 in H−1(R3) for c ∈ R. We need the following Lemmas.
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Lemma 2.1 ([25]). Suppose that (H6) holds. Then the functional defined by u ∈
H1(R3) 7→

∫
R3 h(x)u2dx is weakly continuous.

Lemma 2.2. Suppose that (H1)–(H6) hold. Then for every c ∈ R, the (PS)c
sequence is bounded in H1(R3) if λ ∈ (0, λ1(h) + δ).

Proof. Let {un} ⊂ H1(R3) be a (PS)c sequence for Iλ at the level c, i. e.,

Iλ(un) =
1
2

∫
R3

(|∇un|2 + |un|2)dx+
b

4

(∫
R3
|∇un|2dx

)2

−
∫

R3
k(x)F (un)dx− λ

2

∫
R3
h(x)u2

ndx→ c

(2.1)

and

〈I ′λ(un), ϕ〉 =
∫

R3
(∇un · ∇ϕ+ unϕ)dx+ b

(∫
R3
|∇un|2dx

)∫
R3
∇un · ∇ϕdx

−
∫

R3
k(x)f(un)ϕdx− λ

∫
R3
h(x)unϕdx = o(1)‖ϕ‖

(2.2)

for any ϕ ∈ H1(R3) as n→∞. Arguing by contradiction, we assume that tn = ‖un‖
and tn →∞ as n→∞. Denote vn := un/tn. Then, we have that ‖vn‖ = 1 for each
n. Going to a subsequence, if necessary, we may assume that there is v ∈ H1(R3)
such that for each bounded domain Ω ⊂ R3,

vn ⇀ v in H1(R3),

vn(x)→ v(x) a. e. in R3,

vn → v in Lt(Ω) for 2 ≤ t < 6,

|vn(x)| ≤ w(x) for some w ∈ Lt(Ω).

(2.3)

Hence, for any ϕ ∈ H1(R3), we have that∫
R3
∇vn · ∇ϕdx→

∫
R3
∇v · ∇ϕdx,

∫
R3
vnϕdx→

∫
R3
vϕdx. (2.4)

Step I: We claim v(x) = 0 a. e. in R3. In fact, since un = tnvn, (2.2) becomes∫
R3

(∇vn · ∇ϕ+ vnϕ)dx+ bt2n

∫
R3
|∇vn|2dx

∫
R3
∇vn · ∇ϕdx

− |tn|q−2An(ϕ)− λ
∫

R3
h(x)vnϕdx

=
o(1)‖ϕ‖
tn

= o(1),

(2.5)

where An(ϕ) =
∫

R3 hn(x)dx and hn(x) := k(x)|vn|q−2vn
f(tnvn)

|tnvn|q−2tnvn
ϕ. Note that

|tn|q−2An(ϕ) =
∫

R3
k(x)

f(tnvn)
tnvn

vnϕdx.

On the set {x|v(x) 6= 0}, we have |tnvn| → +∞, and then, (2.3) and (H5) imply

hn(x) = k(x)|vn|q−2vn
f(tnvn)

|tnvn|q−2tnvn
ϕ

→ k(x)|v|q−2vϕ;
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On the set {x : v(x) = 0}, we have vn(x)→ 0, so, by (H1)–(H2), ϕ ∈ H1(R3), (H3)
and (H5), we obtain

|hn(x)| =
∣∣k(x)

f(tnvn)
tq−1
n

ϕ
∣∣ ≤ C1(1 + |tn|q−1|vn(x)|q−1)

|tn|q−1
→ 0.

This with (2.3) involving t = q − 1 yield that

|hn(x)| ≤ C1(1 + |w(x)|q−1) ∈ L1(Ω)

where Ω = supp(ϕ). From the discussion above, by the Lebesgue dominated con-
vergence theorem, we conclude

An(ϕ) :=
∫

R3
hn(x)dx =

∫
{x|v(x)6=0}

hn(x)dx+
∫
{x|v(x)=0}

hn(x)dx

→
∫

R3
k(x)|v|q−2vϕdx

(2.6)

as n → ∞. Divided (2.5) by tq−2
n and passing to limit, together with q ∈ (4, 6),

tn →∞ and (2.6), we obtain

An(ϕ)→
∫

R3
k(x)|v|q−2vϕdx = 0. (2.7)

Since ϕ ∈ H1(R3) is arbitrary, (2.7) implies

v(x) = 0 if x ∈ Ω+ ∪ Ω−. (2.8)

Taking any ϕ ∈ C∞0 (R3), passing to limit in (2.5), by (2.8), (2.7) and the defini-
tion of Ω0 in (H1), we obtain

(1 + b‖∇un‖22)
∫

R3
∇vn · ∇ϕdx+

∫
R3
vnϕdx− λ

∫
R3
h(x)vnϕdx→ 0 (2.9)

as n → ∞. If {‖∇un‖22} is bounded, then there exist a convergent subsequence
(still denoted by ‖∇un‖22) and some a > 0 such that ‖∇un‖22 → a/b as n → ∞.
Together with (2.4), Lemma 2.1 and (2.8), (2.9) can become to∫

Ω0

(1 + a)∇v · ∇ϕdx+
∫

Ω0

vϕdx− λ
∫

Ω0

h(x)vϕdx = 0

as n→∞. Since λ ∈ (0, λ1(h) + δ), it follows that v = 0 a.e. on Ω0. If ‖∇un‖22 →
∞, divided (2.9) by 1 + b‖∇un‖22, passing to limit, we obtain∫

Ω0

∇v · ∇ϕdx = 0.

