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REPRODUCTIVE SOLUTIONS FOR THE G-NAVIER-STOKES
AND G-KELVIN-VOIGHT EQUATIONS

LUIS FRIZ, MARKO ANTONIO ROJAS-MEDAR, MARÍA DRINA ROJAS-MEDAR

Abstract. This article presents the existence of reproductive solutions of g-

Navier-Stokes and g-Kelvin-Voight equations. In this way, for weak solutions,
we reach basically the same result as for classic Navier-Stokes equations.

1. Introduction

On one hand, in this work we consider the g-Navier-Stokes equation
∂u
∂t
− ν∆u + (u · ∇)u +∇p = f , in ]0, T [×Ω,

1
g

(∇(gu)) =
∇g
g
· u +∇ · u = 0, in ]0, T [×Ω,

(1.1)

defined on a domain Ω ⊆ R2.
This system is derived in [10] from the 3-D Navier-Stokes equations

∂U
∂t
− ν∆U + (U · ∇)U +∇Φ = f , in ]0, T [×Ωg,

∇ ·U = 0, in ]0, T [×Ωg,

where Ωg = {(y1, y2, y3) : (y1, y2) ∈ Ω, 0 ≤ y3 ≤ g(y1, y2)}, with the boundary
conditions

U · n = 0 on ∂topΩg ∩ ∂bottomΩg
being,

∂topΩg = {(y1, y2, y3) ∈ Ωg : y3 = g(y1, y2)},
∂bottomΩg = {(y1, y2, y3) ∈ Ωg : y3 = 0}.

More precisely, the authors assume that

U(y1, y2, y3) = (U1(y1, y2),U2(y1, y2),U3(y1, y2, y3)),

and they define the following new variables and unknowns

y1 = x1, y2 = x2, y3 = x3g(x1, x2),

U1(y1, y2) = u1(x1, x2), U2(y1, y2) = u2(x1, x2), U3(y1, y2, y3) = u3(x1, x2, x3)
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Finally, they prove that u = (u1,u2) is solution of the two equation of (1.1) and
u3 = x3∇g · u. The interested reader can also review [2], [8] and [9]. Although the
g-Navier-Stokes system is defined in two dimension domain, we will also study the
tridimensional case.

In this article, at first we seek a reproductive solution (or weak periodic solution)
of (1.1), i.e. solutions satisfying

u(0, x) = u(T, x), x ∈ Ω, (1.2)

instead of a initial condition. In the case of the Navier-Stokes equation, the study
of the reproductive solutions was initiated by Kaniel and Shinbrot in [4], the reader
can also see the classical textbook [6] by Lions. In [3] the authors review some
results concerning the existence, uniqueness and regularity of reproductive and
time periodic solutions of the Navier-Stokes equations and some variants defined
in bounded domains. In order to obtain a reproductive solution, they introduce a
Galerkin discretization of the problem, proving existence of approximate solution
to certain initial conditions. Then, a Leray-Schauder argument, by means of fixed
point process, permits to obtain a reproductive Galerkin solution, which converges
towards a continuous reproductive solution.

To be more precise, in this work the first purpose is to solve the system
∂u
∂t
− ν∆u + (u · ∇)u +∇p = f , in ]0, T [×Ω,

1
g

(∇ · (gu)) =
∇g
g
· u +∇ · u = 0, in ]0, T [×Ω,

u(0, x) = u(T, x), in Ω,

u(t, x) = β(t, x), on [0, T ]× ∂Ω.

(1.3)

Here β ∈ C1(R, H1/2(∂Ω)n) is T -periodic function and satisfies the (g-SOC) con-
dition ∫

∂Ω

gβ · nds = 0. (1.4)

This definition is inspired by that given in [7] when g ≡ 1, the so-called (SOC)
condition, ∫

∂Ω

β · nds = 0. (1.5)

Moreover, in a similar manner to the Navier-Stokes system, we can prove unique-
ness of the solution in the bidimensional case.

