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EIGENVALUES OF STURM-LIOUVILLE PROBLEMS WITH
DISCONTINUOUS BOUNDARY CONDITIONS
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Abstract. For classical regular two-point self-adjoint Sturm-Liouville prob-

lems (SLP) the dependence of the eigenvalues on the boundary conditions is

well understood because of some surprisingly recent results. Recently there
has been a lot of interest in problems with discontinuous boundary conditions.

Such conditions are known by various names including transmission condi-

tions, interface conditions, point interactions (in the physics literature), etc.
Here we extend the known classical results to such problems.

1. Introduction

Regular Sturm-Liouville problems (SLP) with boundary conditions requiring a
jump discontinuity at an interior point of the underlying interval are a very ac-
tive current research area. Such conditions are known by various names including:
transmission conditions [22, 23], discontinuous conditions [25, 16], interface condi-
tions [19, 26, 32], multi-point conditions or multi-interval problems [13, 27, 18, 28],
conditions on trees, point interactions, etc.

Consider the equation

My = −(py′)′ + qy = λw yquadon J = [a, b], λ ∈ C, −∞ < a < b <∞ (1.1)

with coefficients satisfying
1
p
, q, w ∈ L(J,R), p > 0, w > 0, a.e. on J, (1.2)

where L(J,R) denotes the real-valued functions which are Lebesgue integrable on
J .

Condition (1.2) implies that all solutions y and their quasi-derivatives y[1] = (py′)
of equation (1.1) are continuous on the whole interval J [33] and thus rules out any
boundary condition requiring a discontinuity.

We call the study of equation (1.1) and its operators, under condition (1.2), the
1-interval theory. Of particular interest are the self-adjoint operator realizations
S of equation (1.1) and their spectrum. These are operators S from L2(J,w) to
L2(J,w) which satisfy

Smin ⊂ S = S∗ ⊂ Smax, (1.3)
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where Smin and Smax are the minimal and maximal operators of equation (1.1)
under condition (1.2) in the space L2(J,w). For this and other definitions and
basic properties of equation (1.1) see the book [33].

In this article we study equation (1.1) with boundary conditions

AY (a) +BY (b) = 0, (1.4)

Y (c+) = C Y (c−), a < c < b, (1.5)

where Y =
(
y
y[1]

)
, y[1] = (py′), and the matrices A,B,C satisfy A,B ∈ M2(C),

C ∈M2(R), det(C) = 1,

AEA∗ = BEB∗, rank(A : B) = 2, E =
(

0 −1
1 0

)
. (1.6)

Here C and R denote the complex and real numbers, respectively, (A : B) denotes
the 2 × 4 matrix whose first two columns are those of A and the last two are the
columns of B, and M2(S) denotes the 2× 2 matrices with entries from S.

It is well known [33] that the boundary value problem consisting of equation
(1.1) with coefficients satisfying (1.2) and the boundary condition (1.4) and (1.6)
generates a self-adjoint operator S satisfying (1.3) and that every operator S sat-
isfying (1.3) is generated by a two point boundary condition (1.4) and (1.6). Thus
every eigenfunction of every operator S satisfying (1.3) is continuous on J . Thus
if C in (1.5) is not the identity matrix, how can we find eigenvalues whose eigen-
functions satisfy boundary conditions (1.4) and (1.5)? The next remark discusses
this question.

Remark 1.1. In [29] it is shown that the boundary value problem (1.1), (1.2), (1.4),
(1.5), (1.6) determines an operator S satisfying (1.3) i.e. is self-adjoint in the Hilbert
space H = L2(J,w) and its spectrum is discrete consisting of an infinite number
of eigenvalues. Thus if C is not the identity matrix I, then the eigenfunctions are
not continuous at c by (1.5). This result is a special case of a much more general
theorem from the 2-interval theory developed by Everitt and Zettl in [13]. See [29]
for details. In this theory it is convenient to identify the Hilbert space H with
the direct sum space H = L2(J1, w1) u L2(J2, w2) where J1 = (a, c), J2 = (c, b)
and w1, w2 are the restrictions of w to J1, J2, respectively. Strictly speaking, the
2-interval theory applied to J1, J2 extends (1.3) from the Hilbert space L2(J,w)
to the direct sum space L2(J1, w1) u L2(J2, w2). These two spaces consist of the
same functions but the direct sum space emphasizes that these functions need not
be continuous at c. We believe this clarifies the meaning of a statement commonly
made in the literature when authors simply say we study the equation (1.1) on
“(a, c) ∪ (c, b)”. See the next remark.