Together with v ∈ H1(R3) and any ϕ ∈ C∞0 (R3), we have v = 0 a.e. on Ω0. Thus,
v = 0 a.e. in R3. The proof of the claim is completed.
Step II: We shall prove that un is bounded in H1(R3). Indeed, Suppose that∫

R3 |∇vn|2dx → β ≥ 0 as n → ∞. If β = 0, since ‖vn‖ = 1, then
∫

R3 |vn|2dx → 1
as n → ∞. This contradicts to vn → 0 a. e. in R3 which follows from Step I.
Therefore, we conclude that ‖un‖ is bounded. If β > 0, we need the following
arguments.

Divided (2.1) by t2n = ‖un‖2 and (2.2) by tn = ‖un‖, we obtain

1
2

+
b

4

∫
R3
|∇un|2dx

∫
R3
|∇vn|2dx−

∫
R3
k(x)

F (un)
t2n

dx− λ
2

∫
R3
h(x)v2

ndx→ 0 (2.10)
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and
1
tn
〈I ′λ(un), ϕ〉 =

∫
R3

(∇vn∇ϕ+ vnϕ)dx+ b
(∫

R3
|∇un|2dx

)∫
R3
∇vn∇ϕdx

−
∫

R3
k(x)

f(un)
tn

ϕdx− λ
∫

R3
h(x)vnϕdx→ 0

(2.11)

as n → ∞. Moreover, if we localize and take ϕ = vξ in (2.11) with ξ ∈ C∞0 (R3),
since 〈I ′λ(un), vξ〉 = 〈I ′λ(un), vnξ〉 − 〈I ′λ(un), (vn − v)ξ〉 and (2.3), passing to limit,
we obtain∫

R3
(|∇vn|2ξ + v2

nξ + vn∇vn∇ξ)dx+ b

∫
R3
|∇un|2dx

∫
R3
|∇vn|2ξdx

+ b

∫
R3
|∇un|2dx

∫
R3
vn∇vn∇ξdx−

∫
R3
k(x)

f(un)un
t2n

ξdx

− λ
∫

R3
h(x)v2

nξdx→ 0.

(2.12)

Since vn ⇀ v in H1(R3), v = 0 a.e. in R3, (2.3) and Lemma 2.1, we obtain∫
R3
vn∇vn∇ξdx→ 0,

∫
R3
|vn|2ξdx→ 0, (2.13)∫

R3
h(x)v2

nξdx→ 0, lim
n→∞

∫
R3
h(x)v2

ndx = 0. (2.14)

as n→∞. Inserting (2.14) into (2.10), we have∫
R3
k(x)

F (un)
t2n

dx =
1
2

+
b

4

∫
R3
|∇un|2dx

∫
R3
|∇vn|2dx+ o(1). (2.15)

Inserting (2.13) and (2.14) into (2.12), we obtain∫
R3
k(x)

f(un)un
t2n

ξdx =
(

1 + b

∫
R3
|∇un|2dx

)∫
R3
|∇vn|2ξdx

+ b

∫
R3
|∇un|2dx

∫
R3
vn∇vn∇ξdx+ o(1).

(2.16)

Now, we claim that∫
R3
k(x)

qF (un)
t2n

ξdx =
∫

R3
k(x)

f(un)un
t2n

ξdx+ o(1). (2.17)

Indeed, by (H3), we know that |qF (s) − f(s)s| ≤ C2 for |s| ≤ M . From tn → ∞
and (H1)–(H2), we clearly have∫

[|un|≤M ]

|k(x)|
∣∣qF (un)− f(un)un

t2n

∣∣|ξ|dx = o(1).

Also, (H5) implies that |qF (s)−f(s)s| = O(|s|α+1) as |s| → ∞, where 1 ≤ α+1 < 2,
together with (H1) and (H2), we have∫

[|un|≥M ]

|k(x)|
∣∣qF (un)− f(un)un

t2n

∣∣|ξ|dx ≤ C3

∫
[suppξ]∩[|un|≥M ]

|un|α+1

t2n
dx→ 0

as n→∞. Therefore, claim (2.17) is proved.
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Choosing ξ ∈ C∞0 (R3) such that ξ ∈ [0, 1], ξ(x) = 1 if |x| < R0 and ξ(x) = 0 if
|x| > 2R0, from (2.17), (2.15), (2.16) and (2.13), we obtain

lim inf
n→∞

∫
R3
k(x)

F (un)
t2n

(1− ξ)dx

= lim inf
n→∞

[ ∫
R3
k(x)

F (un)
t2n

dx−
∫

R3
k(x)

F (un)
t2n

ξdx
]

= lim inf
n→∞

[ ∫
R3
k(x)

F (un)
t2n

dx− 1
q

∫
R3
k(x)

f(un)un
t2n

ξdx
]

= lim inf
n→∞

[1
2

+
b

4

∫
R3
|∇un|2dx

∫
R3
|∇vn|2dx

− 1
q

(
1 + b

∫
R3
|∇un|2dx

)∫
R3
|∇vn|2ξdx−

b

q

∫
R3
|∇un|2dx

∫
R3
vn∇vn∇ξdx

]
≥ lim inf

n→∞

[1
2
− 1
q

+ b
(1

4
− 1
q

) ∫
R3
|∇un|2dx

∫
R3
|∇vn|2dx

− b

q

∫
R3
|∇un|2dx

∫
R3
vn∇vn∇ξdx

]
≥ 1

2
− 1
q

+ b lim inf
n→∞

∫
R3
|∇un|2dx

[(1
4
− 1
q

) ∫
R3
|∇vn|2dx−

1
q

∫
R3
vn∇vn∇ξdx

]
≥ 1

2
− 1
q
> 0

(2.18)
because

∫
R3 |∇vn|2dx → β > 0 as n → ∞ and q > 4. Moreover, since f is an odd

function, by the definition ξ and (H2), we have

lim inf
n→∞

∫
R3
k(x)