On the other hand, in this paper we also consider the g-Kelvin-Voight equation
∂u
∂t
− ν

g
(∇ · g∇)u +

ν

g
(∇g · ∇)u− α

g
(∇ · g∇)ut

+
α

g
(∇g · ∇)ut + u · ∇u +∇p = f, in ]0, T [×Ω

1
g

(∇ · (gu)) =
∇g
g
· u +∇ · u = 0, in ]0, T [×Ω

(1.6)

The derivation of this system is analogous to the g-Navier-Stokes. In fact, it is
deduced from the Kelvin-Voight system

∂U
∂t
− ν∆U− α∆Ut + (U · ∇)U +∇P = F, in ]0, T [×Ωg,

∇ ·U = 0, in ]0, T [×Ωg,
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where Ωg = {(y1, y2, y3) : (y1, y2) ∈ Ω, 0 ≤ y3 ≤ g(y1, y2)}. We refer interested
readers to the article [5] and the reference given there.

The second purpose of this article is to solve the system
∂u
∂t
− ν

g
(∇ · g∇)u +

ν

g
(∇g · ∇)u− α

g
(∇ · g∇)ut

+
α

g
(∇g · ∇)ut + u · ∇u +∇p = f, in ]0, T [×Ω

1
g

(∇ · (gu)) =
∇g
g
· u +∇ · u = 0, in ]0, T [×Ω

u(0, x) = u(T, x), in Ω

u(t, x) = 0, in ]0, T [×∂Ω

(1.7)

in other words, we seek a reproductive solution for the g-Kelvin-Voight equation.
This article is organized as follows. In section 2 the basic definitions and results

are introduced. Section 3 is devoted to proving the existence of the reproductive
solution of the g-Navier-Stokes system, both for the case β = 0 and the case β 6= 0.
Finally, in section 4 the existence of the reproductive solution of the g-Kelvin-Voight
system is proved.

2. Preliminaries

In this section, we introduce notation and spaces to be used later. Let Ω ⊆ Rn,
n = 2, 3 be a bounded domain with smooth boundary ∂Ω. We assume that g ∈
W 1,∞(Ω) satisfies

0 < m0 ≤ g(x) ≤M0, ∀x ∈ Ω, and ‖∇g‖∞ <
m0λ

1/2
1

2
(2.1)

where λ1 > 0 is the first eigenvalue of the g-Stokes operator in Ω (see [5]), i.e. the
spectral problem

−1
g

(∇ · g∇)wj +∇pj = λjwj , in Ω,

∇ · gwj = 0 in Ω,

wj = 0 on ∂Ω.

(2.2)

Problem (2.2) has eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λj ≤ . . . and corresponding
eigenfunctions w1,w2, . . . ,wj , . . . form an orthonormal basis in Hg and total basis
in Vg, where Hg and Vg are defined in the following manner:

V = {u ∈ D(Ω) : ∇ · (gu) = 0},
Hg is the closure of V in L2(Ω),

Vg is the closure of V in H1
0(Ω).

Where Hg is endowed with the scalar product

(u,v)g =
∫

Ω

(u · v)gdx and |u|2 = (u,u)g.

Notice that this inner product is equivalent to the usual inner product defined in
L2(Ω). Similarly, we define in Vg the equivalent inner product:

((u,v))g =
∫

Ω

g∇u · ∇vdx.
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Let us recall that β satisfies condition (1.5) if∫
∂Ω

β · nds = 0.

In this case, Morimoto [7, p. 636] proved the next Lemma.

Lemma 2.1. Suppose β ∈ C1(R,H1/2(∂Ω)n) is T -periodic and satisfies (SOC).
Then for every ε > 0, there exists a solenoidal and T -periodic function b ∈
C1(R; H1(Ω)) such that

∇x · b(t, x) = 0 a.e x ∈ Ω, ∀t ∈ R,
b(t, x) = β(t, x), x ∈ ∂Ω, ∀t ∈ R,

|((u · ∇)b,u)| ≤ ε‖∇u‖2, ∀u ∈ V,∀t ∈ R.

Now, if β ∈ C1(R,H1/2(∂Ω)n) is T -periodic and satisfies the (1.4) condition:∫
∂Ω

gβ · nds = 0,

we have the following proposition.