Remark 1.2. We comment on the nature of the solutions of equation (1.1) which
satisfy condition (1.5) (and not necessarily (1.4) and (1.6)). Any initial condition at
a determines a unique solution y and its quasi-derivative y[1] which are continuous
on [a, c−]. Condition (1.5) then determines Y (c+) and using Y (c+) as an initial
condition y and y[1] are uniquely determined and continuous on [c+, b]. Here, c−

denotes the limit from the left and c+ the limit from the right. Therefore every
initial condition at a determines a unique solution y on the interval [a, b] which
satisfies condition (1.5) and is continuous along with its quasi-derivative (py′) on
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the intervals [a, c−] and [c+, b]. We call this solution y the ‘extended’ solution, or
C-extended solution, on [a, b] and continue to denote it by y. Thus for any fixed
matrix C with detC = 1 there is a 2-dimensional space of extended solutions of
equation (1.1) on the interval [a, b].

In this article we develop a method for studying Sturm-Liouville problems (1.1),
(1.2), (1.4), (1.5), (1.6) by constructing operators Cmin and Cmax which depend
on the jump condition ( 1.5) and then prove that, for any fixed condition (1.5),
all self-adjoint operators S in L2(J,w) generated by the boundary conditions (1.4)
(1.6) are characterized by

Cmin ⊂ S = S∗ ⊂ Cmax. (1.7)

This essentially reduces problems with boundary conditions (1.4) (1.6) and (1.5)
to the study of problems with condition (1.4) (1.6)) only and allows us to generalize
known results for boundary conditions (1.4) (1.6) to problems (1.4) (1.6) and (1.5).
For fixed C in (1.5) the well known inequalities among eigenvalues for different
boundary conditions (1.4) (1.6) established by Eastham, Kong, Wu, Zettl [7], the
characterization of the eigenvalues as zeros of an entire function, the continuous
and discontinuous dependence of the eigenvalues on the boundary conditions (1.4)
(1.6) are extended to (1.4) (1.6) (1.5). We make no attempt to state all of these
extensions here. When C is not the identity matrix then the eigenfunctions are
extended solutions as described in Remark 1.2. When C is the identity then the
extended results reduce to the known results for (1.4) (1.6).

A key difference between the operators Smin and Smax in (1.3) and Cmin and
Cmax in (1.7) is that the former do not depend on the boundary conditions and the
latter do depend on condition (1.5). Because of this dependence the proof of (1.7)
is rather technical. But it can readily be extended to any finite number of interior
jump conditions (1.5) but we do not pursue this extension here. It can also be
extended to an infinite number of conditions (1.5) but this requires some additional
technical considerations.

The organization of the paper is as follows: In Section 2 we construct Cmin and
Cmax and establish (1.7), in Section 3 prove the transcendental characterization
of the eigenvalues. Section 4 contains a brief review of the canonical forms of the
boundary conditions (1.4) (1.6), existence of eigenvalues is discussed in Section 5.
The other sections contain ‘applications’ of (1.7): Inequalities in Section 6, Conti-
nuity in Section 7, differentiability in Section 8, monotonicity in 9, and multiplicity
in 10.

2. Minimal and maximal operators for discontinuous boundary
conditions

In this section we construct the operators Cmin and Cmax and characterize the
boundary conditions which generate the operators S in the Hilbert space H =
L2(J,w) satisfying (1.7). Our construction is based on the 2-interval theory applied
to the intervals

J1 = (a, c), J2 = (c, b).
For a detailed discussion of this theory and its application to intervals which have

a common endpoint see the recent paper [29]. In this application the Hilbert space
H is identified with the direct sum space L2(J1, w1)uL2(J2, w2) where w1, w2 are
the restrictions of w to the intervals J1, J2, respectively. We briefly summarize this
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two interval theory next. The 2-interval definitions of the minimal and maximal
operators and their basic properties used below.

Definition 2.1.

D(Smin(J)) = D(Smin(J1))uD(Smin(J2)),

D(Smax(J)) = D(Smax(J1))uD(Smax(J2)),

and the corresponding operators Smin(J) and Smax(J) have these domains.

As in the 1-interval case the Lagrange sesquilinear form is fundamental in the
study of boundary value problems. It is defined by

[f, g] = [f1, g1](c−)− [f1, g1](a) + [f2, g2](b)− [f2, g2](c+)

where
[fr, gr] = fr(pr g

′
r)− gr(prf ′r).

Here fr, gr, pr denote the the restrictions of f, g, p to Jr, r = 1, 2.
From the 2-interval theory [29], [33] we have the following two lemmas. To

simplify the notation we let Smin = Smin(J) and Smax = Smax(J).

Lemma 2.2. (1) The minimal operator Smin is a closed, densely defined, sym-
metric operator in the Hilbert space H.