F (un)
t2n

(1− ξ)dx = lim inf
n→∞

∫
|x|≥R0

k(x)
F (un)
t2n

(1− ξ)dx ≤ 0,

which contradicts to (2.18). Thus, we conclude that tn = ‖un‖ is bounded. �

Lemma 2.3 ([19]). Let {ρn} be a sequence in L1(RN ) satisfying ρn ≥ 0 and∫
RN ρndx = λ > 0. Then, there exists a subsequence {ρnk} for which one of the

three possibilities holds:
Vanishing: limk→∞ supy∈RN

∫
y+BR

ρnkdx = 0 for all R > 0;
Dichotomy: There exists 0 < α < λ such that, for any given ε > 0, there

is a sequence {yn} ⊂ RN , a number R > 0 and a sequence {Rn} ⊂ R+, with
R < R1, Rn < Rn+1 → +∞, such that, if we set ρ1

n = ρnχ[|x−yn|≤R] and ρ2
n =

ρnχ[|x−yn|≥Rn], then we have

‖ρn − ρ1
n − ρ2

n‖1 ≤ ε,
∣∣ ∫

RN
ρ1
ndx− α

∣∣ ≤ ε, ∣∣ ∫
RN

ρ2
ndx− (λ− α)

∣∣ ≤ ε;
Compactness: There exists yk ∈ RN such that ρnk(·+ yk) is tight, i.e. for each

varepsilon > 0 there exists R > 0 such that∫
yk+BR

ρnkdx ≥ λ− ε.

Lemma 2.4. Suppose that (H1)–(H6) hold, then Iλ satisfies the (PS) condition if
λ ∈ (0, λ1(h) + δ).
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Proof. By Lemma 2.2, we know that a (PS)c sequence {un} is bounded in H1(R3).
Without loss of generality, we may assume that

C0 ≥ ‖un‖2 ≥ C4 > 0. (2.19)

Therefore, by considering the sequence of L1(R3) functions

ρn = |∇un|2 + |un|2,
we have(by passing to a subsequence, if necessary) that∫

R3
ρndx→ λ > 0.

We shall use the concentration-compactness (Lemma 2.3) to show that {un} has
a convergent subsequence in H1(R3). In fact, we will rule out vanishing and di-
chotomy for the L1 sequence of {ρn}.

Vanishing: In our situation vanishing can not occur. Indeed, if vanishing hap-
pens, i.e., limn→∞ supy∈R3

∫
y+Bt

ρndx = 0 for all t > 0, then we have un ⇀ 0
weakly in H1(R3), therefore, un → 0 in Lsloc(R3) for any 2 ≤ s ≤ 6. Together with
(2.1) and (2.2), we have

1
2

∫
R3

(|∇un|2 + |un|2)dx+
b

4

(∫
R3
|∇un|2dx

)2

−
∫

R3
k(x)F (un)dx→ c

and ∫
R3

(|∇un|2 + |un|2)dx+ b
(∫

R3
|∇un|2dx

)2

−
∫
|x|≤R0

k(x)f(un)undx−
∫
|x|>R0

k(x)f(un)undx→ 0
(2.20)

as n→∞. From (H3)-(H5), there exist Ci(i = 5, . . . , 12) and δ0 > 0 such that

|f(s)| ≤ C5|s|p−1 + C6|s|q−1, |F (s)| ≤ C7|s|p + C8|s|q, (2.21)

C9|s|p ≤ |F (s)|, C10|s|p ≤ f(s)s if |s| ≤ δ0,
C11|s|q ≤ |F (s)|, C12|s|q ≤ f(s)s if |s| ≥ δ0.

Since un → 0 in Lsloc(R3) for any 2 ≤ s ≤ 6, by (H1)–(H2) and (2.21), we obtain∣∣ ∫
[|x|≤R0]

k(x)f(un)undx
∣∣+
∣∣ ∫

[|x|≤R0]

k(x)F (un)dx
∣∣ = o(1),

where R0 is given in (H2). Then (2.20) yields∫
R3

(|∇un|2 + |un|2)dx+ b
(∫

R3
|∇un|2dx

)2

−
∫
|x|>R0

k(x)f(un)undx→ 0

as n→∞. By (H2), we deduce that∫
R3

(|∇un|2 + |un|2)dx = o(1),
∫

R3
k(x)f(un)undx = o(1).

Hence, ‖un‖ → 0 as n→∞, which is a contradiction.
Dichotomy: If dichotomy occurs, then there exists 0 < α < λ such that, for any

given ε > 0 and R ≥ 1, there are sequences {yn} ⊂ R3, {Rn} ⊂ R+ and R̂ > R

satisfying R0 < R̂ < 1
2R1, Rn < Rn+1 → +∞ and

α− ε <
∫
|x−yn|≤ 1

2
bR(|∇un|2 + |un|2)dx < α+ ε,
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λ− α− ε <
∫
|x−yn|≥3Rn

(|∇un|2 + |un|2)dx < λ− α+ ε. (2.22)

In particular, we have∫
1
2

bR<|x−yn|≤3Rn

(|∇un|2 + |un|2)dx < 2ε. (2.23)

Note that we also have ∫
bR<|x−yn|≤2Rn

|un|6dx < C13ε
3. (2.24)

In fact, if ξn ∈ C∞0 (R3) is such that ξn(x) = 0 if |x| ≤ 1
2 R̂ and |x| ≥ 3Rn, ξn = 1

if R̂ ≤ |x| ≤ 2Rn and |∇ξn| ≤ 1

Rn− bR , then ξnun ∈ H1(R3), by the Sobolev’s
inequality, (2.19) and (2.23), we have∫

bR<|x−yn|≤2Rn

|un|6dx

≤
∫

1
2

bR<|x−yn|≤3Rn

|ξnun|6dx

≤
∫

R3
|ξnun|6dx

≤ C14

(∫
R3

(|∇(ξnun)|2 + |ξnun|2)dx
)3

≤ C15

(∫
R3
|∇ξn|2u2

ndx+
∫

1
2

bR<|x−yn|≤3Rn

(|∇un|2 + |un|2)dx
)3

≤ C13ε
3

as n→∞.
Next, let us take ζ ∈ C∞0 (R3) such that ζ(x) = 1 for |x| ≤ 1, ζ(x) = 0 for |x| ≥ 2,

as well as η(x) = 1− ζ(x), and set

u1
n = ζ

( · − yn
R̂

)
un := ζnun, u2

n = η
( · − yn

Rn

)
un := ηnun.