Proposition 2.2. Suppose β ∈ C1(R,H1/2(∂Ω)n) is T -periodic and satisfies (1.4).
Then for every ε > 0 there exists a T -periodic function Ψ ∈ C1(R; H1(Ω)) such that:

∇x · (g(x)Ψ(t, x)) = 0 a.e x ∈ Ω, ∀t ∈ R
Ψ(t, x) = β(t, x), a.e. x ∈ ∂Ω, ∀t ∈ R,

|((v · ∇)Ψ,v)g| ≤ C(Ω, g)(ε+ ‖∇g‖L∞ |∇Ψ|)|∇v|2, ∀t ∈ R,
for all v ∈ Vg.

Proof. For ε > 0, define Ψ(t, x) = b(t,x)
g(x) , where b(t, x) ∈ C1(R,H1(Ω)) is given by

Lemma 2.1. It is clear that Ψ ∈ Vg is T -periodic and Ψ = β on [0, T ] × ∂Ω. We
have

((v · ∇)Ψ,v)g =
3∑

i,j=1

∫
Ω

vi
∂Ψj

∂xi
vjgdx

=
∫

Ω

3∑
i,j=1

( 1
g2

)
gvi

∂(gΨj)
∂xi

gvjdx−
∫

Ω

3∑
i,j=1

vi
∂g

∂xi
Ψjvjdx

Now, from Lemma 2.1∣∣ ∫
Ω

3∑
i,j=1

( 1
g2

)
gvi

∂(gΨj)
∂xi

gvjdx
∣∣ ≤ 1

m2
0

|((gv · ∇)(gΨ), gv)|

≤ ε

m2
0

|∇(gv)|2

≤ εC(Ω, g)|∇v|2

moreover, ∣∣ ∫
Ω

3∑
i,j=1

vi
∂g

∂xi
Ψjvj

∣∣ ≤ ‖∇g‖L∞ |v|L3 |Ψ|L6 |v|

≤ C(Ω, g)‖∇g‖L∞ |∇Ψ||∇v|2
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Therefore,
|((v · ∇)Ψ,v)g| ≤ C(Ω, g)(ε+ ‖∇g‖L∞ |∇Ψ|)|∇v|2.

�

Remark 2.3. Similarly to the case of the Navier-Stokes equation, we can define
the trilinear form bg : Vg ×Vg ×Vg → R by

bg(u,v,w) =
n∑

i,j=1

∫
Ω

ui
∂vj
∂xi

wjgdx

for every u,v,w ∈ Vg. It is not difficult (see [12]) to prove that

bg(u,v,v) = 0,

for each u,v ∈ Vg, moreover (see [5]), if we further assume that ∆g = 0 we have

bg
(∇g
g
,v,v

)
= 0,

for all v ∈ Vg.

Define the g-Laplacian operator as

−∆gu = −1
g

(∇ · g∇)u = −∆u− 1
g
∇g · ∇u.

Now, we can rewrite the first equation of (1.3) as follows:
∂u
∂t
− ν∆gu + ν

∇g
g
· ∇u + (u · ∇)u +∇p = f .

3. Existence of reproductive and periodic solutions for the
g-Navier-Stokes system

The variational formulation of (1.3) is the following: given f ∈ L2(0, T ; V′g) and
u0 ∈ Vg to find u−Ψ ∈ L∞(0, T ; Hg) ∩ L2(0, T ; Vg) such that

d

dt
(u−Ψ,v) + ν((u−Ψ,v))g + bg(u−Ψ,u−Ψ,v)

+ bg(Ψ,u−Ψ,v) + bg(u−Ψ,Ψ,v) + νbg
(∇g
g
,u−Ψ,v

)
= 〈f,v〉 − L(Ψ,v)

u(0) = u0 + Ψ(0)

(3.1)

for all v ∈ Vg. Here Ψ is given in Proposition 2.2, bg is the trilinear form given in
Remark 2.3 and

L(Ψ,v) =
(dΨ
dt
,v
)

+ ν((Ψ,v))g + bg(Ψ,Ψ,v) + νbg
(∇g
g
,Ψ,v

)
.

Definition 3.1. Let u0 ∈ Hg and f ∈ L2(0, T ; V′g). A function u ∈ L∞(0, T ; Hg)∩
L2(0, T ; Vg) is a weak solution of the problem (1.1) with initial data u(0) = u0 and
boundary data u = β on [0, T ]× ∂Ω, if u verifies (3.1) for all v ∈ Vg.