(2)

S∗min = S∗1,min u S
∗
2,min = S1,max u S2,max = Smax;

S∗max = S∗1,max u S
∗
2,max = S1,min u S2,min = Smin.

Lemma 2.3. The operators Smin and Smax have the properties:

(1) The generalized Green’s formula holds

(Smaxf, g)− (f, Smaxg) = [f, g] (f, g ∈ D(Smax)); (2.1)

(2) D(Smin) can be characterized as

D(Smin) = {f ∈ D(Smax) : [f, g] = 0 for all g ∈ D(Smax)}.

For a proof of the above lemma, see [33]. Next we define the operators Cmax and
Cmin which depend on the interior discontinuous condition (1.5) in the space H.

Definition 2.4. Let (1.1), (1.2), (1.4) and (1.5) hold. Define the operator Cmax in
the Hilbert space H by

D(Cmax) = {y = {y1, y2} ∈ D(Smax) : Y (c+) = CY (c−)}

and Cmax is the restriction of the 2-interval maximal operator Smax to the domain
D(Cmax).

Definition 2.5. Let (1.1), (1.2), (1.4) and (1.5) hold. Define the operator Cmin in
the Hilbert space H by

D(Cmin) = {y = {y1, y2} ∈ D(Cmax) : Y (a) = 0 = Y (b)}

and Cmin is the restriction of the 2-interval maximal operator Smax to the domain
D(Cmin).
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Lemma 2.6 (Naimark Patching Lemma). Given any ck ∈ C, k = 1, 2, . . . , 8 there
exists a maximal domain function g = {g1, g2} ∈ D(Smax) such that

g1(a) = c1, (p1g
′
1)(a) = c2, g1(c−) = c3, (p1g

′
1)(c−) = c4,

g2(c+) = c5, (p2g
′
2)(c+) = c6, g2(b) = c7, (p2g

′
2)(b) = c8.

For a proof of the above lemma see the two-interval S-L theory [28, 33] . From
Lemma 2.6, one can obtain the following conclusion.

Lemma 2.7. Given any complex numbers αi, i = 1, 2, 3, 4 there exists a function
g = {g1, g2} ∈ D(Cmax) such that

g1(a) = α1, (p1g
′
1)(a) = α2, g2(b) = α3, (p2g

′
2)(b) = α4.

Proof. This lemma is a special case of Lemma 2.6, where the function g satisfies
the interior discontinuous condition i.e.(

g2(c+)
(p2g

′
2)(c+)

)
= C

(
g1(c−)

(p1g
′
1)(c−)

)
.

�

The well known GKN theorem and its extensions are powerful tools for charac-
terizing all self-adjoint realizations S of equation (1.1) i.e. all operators S satisfying
(1.3), in terms of two point boundary conditions. The next theorems in this sec-
tion, especially Theorem 2.14, establish a correspondingly powerful tool which can
be used to characterize all self-adjoint realizations S satisfying (1.7) in terms of two
point boundary conditions for any fixed C. This new tool is used in Sections 6 to
10 to extend the known classical results to the boundary value problem (1.1), (1.2),
(1.4), (1.5), (1.6).

Theorem 2.8. Let the operators Cmin and Cmax be defined as above. Then we
have

(1) D(Smin) ⊂ D(Cmin) ⊂ D(Cmax) ⊂ D(Smax) and Smin ⊂ Cmin ⊂ Cmax ⊂
Smax;

(2) D(Cmin) and D(Cmax) are dense in H;
(3) For any f, g ∈ D(Cmax),

(Cmaxf, g)− (f, Cmaxg) = [f, g] = [f2, g2](b)− [f1, g1](a); (2.2)

(4) For any f, g ∈ D(Cmin), [f, g] = 0;
(5) The operator Cmin is a closed symmetric extension of the two-interval min-

imal operator Smin;
(6) C∗min = Cmax and C∗max = Cmin;
(7) Cmax is closed in H.

Proof. Properties (1) and (2) follow from the definition of Cmin and Cmax and the
fact that D(Smin) is dense in H.

For any f, g ∈ D(Cmax), functions f and g satisfy the interior discontinuous
condition, i.e.(

f2(c+)
f

[1]
2 (c+)

)
= C

(
f1(c−)
f

[1]
1 (c−)

)
,

(
g2(c+)
g
[1]
2 (c+)

)
= C

(
g1(c−)
g
[1]
1 (c−)

)
,
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[f2, g2](c+) =
(
f2(p2g′2)− g2(p2f

′
2)
)
(c+)

= det(C)
(
f1(p1g′1)− g1(p1f

′
1)
)
(c−)

= [f1, g1](c−).