Clearly, u1
nu

2
n = 0.

Case 1: If {yn} is bounded. Then, the support of the sequence {u2
n} approaches

infinity, let Rn →∞, then u2
n ⇀ 0 in H1(R3). By (2.24), then we have∣∣ ∫

R3
h(x)u2

n(u2
n − un)dx

∣∣ ≤ ∫
Rn≤|x−yn|≤2Rn

|h(x)||u2
n||u2

n − un|dx

≤
∫
Rn≤|x−yn|≤2Rn

|h(x)||ζnηn||un|2dx

≤ C16‖h‖3/2ε := O(ε)

In particular, letting µ(ε) denote a function which goes to zero as ε→ 0, we have∫
R3
h(x)u2

nundx =
∫

R3
h(x)|u2

n|2dx+ µ(ε). (2.25)

Similarly, using (2.23) and argue as above, it is easy to see that∫
R3
∇un·∇u2

ndx =
∫

R3
|∇u2

n|2dx+µ(ε),
∫

R3
unu

2
ndx =

∫
R3
|u2
n|2dx+µ(ε). (2.26)
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Furthermore, combining (H1)–(H2), (2.23), (2.24), (2.21) and Sobolev’s inequality,
we obtain∣∣ ∫

R3
k(x)(f(un)− f(u2

n))u2
ndx

∣∣
≤ C17

∫
Rn≤|x−yn|≤2Rn

|un|pdx+ C18

∫
Rn≤|x−yn|≤2Rn

|un|qdx

≤ C19

(∫
Rn≤|x−yn|≤2Rn

|un|6dx
)p/6

+ C20

(∫
Rn≤|x−yn|≤2Rn

|un|6dx
)q/6

≤ C21ε
p/2 + C22ε

q/2 = µ(ε).

This yields ∫
R3
k(x)f(un)u2

ndx =
∫

R3
k(x)f(u2

n)u2
ndx+ µ(ε). (2.27)

By (2.25)-(2.27), we obtain

o(1)

= 〈I ′(un), u2
n〉

=
∫

R3
(∇un∇u2

n + unu
2
n)dx+ b

(∫
R3
|∇un|2dx

)∫
R3
∇(un − u2

n + u2
n)∇u2

ndx

−
∫

R3
k(x)f(un)u2

ndx− λ
∫

R3
h(x)unu2

ndx

=
∫

R3
(|∇u2

n|2 + |u2
n|2)dx+ b

∫
R3
|∇un|2dx

∫
R3
|∇u2

n|2dx

−
∫

R3
k(x)f(u2

n)u2
ndx− λ

∫
R3
h(x)|u2

n|2dx+ µ(ε).

Since Rn →∞, {yn} is bounded, u2
n ⇀ 0 weakly in H1(R3) and

∫
R3 h(x)|u2

n|2dx =
o(1) as n→∞, we deduce∫

R3
(|∇u2

n|2 + |u2
n|2)dx+ b

∫
R3
|∇un|2dx

∫
R3
|∇u2

n|2dx−
∫

R3
k(x)f(u2

n)u2
ndx

= o(1) + µ(ε),

which implies that ∫
R3

(|∇u2
n|2 + |u2

n|2)dx = o(1) + µ(ε),

b

∫
R3
|∇un|2dx

∫
R3
|∇u2

n|2dx = o(1) + µ(ε),

−
∫

R3
k(x)f(u2

n)u2
ndx = o(1) + µ(ε)

because (H2) as n→∞. Then we have a contradiction, indeed, by (2.22), we have∫
R3

(|∇u2
n|2 + |u2

n|2)dx ≥
∫
|x−yn|≥3Rn

(|∇u2
n|2 + |u2

n|2)dx > λ− α− ε.

Case 2: If {yn} is not bounded. Then, passing to a subsequence if necessary, we can
assume that |yn| → ∞. In this case, the support of the sequence {u1

n} approcahes
infinity, we can apply the same arguments above to u1

n to get a contradiction.



EJDE-2016/35 EXISTENCE OF TWO POSITIVE SOLUTIONS 13

Compactness: Since we have ruled out vanishing and dichotomy, it follows that
compactness necessarily take place, i.e. there exists yn ∈ R3 such that for each
ε > 0 there exists R > 0 such that∫

yn+BR

(|∇un|2 + |un|2)dx ≥ λ− ε.

In particular, we have ∫
|x−yn|≥R

(|∇un|2 + |un|2)dx < ε. (2.28)

By (2.28) and a similar method as above, we claim that {yn} must remain bounded.
In fact, if not, then (2.28) implies that un ⇀ 0 weakly in H1(R3), together with
(H1)–(H6), we have

o(1) = 〈I ′λ(un), un〉

=
∫

R3
(|∇un|2 + |un|2)dx+ b

(∫
R3
|∇un|2dx

)2

−
∫

R3
k(x)f(un)undx+ o(1)

=
∫

R3
(|∇un|2 + |un|2)dx+ b

(∫
R3
|∇un|2dx

)2

−
∫
|x|≤R0

k(x)f(un)undx

−
∫
|x|>R0

k(x)f(un)undx+ o(1)

=
∫

R3
(|∇un|2 + |un|2)dx+ b

(∫
R3
|∇un|2dx

)2

−
∫
|x|>R0

k(x)f(un)undx+ o(1) + µ(ε).