In the case β ≡ 0, we have the following theorem.

Theorem 3.2 ([2, thm 6.1]). Assume f ∈ L2(0, T ; V′g) and u0 ∈ Hg. Then there
exists at least a weak solution of the problem (1.1), in the sense of the Definition
3.1. Moreover, u is weakly continuous from [0, T ] into Hg.
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Proposition 3.3. If Ω ⊆ R2, under the assumptions of Theorem 3.2, the weak
solution of (1.1) with initial data u(0) = u0 is unique.

Proof. Let u1 and u2 be two solutions of the problem (3.1) with initial data u0. If
we define w = u1 − u2, then it satisfies the variational formulation

1
2
d

dt
(w,v)g + ν((w,v))g + ν

((∇g
g
· ∇
)
w,v

)
g

= −bg(u1,u1,v) + bg(u2,u2,v)

By replacing v = w we get

d

dt
|w|2 + 2ν‖w‖2 = −2ν

((∇g
g
· ∇
)
w,w

)
g
− 2bg(u1,u1,w) + 2bg(u2,u2,w)

= −2ν
((∇g

g
· ∇
)
w,w

)
g
− 2bg(w,u1,w);

therefore, since

−2ν
((∇g

g
· ∇
)
w,w

)
g
≤ 2ν

‖∇g‖∞
m0λ1

‖w‖2,

by [1, Lemma 2.1], we also have

2bg(w,u1,w) ≤ C‖u1‖|w|‖w‖
≤ ε‖w‖2 + Cε‖u1‖2|w|2.

Now, for ε small enough we can obtain

d

dt
|w|2 ≤ Cε‖u1‖2|w|2;

then by using Gronwall’s inequality, we conclude that w = 0. �

Remark 3.4. After some tedious calculations, it is possible to see that Theorem
3.2 and Proposition 3.3 remain valid even if the β is not null.

Our main result is the following.

Theorem 3.5. For any f ∈ L2(0, T ; V′g) and ‖∇g‖∞ small enough there exists a
weak solution of (1.3) i.e. the weak solution u ∈ L∞(0, T ; Hg) ∩ L2(0, T ; Vg) has
the so-called reproductive property, i.e. a solution of the variational problem (3.1)
which satisfies u(0, x) = u(t, x).

Remark 3.6. Note that if n = 2 and the external force f ∈ L2(R; V′g) is a T -
periodic in time function, the above Theorem 3.5 furnishes a T -periodic weak so-
lution for (1.3). In fact, it is a strong solution and actually very regular. This is so
because we can prove that u ∈ C∞(Ω) for t > 0, where u is solution of the problem
(1.1) with initial condition u0 ∈ Hg. Thus up ∈ C∞(Ω) for t ∈ [T, 2T ] and, by
the T -periodicity, we conclude that up(t) = up(t + T ) ∈ C∞(Ω), here up is the
reproductive solution. In particular, up(0) ∈ C∞(Ω).

3.1. Proof of Theorem 3.5 when β ≡ 0. Let {wi}∞i=1 be orthonormal bases in
Hg and total bases in Vg obtained in spectral problem (2.2). As kth-approximated
solution of equation (3.1) we choose

uk(t, x) =
k∑
i=1

cki (t)wi(x) (3.2)
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satisfying for all i = 1, . . . , k, and for all t ∈ (0, T ) the system of equations

d

dt
(uk,v)g + ν((uk,v))g + bg(uk,uk,v) + νbg

(∇g
g
,uk,v

)
= 〈f ,v〉

uk(0) = Pku0

(3.3)

for all v ∈ Vk = 〈{w1,w2, . . . ,wk}〉. Taking v = uk, we have

d

dt
|uk|2 + 2ν|∇uk|2 = 〈f,uk〉 − 2ν

((∇g
g
· ∇
)
uk,uk

)
g

Therefore, by using the Poincaré inequality,

|v|2 ≤ 1
λ1
|∇v|2 ∀v ∈ H1

0(Ω),

we have
d

dt
|uk|2 + 2ν|∇uk|2 ≤ 1

ν
‖f‖2V ∗ + ν|∇uk|2 + 2ν

‖∇g‖∞
m0λ

1/2
1

|∇uk|2 . (3.4)

Finally, we obtain
d

dt
|uk|2 + νλ1γ0|uk|2 ≤

1
ν
‖f‖2V ∗ ,

where γ0 = 1− 2‖∇g‖∞
m0λ

1/2
1

> 0 for ‖∇g‖∞ small. The above inequality implies

d

dt
(eνλ1γ0t|uk|2) ≤ eνλ1γ0t

ν
‖f‖2V ∗ .