It follows from the generalized Green’s formula (2.1) that, for any f, g ∈ D(Cmax) ⊂
D(Smax),

(Cmaxf, g)− (f, Cmaxg) = [f, g] = [f2, g2](b)− [f1, g1](a).

Therefore, for all f, g ∈ D(Cmin),

(Cminf, g)− (f, Cming) = [f, g] = 0,

which shows that the densely defined operator Cmin is symmetric.
It is obvious that

(Cminf, g)−(f, Cmaxg) = [f2, g2](b)−[f1, g1](a) = 0, ∀f ∈ D(Cmin), g ∈ D(Cmax)

Hence Cmax ⊂ C∗min. Next we prove C∗min ⊂ Cmax.
Since Smin ⊂ Cmin ⊂ Cmax ⊂ Smax, we have

Smin = S∗max ⊂ C∗max ⊂ C∗min ⊂ S∗min = Smax. (2.3)

Let g ∈ D(C∗min), then for any f ∈ D(Cmin), it follows from (2.1) that

0 = (Cminf, g)− (f, C∗ming)

= [f, g]

= [f1, g1](c−)− [f1, g1](a) + [f2, g2](b)− [f2, g2](c+)

= [f1, g1](c−)− [f2, g2](c+)

=
(
f1(p1g′1)− g1(p1f

′
1)
)
(c−)−

(
f2(p2g′2)− g2(p2f

′
2)
)
(c+).

(2.4)

Since f ∈ D(Cmin), the function f satisfies(
f2(c+)

(p2f
′
2)(c+)

)
= C

(
f1(c−)

(p1f
′
1)(c−)

)
,

and by substituting it into equation (2.4), it follows that(
(p1g′1)(c−)− c11(p2g′2)(c+) + c21g2(c+)

)
f1(c−)

+
(
− g1(c−)− c12(p2g′2)(c+) + c22g2(c+)

)
(p1f

′
1)(c−) = 0.

(2.5)

From the arbitrariness of function f ∈ D(Cmin) and the Naimark Patching Lemma
2.7, it follows that

(p1g′1)(c−)− c11(p2g′2)(c+) + c21g2(c+) = 0,

g1(c−) + c12(p2g′2)(c+)− c22g2(c+) = 0.

Then (
g2(c+)

(p2g
′
2)(c+)

)
= C

(
g1(c−)

(p1g
′
1)(c−)

)
,

i.e. g ∈ D(Cmax) and C∗ming = Cmaxg. Thus C∗min ⊂ Cmax. Hence C∗min = Cmax.
From the facts that the adjoint of any densely defined operator is automatically
closed and C∗min = Cmax, it follows that Cmax is a closed operator in H.

SinceD(Cmin) andD(Cmax)(= D(C∗min)) are dense inH, we have Cmin ⊂ C∗∗min =
C∗max. In the following we prove that C∗max ⊂ Cmin.
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Let g = {g1, g2} ∈ D(C∗max). Then for all f ∈ D(Cmax),

(Cmaxf, g) = (f, C∗maxg).

From (2.3), one obtains that C∗max ⊂ C∗min = Cmax, g ∈ D(Cmax) and then

(Cmaxf, g) = (f, Cmaxg).

From (2.2), one has

[f2, g2](b)− [f1, g1](a) = 0, for all f ∈ D(Cmax),

i.e.
f2(b)(p2g′2)(b)− g2(b)(p2f

′
2)(b)

= f1(a)(p1g′1)(a)− g1(a)(p1f
′
1)(a), for all f = {f1, f2} ∈ D(Cmax).

(2.6)

In particular, using Patching Lemma 2.7, one can select f ∈ D(Cmax) which
satisfies f1(a) = (p1f

′
1)(a) = 0, f2(b) = 1, (p2f

′
2)(b) = 0. Then from (2.6), it follows

that (p2g
′
2)(b) = 0. In the same way, one has g2(b) = g1(a) = (p1g

′
1)(a) = 0.

Therefore g ∈ D(Cmin) and C∗maxg = Cmaxg = Cming. Hence C∗max ⊂ Cmin, then
C∗max = Cmin and Cmin is closed in H. �

Corollary 2.9. D(Cmin) can be characterized as

D(Cmin) = {g ∈ D(Cmax) : [f, g] = 0 for all f ∈ D(Cmax)}.

Proof. If g ∈ D(Cmin), then from (2.2) it is clear that for all f ∈ D(Cmax),

[f, g] = [f2, g2](b)− [f1, g1](a) = 0.

On the other hand, if g ∈ D(Cmax) and, for all f ∈ D(Cmax), [f, g] = 0, i.e.