This yields∫
R3

(|∇un|2 + |un|2)dx = o(1) + µ(ε),
(∫

R3
|∇un|2dx

)2

= o(1) + µ(ε),∫
R3
k(x)f(un)undx = o(1) + µ(ε).

Therefore,

c+ o(1) = Iλ(un)

=
1
2

∫
R3

(|∇un|2 + |un|2)dx+
b

4

(∫
R3
|∇un|2dx

)2

−
∫

R3
k(x)F (un)dx− λ

2

∫
R3
h(x)u2

ndx

= o(1) + µ(ε).

This is a contradiction. Thus, {yn} is bounded in R3. The boundedness of {yn}
and (2.28) imply ∫

|x|≥R
(|∇un|2 + |un|2)dx < ε. (2.29)

Since {un} is bounded, we have un ⇀ u weakly in H1(R3) and un → u strongly in
Lt(Ω) for any 2 ≤ t < 6, where Ω is bounded. From (2.29), we obtain

un → u strongly in Lt(R3) for 2 ≤ t < 6. (2.30)
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Equations (2.19), (2.30), (H1)–(H6) imply∫
R3
k(x)(f(un)− f(u))(un − u)dx→ 0,

∫
R3
h(x)(un − u)2dx→ 0,∫

R3
k(x)f(un)(un − u)dx→ 0,

∫
R3
h(x)un(un − u)dx→ 0

as n→∞. This yields

o(1) = 〈I ′λ(un), un − u〉

=
(

1 + b

∫
R3
|∇un|2dx

)∫
R3
∇un∇(un − u)dx+

∫
R3
un(un − u)dx

−
∫

R3
k(x)f(un)(un − u)dx− λ

∫
R3
h(x)un(un − u)dx

=
(

1 + b

∫
R3
|∇un|2dx

)∫
R3
∇un∇(un − u)dx+ o(1).

From the boundedness of {un} in H1(R3), we obtain∫
R3
∇u∇(un − u)dx→ 0

as n→∞. Moreover, we have

〈I ′λ(un)− I ′λ(u), un − u〉

=
(

1 + b

∫
R3
|∇un|2dx

)∫
R3
|∇(un − u)|2dx+

∫
R3
|un − u|2dx

+ b
(∫

R3
|∇u|2dx−

∫
R3
|∇un|2dx

)∫
R3
∇u∇(un − u))dx

−
∫

R3
k(x)(f(un)− f(u))(un − u)dx− λ

∫
R3
h(x)(un − u)2dx

≥
∫

R3
(|∇(un − u)|2 + |un − u|2)dx+ o(1).

This yields
‖un − u‖2 ≤ 〈I ′λ(un)− I ′λ(u), un − u〉+ o(1)→ 0

as n→∞. Thus, un → u strongly in H1(R3). �

3. Existence of positive solutions

In this section, we shall prove our main result. Firstly, we obtain the local
minimum of Iλ for λ ∈ (0, λ1(h)) and prove Iλ has the mountain pass structure.
Then we prove the existence and multiplicity of positive solution for (1.1) by the
mountain pass theorem and Ekeland’s variational principle, respectively.

Lemma 3.1. Suppose that (H1)–(H6) hold.

(a) If λ ∈ (0, λ1(h)), then u = 0 is a local minimum of Iλ;
(b) There exist δ̃, ρ and α such that, for any λ ∈ [λ1(h), λ1(h) + δ̃), Iλ(u) ≥

α > 0 if ‖u‖ = ρ;
(c) There exists w ∈ H1(R3) with ‖w‖ > ρ such that Iλ(w) < 0 for any λ > 0.
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Proof. (a) By (1.3), (H1)–(H2), (2.21) and the Sobolev inequality, we have

Iλ(u) =
1
2

∫
R3

(|∇u|2 + |u|2)dx+
b

4

(∫
R3
|∇u|2dx

)2

−
∫

R3
k(x)F (u)dx

− λ

2

∫
R3
h(x)u2dx

≥ 1
2

(
1− λ

λ1(h)

)
‖u‖2 −

∫
|x|>R0

k(x)F (u)dx−
∫
|x|≤R0

k(x)F (u)dx

≥ 1
2

(
1− λ

λ1(h)

)
‖u‖2 −

∫
|x|≤R0

k(x)F (u)dx

≥ 1
2

(
1− λ

λ1(h)

)
‖u‖2 − C23

∫
R3
|F (u)|dx

≥ 1
2

(
1− λ

λ1(h)

)
‖u‖2 − C24‖u‖pp − C24‖u‖qq

≥ 1
2

(
1− λ

λ1(h)

)
‖u‖2 − C25‖u‖p − C26‖u‖q

≥ C27‖u‖2

for ‖u‖ suitable small. Hence u = 0 is a local minimizer of Iλ. Thus, (a) holds.
(b) For any u ∈ H1(R3), we decompose u as u = te1 + v, where t ∈ R and

v ∈ {span{e1}}⊥. Clearly, we have

‖u‖2 = t2 + ‖v‖2, λ1(h)
∫

R3
h(x)e2

1dx = ‖e1‖2 = 1,

λ2(h)
∫

R3
h(x)|v|2dx ≤ ‖v‖2, λ1(h)

∫
R3
h(x)e1vdx =

∫
R3

(∇e1∇v + e1v) = 0.