Integrating from 0 to T we have

eνλ1γ0T |uk(T )|2 ≤ |uk(0)|2 +
1
ν

∫ T

0

eνλ1γ0t‖f(t)‖2V ∗ . (3.5)

Next, we show that uk is nothing but one fixed point of the operator Φk defined in
what follows. Let Lk : [0, T ]→ Rk the mapping defined by

Lk(t) = y(t) = (ck1(t), . . . , ckk(t)),

where the time dependent functions {cki (t)}ki=1 are the coefficients of the expansion
of uk, as done in (3.2).

Since we have chosen the basis {wi(x)}∞i=1 orthonormal in Hg, we have

‖y(t)‖Rk = |uk(t)| ∀t ∈ [0, T ] . (3.6)

Next, we define the operator Φk : Rk → Rk as

Φk(x) = y(T )

where x = (x1, x2, . . . , xk) and y(T ) = Lk(T ) is the vector-coefficients at time T of
the solution of (3.3) with initial condition

uk0(x) =
m∑
i=1

xi wi(x),

It is not difficult to see that Φk is continuous and we claim that Φk has at least one
fixed point. It will be a consequence of Leray-Schauder’s Homotopy Theorem. To
prove this, it is enough to show that for any λ ∈ [0, 1], a solution of the equation

λΦk(x(λ)) = x(λ) (3.7)
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has a bound independent of λ. Since x(0) = 0, we restrict the proof to λ ∈ (0, 1].
In such case (3.7) may be rewritten as

Φk(x(λ)) =
1
λ

x(λ) .

By the definition of Φk and (3.6), we deduce from (3.5), that

eνλ1γ0T ‖ 1
λ

x(λ)‖2Rk ≤ ‖x(λ)‖2Rk +
∫ T

0

eνλ1γ0T ‖f(t)‖2V∗dt

Since we impose uk(0) = uk(T ), we obtain

‖x(λ)‖2Rk ≤
1

eνλ1γ0T − 1

∫ T

0

eνλ1γ0T ‖f(t)‖V ∗dt ≡M(T, f), (3.8)

for all λ ∈ (0, 1]. Obviously, this upper bound do not depends on λ ∈ [0, 1] and
so we have stated that the operator Φk has at least one fixed point, denoted by
x(1) and then there exists a reproductive Galerkin solution uk, namely it satisfies
uk(0) = uk(T ). Note that, from (3.8), we have that uk ∈ L∞(0, T ; Hg), for every
k ∈ N and it is uniformly bounded.

From (3.4) and by definition of γ0 we can obtain the inequality

d

dt
|uk|2 + νγ0|∇uk|2 ≤ 1

ν
‖f‖2 .

Since uk is a Galerkin reproductive solution and by integrating from 0 to T we have∫ T

0

|∇uk|2dt ≤ 1
γ0ν2

∫ T

0

‖f‖2dt = M̃(T, f). (3.9)

In other words, uk ∈ L2(0, T ; Vg)∩L∞(0, T ; Hg), for each k ∈ N and it is uniformly
bounded. It is not difficult to prove that d

dtu
k ∈ L2(0, T ; V′g) and it is uniformly

bounded. By using compactness results (see [11]) with the triplets Hg ↪→ V′g ↪→ V′g
and Vg ↪→ Hg ↪→ V′g, we have that (uk) is relatively compact in L2(0, T ; Hg) ∩
C([0, T ]; V′g). Thus, since uk(0) = uk(T ) and uk(0) → u(0), we get that u(0) =
u(T ) in V′g, but we also have that u ∈ C([0, T ]; Hg), because u ∈ L2(0, T ; Hg) and
d
dtu ∈ L

2(0, T ; V′g) (see [12] ), therefore u(0) = u(T ) in Hg.

