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REPRODUCTIVE SOLUTIONS FOR THE G-NAVIER-STOKES
AND G-KELVIN-VOIGHT EQUATIONS

LUIS FRIZ, MARKO ANTONIO ROJAS-MEDAR, MARIA DRINA ROJAS-MEDAR

ABSTRACT. This article presents the existence of reproductive solutions of g-
Navier-Stokes and g-Kelvin-Voight equations. In this way, for weak solutions,
we reach basically the same result as for classic Navier-Stokes equations.

1. INTRODUCTION

On one hand, in this work we consider the g-Navier-Stokes equation

g—ltl —vAu+ (u-V)u+Vp=1£f, in]0,T[xQ,

1
(Vi) = % MV ou=0, in]0,T[x,

(1.1)

defined on a domain  C R2.
This system is derived in [I0] from the 3-D Navier-Stokes equations

U _ AU+ (U-V)U+VS=Ff, in 10, T[x 9,

ot
V-U=0, in]0,T[xQ,,

where Qg = {(y1,42,93) : (y1,92) € Q, 0 < y3 < g(y1,¥2)}, with the boundary
conditions

U-n=0 on 8topQg n abottomﬂg
being,
atopgzg = {(y17y27y3) S Qg Y3 = 9(2!1792)},
abottong = {(ylay% yS) € Qg S Ys = 0}

More precisely, the authors assume that

U(y1,v2,93) = (Ui(y1,92), Uz(y1,92), Us(y1, y2,y3)).

and they define the following new variables and unknowns

Y1 =1, Y2 =2, Y3=x39(T1,T2),

Ui(y1,92) = wi(z1,22), Ua(yi,y2) = ua(x1,22), Us(yi,y2,y3) = uz(x1, 2, 3)
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Finally, they prove that u = (uy,us) is solution of the two equation of and
us = x3Vyg - u. The interested reader can also review [2], [8] and [9]. Although the
g-Navier-Stokes system is defined in two dimension domain, we will also study the
tridimensional case.

In this article, at first we seek a reproductive solution (or weak periodic solution)

of (1.1)), i.e. solutions satisfying
u(0,z) =u(T,z), ze€Q, (1.2)

instead of a initial condition. In the case of the Navier-Stokes equation, the study
of the reproductive solutions was initiated by Kaniel and Shinbrot in [4], the reader
can also see the classical textbook [6] by Lions. In [3] the authors review some
results concerning the existence, uniqueness and regularity of reproductive and
time periodic solutions of the Navier-Stokes equations and some variants defined
in bounded domains. In order to obtain a reproductive solution, they introduce a
Galerkin discretization of the problem, proving existence of approximate solution
to certain initial conditions. Then, a Leray-Schauder argument, by means of fixed
point process, permits to obtain a reproductive Galerkin solution, which converges
towards a continuous reproductive solution.
To be more precise, in this work the first purpose is to solve the system

giltl _VAu+(uv)u+Vp:f’ in ]O,T[XQ,
1 Vg _ .
E(V~(gu))—?-u+V‘u—0, in 0, T[x <2, (1.3)

u(0,z) =u(T,z), inQ,
u(t,z) = B(t,x), on [0,T] x 0.
Here 8 € C*(R, H'/?(9Q)") is T-periodic function and satisfies the (g-SOC) con-
dition
/ gf -nds = 0. (1.4)
o0
This definition is inspired by that given in [7] when g = 1, the so-called (SOC)
condition,
08 -nds = 0. (1.5)

Fle)
Moreover, in a similar manner to the Navier-Stokes system, we can prove unique-

ness of the solution in the bidimensional case.
On the other hand, in this paper we also consider the g-Kelvin-Voight equation

ou v v «
5 E(V -gV)u+ E(Vg -V)u — E(V -gV)uy
+%(Vg-V)ut+u-Vu+Vp:f, in )0, T[x 9 (1.6)