Using this decomposition, we also know that∫
R3
h(x)u2dx = t2

∫
R3
h(x)e2

1dx+
∫

R3
h(x)v2dx,

(∫
R3
|∇u|2dx

)2

=
(
t2
∫

R3
|∇e1|2dx+ 2t

∫
R3
∇e1∇vdx+

∫
R3
|∇v|2dx

)2

= t4
(∫

R3
|∇e1|2dx

)2

+ 4t3
∫

R3
|∇e1|2dx

∫
R3
∇e1∇vdx

+ 2t2
∫

R3
|∇e1|2dx

∫
R3
|∇v|2dx+ 4t2

(∫
R3
∇e1∇vdx

)2

+ 4t
∫

R3
∇e1∇vdx

∫
R3
|∇v|2dx+

(∫
R3
|∇v|2dx

)2

≤ t4
(∫

R3
|∇e1|2dx

)2

+
(∫

R3
|∇v|2dx

)2

+ C28|t|3‖v‖+ C29|t|2‖v‖2 + C30|t|‖v‖3,

and

−
∫

R3
k(x)F (u)dx
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= −
∫
|x|≤R0

k(x)F (u)dx−
∫
|x|>R0

k(x)F (u)dx

= −1
p

∫
|x|≤R0

k(x)|te1|pdx−
∫
|x|≤R0

k(x)
[
F (te1)− 1

p
|te1|p

]
dx

−
∫
|x|≤R0

k(x)[F (te1 + v)− F (te1)]dx−
∫
|x|>R0

k(x)F (te1 + v)dx

≥ −1
p

∫
|x|≤R0

k(x)|te1|pdx−
∫
|x|≤R0

k(x)
[
F (te1)− 1

p
|te1|p

]
dx

− C31

∫
|x|≤R0

k(x)f(te1 + θv)vdx−
∫
|x|>R0

k(x)F (te1 + v)dx

≥ −C32|t|p −
∫
|x|≤R0

k(x)
[
F (te1)− 1

p
|te1|p

]
dx+K0

∫
|x|>R0

F (te1 + v)dx

− C33

[ ∫
|x|≤R0

k(x)|te1 + θv|p−1vdx+
∫
|x|≤R0

k(x)|te1 + θv|q−1vdx
]

≥ −C32|t|p −
∫
|x|≤R0

k(x)
[
F (te1)− 1

p
|te1|p

]
dx+K0

∫
|x|>R0

F (te1 + v)dx

− C34

[
|t|p−1

(∫
|x|≤R0

|v|pdx
)1/p

+ |t|q−1
(∫
|x|≤R0

|v|qdx
)1/q

+
∫
|x|≤R0

|v|pdx+
∫
|x|≤R0

|v|qdx
]

≥ −C32|t|p −
∫
|x|≤R0

k(x)
[
F (te1)− 1

p
|te1|p

]
dx+K0

∫
|x|>R0

F (te1 + v)dx

− C35[|t|p−1‖v‖+ |t|q−1‖v‖+ ‖v‖p + ‖v‖q]
≥ −C32|t|p + o(1)|t|p − C36

[
|t|p−1‖v‖+ ‖v‖p

]
,

because (H1)–(H3), (2.21), (H5) and the odd nature of f as |t| and ‖u‖ small
enough, where θ ∈ [0, 1]. Then

Iλ1(h)(u) =
1
2

∫
R3

(|∇u|2 + |u|2)dx+
b

4

(∫
R3
|∇u|2dx

)2

−
∫

R3
k(x)F (u)dx

− λ1(h)
2

∫
R3
h(x)u2dx

≥ 1
2

(
1− λ1(h)

λ2(h)

)
‖v‖2 +

b

4
θ0t

4 +
b

4

(∫
R3
|∇v|2dx

)2

− C28|t|3‖v‖

− C29|t|2‖v‖2 − C30|t|‖v‖3 − C32|t|p + o(1)|t|p

− C36[|t|p−1‖v‖+ ‖v‖p],

(3.1)

as |t| and ‖u‖ small enough. Furthermore, by the Young inequality,

|t|2‖v‖2 ≤ 2
p
|t|p +

p− 2
p
‖v‖

2p
p−2 , (3.2)

|t|‖v‖3 ≤ 1
p
|t|p +

p− 1
p
‖v‖

3p
p−1 , (3.3)

|t|3‖v‖ ≤ q0 − 1
q0
|t|

3q0
q0−1 +

1
q0
‖v‖q0 (3.4)
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for some q0 with q0 ∈ (2, 4). Inserting (3.2)-(3.4) to (3.1), letting ‖v‖ and |t| small
enough, we obtain

Iλ1(h)(u) ≥ C37‖v‖2 + C38|t|4

as |t| and ‖u‖ small enough, because p > 4, 4 > q0 > 2, 3q0
q0−1 > 4, 2p

p−2 > 2 and
3p
p−1 > 2. Therefore, there exists ρ̃ > 0 and α̃ > 0 such that

Iλ1(h)(u) ≥ α̃‖u‖4 for ‖u‖ ≤ ρ̃. (3.5)

Taking

δ̃ = min
{λ1(h)

2
α̃ρ̃, δ, λ2(h)− λ1(h)

}
.