3.2. Proof of Theorem 3.5, general case. Let us define û = u−Ψ, where Ψ is
given in Proposition 2.2, which satisfies

∂û
∂t
− ν∆û + (û · ∇)û + (û · ∇)Ψ + (Ψ · ∇)û +∇p

= f − ∂Ψ
∂t

+ ν∆Ψ− (Ψ · ∇)Ψ in ]0, T [×Ω ,

1
g

(∇(gû)) =
∇g
g
· û +∇ · û = 0 in ]0, T [×Ω ,

û(0, x) = û0(x) in ]0, T [×Ω,

û(t, x) = 0 on [0, T ]× ∂Ω .

(3.10)

Since Ψ is a T -periodic function it is only necessary to prove that there exists a
reproductive solution of the problem (3.10).
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The variational formulation is as follows: Find û ∈ L∞(0, T ; Hg) ∩ L2(0, T ; Vg)
such that for all v ∈ Vg we have

d

dt
(û,v)g + ν((û,v))g + bg(û, û,v) + bg(û,Ψ,v)

+ bg(Ψ, û,v) + νbg
(∇g
g
,û,v

)
= 〈f ,v〉 − L(Ψ,v) ,

(3.11)

where

L(Ψ,v) =
(dΨ
dt
,v
)
g

+ ν((Ψ,v))g + bg(Ψ,Ψ,v) + νbg
(∇g
g
,Ψ,v

)
.

After some calculations, we can write

|L(Ψ,v)| ≤
(
|dΨ
dt
|+ ν‖∇g‖∞

m0
|∇Ψ|

)
|v|+ (ν|∇Ψ|+ |∇Ψ|2)|∇v|

≤ 1
2ε1

(
|dΨ
dt
|+ ν‖∇g‖∞

m0
|∇Ψ|

)2

+
ε1

2
|v|2

+
1

2ε1
(|∇Ψ|2 + ν|∇Ψ|)2 +

ε1

2
|∇v|2 .

Let us put

F =
1

2ε1

(
|dΨ
dt
|+ ν‖∇g‖∞

m0
|∇Ψ|

)2

+
1

2ε1
(|∇Ψ|2 + ν|∇Ψ|)2 +

1
2ε1
‖f‖V ∗g .

By replacing v by û in (3.11) we obtain

d

dt
|û|2 + 2ν|∇û|2 ≤ ε1

2
|û|2 + F +

(
ε1C(Ω, g) + ε1

+ C(Ω, g)‖∇g‖∞|∇Ψ|+ 2ν
‖∇g‖∞
m0λ1/2

)
|∇û|2 .

By choosing ε1 and ‖∇g‖∞ small enough, we obtain

d

dt
|û(t)|2 + C|û(t)|2 ≤ F (t), (3.12)

where C > 0, we can obtain a reproductive solution by following the same argument
as in the proof of the case β ≡ 0.

4. Existence of reproductive solutions for the g-Kelvin-Voight
system

The variational formulation of problem (1.6) is: Given f ∈ L2(0, T ; V′g) and
u0 ∈ Hg, find u ∈ Vg such that

d

dt
(u,v)g + ν((u,v)) + α((ut,v)) + νbg

(∇g
g
,u,v

)
+ αbg

(∇g
g
,ut,v

)
+ bg(u,u,v) = 〈f ,v〉

u(0) = u0 ,

(4.1)

for all v ∈ Vg.
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Definition 4.1. Let u0 ∈ Hg and f ∈ L2(0, T ; V′g). A function u ∈ L∞(0, T ; Hg)∩
L2(0, T ; Vg) is a weak solution of the problem (1.6) with initial condition u(0) = u0

if u verifies (4.1) for all v ∈ Vg.

Theorem 4.2 ([5]). If f ∈ L2(Ω), Ω ⊆ R2 u0 ∈ Vg and g satisfying (2.1) and
∆g = 0, then there exists a unique weak solution of (1.6).

Remark 4.3. It is possible to prove that the hypothesis that f does not depend
on time t can be removed and replaced by f ∈ L2(0, T ; V′g), and the theorem is still
valid.

The main result of this section is the following.