1
5(V-(gu))=%~u+v-u:0, in 0, T[xQ

The derivation of this system is analogous to the g-Navier-Stokes. In fact, it is
deduced from the Kelvin-Voight system

9 AU - aAU, + (U-V)U+VP=F, inl0,T[xQ,,

ot
V-U=0, in]0,T[xQ,,
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where Qg = {(y1,92,¥3) : (y1,¥2) € @, 0 < y3 < g(y1,¥2)}. We refer interested
readers to the article [B] and the reference given there.
The second purpose of this article is to solve the system

ou v v o
i ;(V -gV)u+ E(Vg -V)u— E(V -gV)uy

+ g(Vg Vus+u-Vu+Vp=f, in]0,T[xQ

g
1 \Y (1.7)
S(Vo(qu) =~ u+V-u=0, inl0,T[xQ

g g
u(0,z) =u(T,z), in
u(t,z) =0, in]0,T[x0N

in other words, we seek a reproductive solution for the g-Kelvin-Voight equation.

This article is organized as follows. In section 2 the basic definitions and results
are introduced. Section 3 is devoted to proving the existence of the reproductive
solution of the g-Navier-Stokes system, both for the case = 0 and the case 3 # 0.

Finally, in section 4 the existence of the reproductive solution of the g-Kelvin-Voight
system is proved.

2. PRELIMINARIES

In this section, we introduce notation and spaces to be used later. Let Q C R™,
n = 2,3 be a bounded domain with smooth boundary 0€2. We assume that g €
W1 (Q) satisfies

mo)\i/Q

2
where A; > 0 is the first eigenvalue of the g-Stokes operator in € (see [5]), i.e. the
spectral problem

0<mp<g(x) <My, VexeQ and |Vl < (2.1)

1 . . _
—E(V -gV)w? +Vp! = \w!, in Q,

V-gw/ =0 in, (22)

w/ =0 on 99.
Problem (2.2]) has eigenvalues 0 < A\ < A < ... < A; < ... and corresponding
eigenfunctions w', w? ..., w?, ... form an orthonormal basis in H, and total basis

in Vg, where Hy and V4 are defined in the following manner:
V={ueD):V-(gu) =0},
H, is the closure of V in L*(Q),
V,, is the closure of V in Hy(Q).
Where Hy; is endowed with the scalar product

(u,v)gz/Q(u-v)gdx and [u]® = (u,u),.

Notice that this inner product is equivalent to the usual inner product defined in
L2(Q). Similarly, we define in V, the equivalent inner product:

((u,v))g = /QgVu~Vvdx.



4 L. FRIZ, M. A. ROJAS-MEDAR, M. D. ROJAS-MEDAR EJDE-2016/37

Let us recall that § satisfies condition (1.5)) if

G -nds = 0.
o0

In this case, Morimoto [T, p. 636] proved the next Lemma.

Lemma 2.1. Suppose § € CY(R,HY2(00)") is T-periodic and satisfies (SOC).
Then for every € > 0, there exists a solenoidal and T-periodic function b €
CHR;HY(Q)) such that

V. -b(t,z) =0 aexeQ, VteR,
b(t,z) = B(t,x), =€ N, Vt R,
|(u-V)b,u)| < ¢|Vu||?, Yuc V,vt € R.

Now, if 3 € C*(R, H'/2(9Q)") is T-periodic and satisfies the (T.4)) condition:

/ gB-nds =0,
aQ

we have the following proposition.

Proposition 2.2. Suppose 3 € C*(R,HY2(9Q)") is T-periodic and satisfies (T.4).
Then for every e > 0 there exists a T-periodic function ¥ € C1(R; H'(Q2)) such that:
Vi (9(x)¥(t,z)) =0 aexe, VteR
U(t,z) = 6(t,x), ae x€IN, VteR,

(v D)8, v),| < CQ,0)( + [Vglliw[TUNIVVE, VieR,

for all v e V.