Note that, for any λ ∈ [λ1(h), λ1(h) + δ̃), we obtain

Iλ(u) = Iλ1(h)(u) +
1
2

(λ1(h)− λ)
∫

R3
h(x)u2dx

≥ α̃‖u‖4 − λ− λ1(h)
2λ1(h)

‖u‖2

≥ ‖u‖2
(
α̃‖u‖2 − λ− λ1(h)

2λ1(h)

)
≥ ‖u‖2

( α̃ρ̃
2
− λ− λ1(h)

2λ1(h)

)
≥ ‖u‖2

( α̃ρ̃
2
− 1

4
α̃ρ̃
)

=
1
4
α̃ρ̃‖u‖2

for eρ
2 ≤ ‖u‖ ≤ ρ̃. Choosing ρ ∈ [ eρ

2 , ρ̃] and α = 1
8 α̃ρ̃

2, we obtain (b).
(c) Choose ψ ∈ H1(R3) with suppψ ⊂ Ω+ such that ψ(x) ≥ 0 for all x ∈ Ω+

and ψ = t0e1 + v with t0 6= 0. Then for any s > 0 large such ‖sψ‖ ≥ max{δ0, ρ},
by (??), we have

Iλ(sψ)

=
s2

2
‖ψ‖2 +

bs4

4

(∫
R3
|∇ψ|2dx

)2

−
∫

Ω+
k(x)F (sψ)dx− λs2

2

∫
R3
h(x)ψ2dx

≤ s2

2
‖ψ‖2 +

bs4

4

(∫
R3
|∇ψ|2dx

)2

− Csq
∫

Ω+
k(x)|ψ|qdx− λs2

2

∫
R3
h(x)ψ2dx

→ −∞

as s→ +∞, because q > 4. From the choice of ψ, take w = sψ with s large enough,
then Iλ(w) < 0, (c) is proved. �

Lemma 3.2. Suppose that (H1)–(H6) hold. Then problem (1.1) has at least one
positive solution uλ with Iλ(uλ) > 0 for 0 < λ < λ1(h) + δ̃.

Proof. From Lemma 3.1 and the Mountain Pass Theorem, then there exists a
(PS)cλ sequence {un} such that Iλ(un) → cλ > 0 and I ′λ(un) → 0 in H−1(R3),
where

cλ = inf
g∈Γ

max
u∈g[0,1]

Iλ(u) with Γ = {g ∈ C([0, 1], H1(R3)) : g(0) = 0, g(1) = w}.



18 L. DING, Y.-J. MENG, S.-W. XIAO, J.-L. ZHANG EJDE-2016/35

Then by Lemma 2.4, we know that Iλ satisfies (PS) condition. Thus, the mountain
pass theorem implies cλ is a critical value of Iλ, cλ > 0 and uλ is a critical point
of Iλ. Since Iλ(u) = Iλ(|u|) for any u ∈ H1(R3), by using an idea from [1, 2], for
every n ∈ N, there exists gn(t) ∈ Γ with gn(s) ≥ 0 for all s ∈ [0, 1] such that

cλ ≤ max
s∈[0,1]

Iλ(gn(s)) < cλ +
1
n
.

By using Ekeland’s variational principle in [25], there exists g∗n ∈ Γ satisfying the
following properties:

cλ ≤ max
s∈[0,1]

Iλ(g∗n(s)) ≤ max
s∈[0,1]

Iλ(gn(s)) < cλ +
1
n
,

max
s∈[0,1]

‖gn − g∗n‖ ≤
1√
n
, ‖I ′λ(wn)‖ ≤ 1

n
,

(3.6)

and there exists sn ∈ [0, 1] such that zn = g∗n(sn) satisfying

Iλ(zn) = max
s∈[0,1]

Iλ(g∗n(s)), ‖I ′λ(zn)‖ ≤ 1√
n
. (3.7)

This inequality implies that {zn} ⊂ H1(R3) is a (PS)cλ sequence, by Lemma
2.4, there exists a convergent subsequence (still denoted by {zn} and z ∈ H1(R3)
satisfying zn → z as n → ∞. Thus gn(sn) → z in H1(R3) as n → ∞ by (3.6)
and (3.7). It follows that z ≥ 0 from gn(s) ≥ 0 a. e. in R3 with Iλ(z) > 0. Let
uλ = z ≥ 0. By (2.19), we know that 0 < C ≤ ‖uλ‖ ≤ C0, which implies that
there exists M0 > 0 such that uλ ≤M0 a. e. in R3. Moreover, by (H1)–(H5), there
exists a constant C(M0) > 0 depending M0 such that

|k(x)f(uλ)| ≤ C(M0)uλ.

Together with (H6) and λ > 0, we have

−
(

1 + b

∫
R3
|∇uλ|2dx

)
∆uλ + uλ = k(x)f(uλ) + λh(x)uλ

≥ k(x)f(uλ) ≥ −C(M0)uλ.

This yields
−∆uλ + Luλ ≥ 0,

where L = (1+C(M0))/(1+ b
∫

R3 |∇uλ|2dx). Then by the maximum principle that
uλ > 0 in R3, then it is a positive solution of problem (1.1). �

Lemma 3.3. Suppose that (H1)–(H6) hold. Then (1.1) has at least one positive
solution ωλ with Iλ(ωλ) < 0 for λ1(h) < λ < λ1(h) + δ̃.

Proof. By (b) of Lemma 3.1 and its proof, there exist δ̃, ρ > 0 with ρ → 0, α > 0
if λ ∈ (λ1(h), λ1(h) + δ̃) and

Iλ(u) ≥ α > 0 if ‖u‖ = ρ.

Let mλ := infBρ Iλ(u), where Bρ := {u ∈ H1R3 : ‖u‖ ≤ ρ} with ρ as in Lemma
3.1. It is clear mλ > −∞. Next, we prove that mλ < 0. In fact, given R > 0,
define κR ∈ C∞0 (R3) with 0 ≤ κR ≤ 1 and |∇κR| ≤ 2

R for any x ∈ R3 and

κR(x) =

{
1, |x| ≤ R,
0, |x| ≥ 2R.
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Then κRe1 ∈ H1(R3) and we have

Iλ(tκRe1)

=
t2

2

∫
R3
|∇(κRe1)|2dx+

t2

2

∫
R3
|κRe1|2dx+

bt4

4

(∫
R3
|∇(κRe1)|2dx

)2

−
∫

R3
k(x)F (tκRe1)dx− λt2

2

∫
R3
h(x)κ2

Re
2
1dx

=
t2

2

∫
R3

(κ2
R|∇e1|2 + |∇κR|2e2

1 + 2κRe1∇e1∇κR)dx+
t2

2

∫
R3
|κRe1|2dx

+
bt4

4

(∫
R3
|∇(κRe1)|2dx

)2

−
∫

R3
k(x)F (tκRe1)dx− λt2

2

∫
R3
h(x)κ2

Re
2
1dx.