[f2, g2](b)− [f1, g1](a) = 0,

then by the last part proof of Theorem 2.8, it follows that g ∈ D(Cmin). �

Remark 2.10. The operators Cmin and Cmax defined above are our ‘new’ minimal
and maximal operators, they play the roles of Smin and Smax in the ‘standard’ GKN
theory as developed in the classic book of Naimark [24]. Our characterization of self-
adjoint realizations of Sturm-Liouville problems with interior conditions is based
on the operators Cmin and Cmax rather than Smin and Smax. The key difference
between (Smin, Smax) and (Cmin, Cmax) is that Smin and Smax depend only on the
coefficients 1/p, q, w whereas Cmin and Cmax depend on these coefficients and on
the interior discontinuous boundary conditions. Thus the study of the multi-point
boundary conditions is reduced to the study of two point boundary conditions, the
two points being the two ‘outer’ endpoints of the underlying interval.

Next we make some further observations. If S is a symmetric extension of Cmin,
then we have

Smin ⊂ Cmin ⊂ S ⊂ S∗ ⊂ Cmax ⊂ Smax.

Thus S is a self-adjoint extensions of the minimal operator Cmin and of the ‘stan-
dard’ 2-interval minimal operator Smin.

Each such operator S satisfies

Smin ⊂ Cmin ⊂ S = S∗ ⊂ Cmax ⊂ Smax.

and is an extension of the ‘new’ minimal operator Cmin or, equivalently, a restriction
of the ‘new’ maximal operator Cmax. The next theorem characterizes all such
operators S.
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Theorem 2.11. A linear manifold D of H is the domain of a self-adjoint extension
of Cmin if and only if

(1) D(Cmin) ⊂ D ⊂ D(Cmax);
(2) For any f, g ∈ D, [f, g] = 0;
(3) If f ∈ D(Cmax) and [f, g] = 0 for any g ∈ D, then f ∈ D.

Proof. Necessity. Let S be a self-adjoint extension of Cmin. Let D(S) = D be the
domain of S. Obviously Cmin ⊂ S = S∗ ⊂ C∗min = Cmax, i.e.

D(Cmin) ⊂ D(S) ⊂ D(Cmax).

For any f, g ∈ D(S), since S is a restriction of the ‘new’ maximal operator Cmax

and S is self-adjoint and hence symmetric, combing (2.1), it follows that

[f, g] = (Sf, g)− (f, Sg) = 0.

Let f ∈ D(Cmax). If g ∈ D(S) ⊂ D(Cmax), from (2.1), one can obtain

[f, g] = (Cmaxf, g)− (f, Cmaxg) = (Cmaxf, g)− (f, Sg).

Since for any g ∈ D(S), [f, g] = 0, i.e.

(Cmaxf, g)− (f, Sg) = 0, for all g ∈ D(S),

Therefore f ∈ D(S∗) = D(S).
Sufficiency. Let the linear manifold D satisfy conditions (1), (2) and (3) of

Theorem 2.11. Since D(Cmin) is dense in H then D is also dense in H. We define
the operator S: D(S) = D → H and Sf = Cmaxf (f ∈ D(S)).

For any f, g ∈ D(S),

0 = [f, g] = (Sf, g)− (f, Sg).

Therefore S ⊂ S∗.
Assume that f ∈ D(Cmax) and for any g ∈ D(S), [f, g] = 0, i.e.

[f, g] = (Cmaxf, g)− (f, Sg) = 0,

which shows that f ∈ D(S∗). From (3), we know f ∈ D(S). Thus S∗ ⊂ S and
then S = S∗, i.e. S is a self-adjoint operator in H. �

Next we characterize all self-adjoint extensions of Cmin in H or, equivalently,
all self-adjoint restrictions of Cmax in H. These extensions (or restrictions) differ
only by their domains. These domains are characterized by boundary conditions.
How many ? And what are they? These two questions are answered below. The
number of independent boundary conditions depends on the deficiency index which
we study next.

The deficiency subspaces {Nλ : λ ∈ C} of the closed symmetric operator Cmin

are defined by
Nλ = {f ∈ D(Cmax) : Cmaxf = λf},

where λ ∈ C, Imλ 6= 0, and recall that C∗min = Cmax. Similar to [24], for any λ ∈ C
with Imλ 6= 0, the deficiency indices of Cmin are defined by

d+ = dimNλ, d− = dimNλ,

and d+, d− are independent of λ. Since the differential expression is real, it follows
that d+ = d− = d.
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It follows from the classical Von Neumann formula that, for any fixed λ ∈ C
with Imλ 6= 0,