Proof. For ¢ > 0, define ¥(t,z) = g((m) , where b(t,z) € CY(R,H'(Q)) is given by

Lemma It is clear that ¥ € V is T-periodic and ¥ = § on [0,T] x 0Q. We
have

((v- V\I/vgfz/vl ngdz

1,j=1

3 o e [ S B

7,7=1 7,7=1

Now, from Lemma, @

[ (w25 g < L (v - 9100 9v)
0

3,j=1
€
< |V 2
> mg| (gv)|
< eC(Q, 9)|Vv|?
moreover,

30 2w < 19l Wl

i,j=1

< C(Q,9)IVallL= V|V
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Therefore,
(V- V)¥,v),| < C(Q,9)(e + [[Vgll L= [ VIV
a

Remark 2.3. Similarly to the case of the Navier-Stokes equation, we can define
the trilinear form b, : V, x Vy x V, — R by

bg(u,v,w) = Z /Quigv;wjgdx

ij=1
for every u,v,w € V. It is not difficult (see [12]) to prove that
bg(u,v,v) =0,
for each u,v € Vg, moreover (see [0]), if we further assume that Ag = 0 we have

Vyg

bg(?7V,V) = 0,

for all v € V.

Define the g-Laplacian operator as

1
—-Aju=——(V-¢gV)u=—-Au— EVg -Vu.

1
g
Now, we can rewrite the first equation of ([1.3)) as follows:
Ou \%
T _vAau+ v~ Vut (u-V)ju+Vp=*.
ot g
3. EXISTENCE OF REPRODUCTIVE AND PERIODIC SOLUTIONS FOR THE
G-NAVIER-STOKES SYSTEM

The variational formulation of (L.3) is the following: given f € L*(0,T; V) and
uy € V, to find u— ¥ € L>(0,7;H,) N L*(0,T;V,) such that

%(u -V, v)+rv((u—T,v));+bg(u—¥,u—-"T,v)
—|—bg(\I',u—\I',v)—l—bg(u—\I',\I/,v)—{—ybg(%,u—\ll,v) (3.1)
= <f,V> - L(\II7V)

u(0) = ug + T(0)

for all v € V,. Here V¥ is given in Proposition by is the trilinear form given in
Remark 2.3] and

dv \Y
L(¥,v) = (o v) + v((0,V))y + by (¥, 9, v) + ybg(jg, U,v).
Definition 3.1. Let up € Hy and f € L?(0,T; V). A function u € L>(0,T; Hy)N
L%*(0,T;V,) is a weak solution of the problem with initial data u(0) = ugy and
boundary data u = on [0,T] x 09, if u verifies (3.1) for all v € V.

In the case § = 0, we have the following theorem.

Theorem 3.2 ([2, thm 6.1]). Assume f € L*(0,T; V) and uy € Hy. Then there
exists at least a weak solution of the problem (1.1)), in the sense of the Definition
. Moreover, u is weakly continuous from [0,T] into Hg.
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Proposition 3.3. If Q C R?, under the assumptions of Theorem the weak
solution of (1.1 with initial data u(0) = ug is unique.

Proof. Let u; and usy be two solutions of the problem (3.1)) with initial data ug. If
we define w = u; — uo, then it satisfies the variational formulation

1d \Y%
ia(wav)g + V((W’V))g + V((?g : V)W,V)g = _bg(ulvulav) + bg(UQ,u%V)

By replacing v = w we get

d Vg
%|W|2 + 21/||WH2 = —21/((7 . V)W7W>g - 2bg(u17ulaw) + 2bg(u27u25W)

\Y%
= —21/((79 . V)w7w>g — 2by(w,uy, w);
therefore, since
Vg Hv.g”oo 2
_2V<(? . V)W,W)g S 2l/m||W|| 5

by [1, Lemma 2.1], we also have
2bg(w, w1, w) < Clluy |||wl[|wl|
< el|w|® + Ccfluy || |w]*.

Now, for € small enough we can obtain
d, o 20 |2
2 Wl < Cellua|[lw];
then by using Gronwall’s inequality, we conclude that w = 0. O

Remark 3.4. After some tedious calculations, it is possible to see that Theorem
and Proposition [3.3] remain valid even if the 3 is not null.