Theorem 4.4. For ‖f‖L2(0,T ;V′g) and ‖∇g‖∞ small enough there exists a weak
solution of (1.7) i.e. the weak solution u ∈ L∞(0, T ; Hg)∩L2(0, T ; Vg) has the so-
called reproductive property, i.e. a solution of the variational problem (4.1) which
satisfies u(0, x) = u(T, x).

4.1. Proof of Theorem 4.4. In the same manner as in the proof of Theorem 3.5,
we define

uk(t, x) =
k∑
i=1

cki (t)wi(x) (4.2)

as the solution of the variational problem
d

dt
(uk,v)g + ν((uk,v)) + α((ukt ,v)) + νbg

(∇g
g
,uk,v

)
+ αbg

(∇g
g
,ukt ,v

)
+ bg(uk,uk,v) = 〈f ,v〉

for all v ∈ Vk = 〈{w1, . . . ,wk}〉. The proof of the following lemma can be found
in [5, pp 499-501]. For simplicity, we denote

y(t) = ‖uk(t)‖2g + (α+ ν)‖∇uk(t)‖2g.

Lemma 4.5. For ‖∇g‖∞ small enough there exist positive constants β and δ such
that the function y(t) satisfies

dy

dt
+ βy ≤ δy2 + C‖f(t)‖2g.

Proposition 4.6. Let M1 > 0 be such that

δs <
β

2
, ∀s ∈]0,M1].

Let us suppose that δ satisfies ‖f‖2L∞(0,T ;V′g) ≤
β
2M1. If y(0) ≤M1, then y(t) ≤M1,

for all t ∈ [0, T ].

Proof. From Lemma 4.5, y satisfies the differential inequality

y′ + (β − δy)y ≤ ‖f(t)‖2g. (4.3)

By hypothesis, there exists σ > 0 such that

δs ≤ β

2
, ∀s ∈ [M1,M1 + σ]. (4.4)

At first, we will prove that

y(t) < M1 + σ, ∀t ∈ [0, T ].
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By contradiction, let T ∗ ∈]0, T ] be the first value so that y(T ∗) = M1 + σ and
y(t) < M1 + σ, for all t ∈ [0, T ∗[. By (4.4), we have that δy(t) ≤ β

2 , for all
t ∈ [0, T ∗]. From (4.3) and the hypothesis

y′ +
β

2
y ≤ β

2
M1, (4.5)

by multiplying by e
β
2 t and integrating in time in [0, T ∗] we obtain

e
β
2 T
∗
y(T ∗)− y(0) ≤M1(e

β
2 T
∗
− 1) ,

e
β
2 T
∗
y(T ∗) ≤ y(0) +M1e

β
2 T
∗
−M1 ,

e
β
2 T
∗
y(T ∗) ≤M1 +M1e

β
2 T
∗
−M1 ≤M1 .

In other words, y(T ∗) ≤M1 which is a contradiction and, therefore, y(t) ≤M1 + σ
for all t ∈ [0, T ]. Furthermore, the inequality (4.5) holds for every t ∈ [0, T ], hence
by repeating the same arguments in each interval [0, t], for all t ∈]0, T ], we get
y(t) ≤M1, which completes the proof. �

Now, for (ξ1, ξ2, . . . , ξm) ∈ Rm and u = ξ1w1 + ξ2w2 + . . . + ξmwm, we define
the norm

‖(ξ1, ξ2, . . . , ξm)‖Rm = ‖u(t)‖2g + (α+ ν)‖∇u(t)‖2g .
Given (ξ1, ξ2, . . . , ξm) ∈ Rm, define Φm : Rm → Rm in as

Φm(ξ1, ξ2, . . . , ξm) = (cm1 (T ), cm2 (T ), . . . , cmm(T )),

where (cm1 (t), cm2 (t), . . . , cmm(t)) are the coefficients of the Galerkin solution (4.2)
with initial condition u0 = ξ1w1 + ξ2w2 + . . .+ ξmwm. If we define,

B = {(ξ1, ξ2, . . . , ξm) ∈ Rm : ‖(ξ1, ξ2, . . . , ξm)‖ < M1}
where M1 is given in Proposition 4.6, from Proposition 4.6, Φm maps B into B;
therefore, by the Brower Fixed-Point Theorem Φm has a fixed point and, conse-
quently there exists a reproductive Galerkin solution um. The Theorem follows
from the standard compact arguments.
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