D(Cmax) = D(Cmin) +Nλ +Nλ,

where the linear manifolds D(Cmin), Nλ and Nλ are linearly independent.
From the general theory [24], we obtain that an operator S is a self-adjoint

extension of Cmin if and only if its domain

D(S) = {y ∈ D(Cmax) : y = y0 + φ+ V φ for all y0 ∈ D(Cmin) and for all φ ∈ Nλ},
(2.7)

where V is any unitary map with the property that

V : Nλ → Nλ, V ∗ = V −1 : Nλ → Nλ,

and Sf = Cmaxf, f ∈ D(S).
Let {φ1, . . . , φd} be an orthonormal basis for Nλ in H, and then {V φ1, . . . , V φd}

is an orthonormal basis for Nλ in H (see [30, 9]).
From what has been stated above, we present the following results.

Theorem 2.12. Let the operator S be a self-adjoint extension of Cmin. Then the
domain of S can be described as follows:

D(S) = {y ∈ D(Cmax) : y = y0 +
d∑
r=1

αrψr}, (2.8)

where y0 ∈ D(Cmin), αr ∈ C and ψr = φr + V φr (r = 1, . . . , d).

Proof. We just need to prove that the two domains (2.7) and (2.8) are identical.
Let φ ∈ Nλ and {φ1, . . . , φd} be an orthonormal basis for Nλ, then there exist α1,
. . . , αd ∈ C such that φ = α1φ1 + · · ·+αdφd. Therefore V φ = α1V φ1 + · · ·+αdV φd
and

φ+ V φ = α1(φ1 + V φ1) + · · ·+ αd(φd + V φd) =
d∑
r=1

αrψr.

Conversely, it follows from
∑d
r=1 αrψr =

∑d
r=1 αr(φr +V φr) that

∑d
r=1 αrφr =

φ ∈ Nλ and
∑d
r=1 αrV φr = V φ ∈ Nλ. Therefore

∑d
r=1 αrψr = φ+ V φ. �

Theorem 2.13. Let S be a self-adjoint extension of Cmin with domain

D(S) = {y ∈ D(Cmax) : y = y0 +
d∑
r=1

αrψr, αr ∈ C}.

Then D(S) is given by

{y ∈ D(Cmax) : [y, ψr] = 0, r = 1, . . . , d}.

Proof. Let D = {y ∈ D(Cmax) : [y, ψr] = 0, r = 1, . . . , d}. It is easy to see that
ψ1, . . . , ψd ∈ D(S). For y ∈ D(S), it follows from (2.1) that

[y, ψr] = (Sy, ψr)− (y, Sψr) = 0, r = 1, 2, . . . , d.

Therefore y ∈ D, and then D(S) ⊂ D.
On the other hand, let y ∈ D ⊂ D(Cmax) and g ∈ D(S) then there exist

g0 ∈ D(Cmin), α1, . . . , αd ∈ C such that g = g0 + α1ψ1 + · · · + αdψd. Combining
with Corollary 2.9, we deduce that

[y, g] = [y, g0] + [y, α1ψ1 + · · ·+ αdψd] = 0.
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Hence for y ∈ D and any g ∈ D(S), it follows that

0 = [y, g] = (Cmaxy, g)− (y, Cmaxg) = (Cmaxy, g)− (y, Sg).

Therefore y ∈ D(S∗) = D(S). So D ⊂ D(S) and then D(S) = D. �

Theorem 2.14 (New GKN-TYPE Theorem). Let d denote the deficiency index
of Cmin. A linear submanifold D(S) of D(Cmax) is the domain of a self-adjoint
extension S of Cmin if and only if there exist functions v1 = {v11, v12}, . . . , vd =
{vd1, vd2} ∈ D(Cmax) satisfying the following conditions:

(1) v1, . . . , vd are linearly independent modulo D(Cmin);
(2) [vi, vj ] = 0, i, j = 1, . . . , d;
(3) D(S) = {y ∈ D(Cmax) : [y, vi] = 0, i = 1, . . . , d}.

Proof. Necessity. Using Theorems 2.12 and 2.13, we set v1 = ψ1, . . . , vd = ψd,
then v1, . . . , vd satisfy the conditions (1) and (2), and the self-adjoint domain can
be denoted by (3).

Sufficiency. Assume there exist functions v1, . . . , vd ∈ D(Cmax) satisfying the
conditions (1), (2) and (3). Now we prove that D(S) is a self-adjoint domain.

Conditions [y, vi] = 0 (i = 1, . . . , d) are linearly independent. If not, there exist
constants c1, . . . , cd, not all zero, such that for all y ∈ D(Cmax),

c1[y, v1] + · · ·+ cd[y, vd] = 0,

i.e. [y, c̄1v1 + · · ·+ c̄dvd] = 0. It follows from Corollary 2.9 that c̄1v1 + · · ·+ c̄dvd ∈
D(Cmin). This contradicts the linear independence of v1, . . . , vd modulo D(Cmin).