Our main result is the following.

Theorem 3.5. For any £ € L*(0,T; V) and ||[Vglleo small enough there exists a
weak solution of i.e. the weak solution u € L>(0,T;Hy) N L?(0,T; V) has
the so-called reproductive property, i.e. a solution of the variational problem
which satisfies u(0,z) = u(t, x).

Remark 3.6. Note that if n = 2 and the external force f € L*(R;V)) is a T-
periodic in time function, the above Theorem furnishes a T-periodic weak so-
lution for . In fact, it is a strong solution and actually very regular. This is so
because we can prove that u € C*(Q) for ¢t > 0, where u is solution of the problem
(1.1) with initial condition uy € H,. Thus u, € C*(Q) for ¢t € [T,2T] and, by
the T-periodicity, we conclude that u,(t) = u,(t +T) € C*°(), here u, is the
reproductive solution. In particular, u,(0) € C*>°(Q).

3.1. Proof of Theorem when 3 = 0. Let {w’}22, be orthonormal bases in
H, and total bases in V, obtained in spectral problem (2.2)). As k*-approximated
solution of equation (3.1]) we choose

k

ut(t,z) = Zcf(t)wz(x) (3.2)

i=1
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satisfying for all : = 1,...,k, and for all ¢ € (0,7T) the system of equations

i(uk,v)g—l—u((u v))g + by (u”*, u® V) + vby (vgg,uk,v) ={(f,v)

dt (3-3)
u”(0) = Pyug
for all v € V¥ = ({w!, w? w¥}). Taking v = u*, we have
d \Y
|uk|2 + 21/|Vuk|2 (f,u > — QV((—Q ~V)uk,uk)
g g
Therefore, by using the Poincaré inequality,
1
VP < LIV v e Hy(@),
1
we have
d 1 Vs
—|uf 2 4 20| VuF 2 < < ||f|E. 4 v|VuF)? + 21/” Jl |Vu*|?. (3.4)
dt p v 1/2
Mo
Finally, we obtain
d 1
S Ay [ut | < [
where 79 =1 — M > 0 for [|[Vg||loo small. The above inequality implies
d . eu)\
D ety < ey
Integrating from 0 to T" we have
1 T
e (T)2 < [u®(0)” + ;/0 M| (8) 3 (3.5)

Next, we show that u” is nothing but one fixed point of the operator ®* defined in
what follows. Let L* : [0, 7] — R* the mapping defined by

L*(t) = y(t) = (1), .. ck (1),

where the time dependent functions {c¥(¢)}*

of u*, as done in ([3.2)).

"_, are the coeflicients of the expansion

Since we have chosen the basis {w’(x)}?°; orthonormal in H, we have
Iy ()l = [u*(#)] vt e [0,T]. (3.6)
Next, we define the operator ®F : R¥ — RF as
" (x) = y(T)
where x = (21,22, ...,2) and y(T) = L*(T) is the vector-coefficients at time T" of

the solution of (3.3)) with initial condition

bx) = le w'(z),

It is not difficult to see that ®* is continuous and we claim that ®* has at least one
fixed point. It will be a consequence of Leray-Schauder’s Homotopy Theorem. To
prove this, it is enough to show that for any A € [0,1], a solution of the equation

AOF(x(N)) = x(\) (3.7)
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has a bound independent of A. Since x(0) = 0, we restrict the proof to A € (0, 1].
In such case (3.7) may be rewritten as
1

P(x() = $x(V) .

By the definition of ®* and (3.6]), we deduce from (3.5), that

1 T
TS B < X+ [ TR0 de
0

Since we impose u*(0) = u*(T'), we obtain

1 T
)\ 2 < V/\l'YOT f t
XV < e | I

for all A € (0,1]. Obviously, this upper bound do not depends on A € [0,1] and
so we have stated that the operator ®* has at least one fixed point, denoted by
x(1) and then there exists a reproductive Galerkin solution u*, namely it satisfies
u”(0) = u*(T). Note that, from (3.8)), we have that u* € L>°(0,T;H,), for every
k € N and it is uniformly bounded.