(3.8)

Multiplying both sides of the equation −∆e1 + e1 = λ1(h)h(x)e1 by κ2
Re1 and

integrate by parts, we obtain

2
∫

R3
κRe1∇e1∇κRdx+

∫
R3
κ2

Re
2
1dx+

∫
R3
κ2

R|∇e1|2dx

= λ1(h)
∫

R3
h(x)κ2

Re
2
1dx.

(3.9)

Inserting (3.9) to (3.8), we obtain

Iλ(tκRe1) =
t2

2

∫
R3
|∇κR|2e2

1dx+
t2(λ1(h)− λ)

2

∫
R3
h(x)κ2

Re
2
1dx

+
bt4

4

(∫
R3
|∇(κRe1)|2dx

)2

−
∫

R3
k(x)F (tκRe1)dx.

(3.10)

Moreover, by the definition of κR, the Hölder and Sobolev inequalities, we deduce∫
R3
|∇κR|2e2

1dx =
∫
R≤|x|≤2R

|∇κR|2e2
1dx

≤
(∫

R≤|x|≤2R

e6
1dx
)1/3(∫

R≤|x|≤2R

|∇κR|3dx
)2/3

≤
(∫

R≤|x|≤2R

e6
1dx
)1/3(( 2

R

)3 ∫
R≤|x|≤2R

dx
)2/3

≤ C39

(∫
R≤|x|≤2R

e6
1dx
)1/3

→ 0

(3.11)

as R→∞ because ‖e1‖ = 1. Then, multiplying both sides of the equation −∆e1 +
e1 = λ1(h)h(x)e1 by e1 and integrate by parts, we obtain the identity∫

R3
h(x)e2

1dx =
1

λ1(h)
‖e1‖2 =

1
λ1(h)

. (3.12)

Furthermore, by choosing R sufficiently large, the definition of κR and (3.12), we
obtain that∫

R3
h(x)κ2

Re
2
1dx ≥

∫
|x|≤R

h(x)κ2
Re

2
1dx =

∫
|x|≤R

h(x)e2
1dx ≥

1
2λ1(h)

. (3.13)

Therefore, by choosing R1 ≥ 1 sufficiently large, by (3.11) and (3.13), we obtain∫
R3
|∇κR|2e2

1dx ≤
λ− λ1(h)

2

∫
R3
h(x)κ2

Re
2
1dx (3.14)
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for all R ≥ R1 and λ > λ1(h). Inserting (3.14) to (3.10), by (2.21) and (H2), we
have

Iλ(tκRe1) ≤ t2(λ1(h)− λ)
4

∫
R3
h(x)κ2

Re
2
1dx+

bt4

4

(∫
R3
|∇(κRe1)|2dx

)2

−
∫

R3
k(x)F (tκRe1)dx

≤ −C40t
2 + C41t

4 + C42t
p + C43t

q,

for all R ≥ R1. This yields that Iλ(tκRe1) < 0 for all t > 0 small enough because
that p, q > 4. Then there exists t0 such that ‖t0κRe1‖ ≤ ρ → 0 such that
Iλ(t0κRe1) < 0. Thus, mλ = infBρ Iλ(u) < 0.

Since mλ = infBρ Iλ(u) < 0 and Iλ(u) = Iλ(|u|), there exists a minimizing
sequence {w∗n} for mλ with w∗n ≥ 0 and ‖w∗n‖ ≤ ρ such that

mλ ≤ Iλ(wn∗) < mλ +
1
n
.

Then Ekeland’s variational principle in [25] yields another sequence {wn} with
‖wn‖ ≤ ρ such that

mλ ≤ Iλ(wn) ≤ Iλ(w∗n) < mλ +
1
n
,

‖wn − w∗n‖ ≤
1√
n
, quad‖I ′λ(wn)‖ ≤ 1

n
.

(3.15)

Thus, the sequence {wn} satisfies

Iλ(wn)→ mλ and I ′λ(wn)→ 0

as n→∞. By lemma 2.4, there exists a minimizer wλ ∈ Bρ such that wn → wλ in
H1(R3) and Iλ(wλ) = mλ. By (3.15), w∗n → wλ. Together with w∗n ≥ 0, we obtain
that wλ ≥ 0 a.e. in R3 with Iλ(wλ) < 0 and wλ is a solution of problem (1.1).
Since wλ ∈ Bρ and ρ→ 0+, by (H4), we have

−(1 + bρ)(∆wλ + wλ) ≥ −
(

1 + b

∫
R3
|∇wλ|2dx

)
∆wλ + wλ

= k(x)f(wλ) + λh(x)wλ ≥ 0.

Then we deduce that wλ > 0 in R3 by strong maximum principle. The proof is
complete. �

Proof of Theorem 1.1. Clearly, the first conclusion of Theorem 1.1 is deduced di-
rectly from Lemma 3.2. The second conclusion is obtained from Lemmas 3.2 and
3.3. In fact, from Lemmas 3.2 and 3.3, there is a positive solution uλ of (1.1) with
Iλ(uλ) > 0 and a positive solution wλ of (1.1) with Iλ(wλ) < 0. Clearly, uλ 6= wλ.
Hence, the second statement of Theorem 1.1 is proved. �
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