Let
D̂ =

{
y : y = y0 + c1v1 + · · ·+ cdvd

}
,

where y0 ∈ D(Cmin) and c1, . . . , cd are any complex constants. From condition
(2) and Corollary 2.9, it follows that D̂ ⊂ D(S). Since D(S) is obtained from
D(Cmax) by imposing d linearly independent conditions, one can deduce that
dim

(
D(S)/D(Cmin)

)
= 2d − d = d. Moreover, dim

(
D̂/D(Cmin)

)
= d. Thus

D̂ = D(S).
Note that D(Cmin) ⊂ D̂ ⊂ D(Cmax). Since v1, . . . , vd satisfy condition (2), we

obtain
[f, g] = 0, for any f, g ∈ D̂.

If f ∈ D(Cmax) and for any g ∈ D̂, [f, g] = 0, then for g = vi(i = 1, . . . , d), we have
[f, vi] = 0, i = 1, . . . , d. Hence f ∈ D(S) = D̂. It follows from Theorem 2.11 that
D̂(= D(S)) is a self-adjoint domain. �

Note that
dim

(
D(Smax)/D(Smin)

)
= 2d0 = 8,

where d0 is the deficiency index of the two-interval minimal operator Smin,

dim
(
D(Smax)/D(Cmax)

)
= 2, dim

(
D(Cmin)/D(Smin)

)
= 2.

Therefore,
dim

(
D(Cmax)/D(Cmin)

)
= 2d0 − 4 = d+ + d− = 2d

and then d = 2.
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Theorem 2.15. An operator S in H satisfies (1.7) if and only if its domain D =
D(S) is given as

D(S) = {y = {y1, y2} ∈ D(Cmax) : AY (a) +BY (b) = 0}, (2.9)

where matrices A,B satisfy (1.6) i.e. A,B ∈M2(C), rank(A : B) = 2 and AEA∗ =
BEB∗.

Proof. The deficiency index of Cmin is d = 2.
Necessity. Let D(S) be the domain of a self-adjoint extension S of Cmin. By

Theorem 2.14, there exist functions w1 = {w11, w12}, w2 = {w21, w22} ∈ D(Cmax)
satisfying conditions (1),(2) and (3) of Theorem 2.14. For any y = {y1, y2} ∈
D(Cmax) satisfying condition (3), we have

0 =
(

[y, w1]
[y, w2]

)
=
(

[y2, w12](b)− [y1, w11](a)
[y2, w22](b)− [y1, w21](a)

)
,

i.e. (
[y1, w11](a)
[y1, w21](a)

)
=
(

[y2, w12](b)
[y2, w22](b)

)
.

Therefore (
w11(a) w

[1]
11(a)

w21(a) w
[1]
21(a)

)
EY (a)−

(
w12(b) w

[1]
12(b)

w22(b) w
[1]
22(b)

)
EY (b) = 0.

Set

A =

(
w11(a) w

[1]
11(a)

w21(a) w
[1]
21(a)

)
E, B = −

(
w12(b) w

[1]
12(b)

w22(b) w
[1]
22(b)

)
E.

Hence boundary conditions (3) of Theorem 2.14 is equivalent to AY (a)+BY (b) = 0.
Compute

AEA∗ =

(
w11(a) w

[1]
11(a)

w21(a) w
[1]
21(a)

)
E

(
w11(a) w21(a)
w

[1]
11(a) w

[1]
21(a)

)
,

BEB∗ =

(
w12(b) w

[1]
12(b)

w22(b) w
[1]
22(b)

)
E

(
w12(b) w22(b)
w

[1]
12(b) w

[1]
22(b)

)
.

From

0 =
(

[w1, w1] [w2, w1]
[w1, w2] [w2, w2]

)
=
(

[w12, w12](b)− [w11, w11](a) [w22, w12](b)− [w21, w11](a)
[w12, w22](b)− [w11, w21](a) [w22, w22](b)− [w21, w21](a)

)
= BEB∗ −AEA∗,

it follows that AEA∗ = BEB∗.
It is obvious that rank(A : B) ≤ 2. If rank(A : B) < 2, then there exist constants

c and d, not all zero, such that
(
c d

)
(A : B) = 0. Therefore

(
c d

)
A =

(
c d

)(w11(a) w
[1]
11(a)

w21(a) w
[1]
21(a)

)
E = 0,

i.e.
cw

[1]
11(a) + dw

[1]
21(a) = 0, cw11(a) + dw21(a) = 0. (2.10)
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Similarly, (
c d

)
B =

(
c d

)(w12(b) w
[1]
12(b)

w22(b) w
[1]
22(b)

)
(−E) = 0,

i.e.
cw

[1]
12(b) + dw

[1]
22(b) = 0, cw12(b) + dw22(b) = 0. (2.11)

Let g = {g1, g2} = cw1 + dw2 ∈ D(Cmax). Therefore for any f = {f1, f2} ∈
D(Cmax), from (2.10) and (2.11), one can obtain that

[f, g] = [f2, g2](b)− [f1, g1](a)

= [f2, cw12 + dw22](b)− [f1, cw11 + dw21](a) = 0.