From and by definition of 7y we can obtain the inequality

vedt = M(T, ), (3.8)

d 1
St vyl VP < 2.

Since u” is a Galerkin reproductive solution and by integrating from 0 to 7' we have
T 1 T N
/ |Vu”|2dt < —2/ |f||?dt = M (T, f). (3.9)
0 Yov= Jo

In other words, u* € L?(0,T;V,)NL>(0,T;H,), for each k € N and it is uniformly
bounded. It is not difficult to prove that 4u* € L*(0,T; V) and it is uniformly
bounded. By using compactness results (see [11]) with the triplets H, — V| — V7
and V, — Hy — V/ we have that (u") is relatively compact in L*(0,T;H,) N
C([0,T}; V}). Thus, since u*(0) = u*(T) and u*(0) — u(0), we get that u(0) =
u(T) in V}, but we also have that u € C([0,T}; Hy), because u € L?(0,T; H,) and

4y e L*0,T; V) (see [12] ), therefore u(0) = u(7') in Hy.

3.2. Proof of Theorem (3.5 general case. Let us define t = u— ¥, where ¥ is
given in Proposition 2.2 which satisfies

%1:_VAﬁ+(ﬁ.v)ﬁ+(ﬁ-V)x1/+(xI/-V)thVp
ov .
=f— E—I—VA‘I/—(\I/'V)\I/ in ]0, T[x2,
3.10
é(v(gﬁ)):%fl—i—Vfl:O in ]0, T[x€2, (310)

a(0,z) = ag(x) in]0,T[xQ,
a(t,z) =0 on [0,7] x 0.

Since VU is a T-periodic function it is only necessary to prove that there exists a
reproductive solution of the problem (3.10].
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The variational formulation is as follows: Find 6 € L*(0,T;H,) N L?*(0,T; V)
such that for all v € V, we have

da

dt

+by(¥,1,v) —|—1/bg(E7ﬁ,v) (3.11)
g

(ﬁv V)g + V((ﬁv V))g + bg(ﬁv ﬁv V) + bg(ﬁv \I/’ V)

= <f,V> - L<\II>V)7

where
AU \Y
L(,v) = (E,v)g (T, v))y + by (T, U, v) + ybg(?g,\ll,v).

After some calculations, we can write
dt

1 av V”v.g”oo
(l dt e — mo

N

[L(¥, V)| IV‘I’I)IV\ + V|V + [VE]?)|Vv]

Vo) +

— (|VT? U = 2,
+2€1<|v 24 |V ))? + Vv

Let us put

L av VIIVgHoo
F:
(ldt|+

By replacing v by a1 in we obtain

d . . €1, A
A 420/ Vaf? < 51|u|2 +F+ (0@ 9) + o

1
|W|) 5o (VP 4+ v|ve)?

IVglloo \ | o2
+C(Q.9)|Vgll| V| +2um0)\1/2)|Vu\ .

By choosing ¢1 and ||Vg||o small enough, we obtain
d
Z[a@F +Cla@® < F@), (3.12)
where C' > 0, we can obtain a reproductive solution by following the same argument
as in the proof of the case 8 = 0.
4. EXISTENCE OF REPRODUCTIVE SOLUTIONS FOR THE G-KELVIN-VOIGHT
SYSTEM
The variational formulation of problem (L.6) is: Given f € L?(0,7T;V) and
ug € Hy, find u € V,, such that
d \Y
G (V) vl v) o, v)) + by (=7 )

Vg
+ ab, ( P ,u, v )—l—bg(u,u,v) =(f,v)
u(0) = ug,

for all v € V.



10 L. FRIZ, M. A. ROJAS-MEDAR, M. D. ROJAS-MEDAR EJDE-2016/37

Definition 4.1. Let ug € Hy and f € L*(0,T; V). A function u € L*>°(0,T; Hy)N
L?(0,T;V,) is a weak solution of the problem (.6)) with initial condition u(0) = ug
if u verifies (4.1)) for all v € V.

Theorem 4.2 ([f]). If f € L%(Q), Q C R? uy € V, and g satisfying [2.1) and
Ag =0, then there exists a unique weak solution of (L1.6]).
Remark 4.3. It is possible to prove that the hypothesis that f does not depend

on time ¢ can be removed and replaced by f € L*(0,T; V), and the theorem is still
valid.

The main result of this section is the following.

Theorem 4.4. For [[f[[120,;v;) and [[Vglo small enough there exists a weak

solution of (L.7)) i.e. the weak solution u € L>(0,T;H,)NL*(0,T;V,) has the so-
called reproductive property, i.e. a solution of the variational problem (4.1)) which
satisfies u(0,z) = u(T, x).

4.1. Proof of Theorem In the same manner as in the proof of Theorem
we define

k
u(t,r) = Z cF(tywi(x) (4.2)
i=1
as the solution of the variational problem
d \%
g (0o + v v) - al(ufv)) + by (27wt v)
- abg(%,uf,v) +by(u¥,u*, v) = (£, v)
for all v.e VF = ({w!,...,wF}). The proof of the following lemma can be found

in [5l pp 499-501]. For simplicity, we denote
y(t) = " O7 + (a +v)[Va* (©)]3.

Lemma 4.5. For ||Vg|oo small enough there exist positive constants 3 and § such
that the function y(t) satisfies

d
7+ By < 8y + ClEQ3,

Proposition 4.6. Let M7 > 0 be such that
s < g, Vs G]O,Ml].

< §My. Ify(0) < My, theny(t) < M,

Let us suppose that 0 satisfies ||f||%oo(0 V)
Vg
for allt €10,T7.
Proof. From Lemma y satisfies the differential inequality
Y + (8= dy)y < |E@)]5- (4.3)
By hypothesis, there exists ¢ > 0 such that
s < g, Vs € [Ml,Ml +J] (44)
At first, we will prove that
y(t) < My +o0, Vtel0,T].
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By contradiction, let T €]0,T] be the first value so that y(T*) = M; + ¢ and
y(t) < My + o, for all t € [0,T*]. By (4.4), we have that dy(t) < g, for all
t € [0,7*]. From (4.3) and the hypothesis

y' + gy < th (4.5)

 and integrating in time in [0, 7*] we obtain
3T Y(T7) = y(0) < My(e3™ — 1),
e yY(T7) < y(0) + Mye? ™™ — My,

3T y(T*) < My + Mye= ™" — My < M;.

by multiplying by 3

In other words, y(T*) < M; which is a contradiction and, therefore, y(¢t) < M + o
for all t € [0,T]. Furthermore, the inequality holds for every ¢ € [0, 7], hence
by repeating the same arguments in each interval [0,¢], for all ¢ €]0,T], we get
y(t) < M;, which completes the proof. |

Now, for (£1,&a,...,&n) € R™ and u = §w! + &w? + ...+ £, W™, we define
the norm

(€1, &2, -+ &)l = [u@®)]]5 + (a +v)[[Vu(@®)]3 -
Given (£1,&,...,&n) € R™, define @™ : R™ — R™ in as

@m(§1,§27 ce a§7rb) = (CT(T),C?’(T), .- 'acm(T))v

where (c[*(t), 5 (t),...,cn(t)) are the coefficients of the Galerkin solution (4.2))
with initial condition ug = & w' + &w? + ...+ £, w™. If we define,

E: {(51)527"')5’”1) eR™: ||(§17§237§m)|| < Ml}

where M, is given in Proposition from Proposition ®™ maps B into B;
therefore, by the Brower Fixed-Point Theorem ®" has a fixed point and, conse-
quently there exists a reproductive Galerkin solution u”. The Theorem follows
from the standard compact arguments.
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