It follows from Corollary 2.9 that g ∈ D(Cmin). This contradicts the fact that
w1, w2 are linearly independent modulo D(Cmin). Thus rank(A : B) = 2.

Sufficiency. If there exist complex 2×2 matrices A and B satisfy rank(A : B) =
2, AEA∗ = BEB∗ and (2.9). We just need to prove that D(S) defined by (2.9) is
a self-adjoint domain.

Let A = (aij)2×2 and B = (bij)2×2. From Lemma 2.7, there exist functions
w1 = {w11, w12}, w2 = {w21, w22} ∈ D(Cmax) such that

w11(a) = −a12, w
[1]
11 (a) = a11, w12(b) = b12, w

[1]
12 (b) = −b11,

w21(a) = −a22, w
[1]
21 (a) = a21, w22(b) = b22, w

[1]
22 (b) = −b21.

For y = {y1, y2} ∈ D(Cmax), we have(
[y, w1]
[y, w2]

)
=
(

[y2, w12](b)
[y2, w22](b)

)
−
(

[y1, w11](a)
[y1, w21](a)

)
=

(
w12(b) w

[1]
12(b)

w22(b) w
[1]
22(b)

)
E

(
y2(b)
y
[1]
2 (b)

)

−

(
w11(a) w

[1]
11(a)

w21(a) w
[1]
21(a)

)
E

(
y1(a)
y
[1]
1 (a)

)
= −BY (b)−AY (a)

Hence the boundary conditions AY (a) + BY (b) = 0 are equivalent to [y, wi] = 0,
i = 1, 2.

Now we prove [wi, wj ] = 0, i, j = 1, 2. Compute(
[w1, w1] [w2, w1]
[w1, w2] [w2, w2]

)
=
(

[w12, w12](b) [w22, w12](b)
[w12, w22](b) [w22, w22](b)

)
−
(

[w11, w11](a) [w21, w11](a)
[w11, w21](a) [w21, w21](a)

)
=
(
−b12b11 + b11b12 −b22b11 + b21b12
−b12b21 + b11b22 −b22b21 + b21b22

)
−
(
−a12a11 + a11a12 −a22a11 + a21a12

−a12a21 + a11a22 −a22a21 + a21a22

)
= BEB∗ −AEA∗.

Hence, it follows from AEA∗ = BEB∗ that [wi, wj ] = 0, i, j = 1, 2.
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Next we prove that w1, w2 are linearly independent modulo D(Cmin). If not,
there exist constants c and d, not all zero, such that cw1 + dw2 ∈ D(Cmin).

By the Patching Lemma 2.7, we may construct f = {f1, f2}, g = {g1, g2} ∈
D(Cmax) such that

f1(a) = 0, f
[1]
1 (a) = −1, f2(b) = 0, f

[1]
2 (b) = 1,

g1(a) = 1, g
[1]
1 (a) = 0, g2(b) = −1, g

[1]
2 (b) = 0.

Therefore
[cw1 + dw2, f ] = 0, [cw1 + dw2, g] = 0,

i.e.

[cw11 + dw21, f1](a) = 0, [cw11 + dw21, g1](a) = 0,

[cw12 + dw22, f2](b) = 0, [cw12 + dw22, g2](b) = 0.

It is seen from simple computation that(
c d

)(a12 −a11 b12 −b11
a22 −a21 b22 −b21

)
= 0.

Namely (
c d

) (
AE : BE

)
=
(
c d

) (
A : B

)(E 0
0 E

)
= 0.

Since c and d are not both zero and E is nonsingular, we have rank(A : B) < 2.
This contradicts the fact that rank(A : B) = 2. Therefore w1, w2 are linearly
independent modulo D(Cmin). From the New GKN-TYPE Theorem 2.14, it follows
that D(S) defined by (2.9) is the domain of a self-adjoint extension of Cmin. �

3. Transcendental characterization of the eigenvalues for
self-adjoint discontinuous boundary conditions

In this section we extend the well known characterization of the eigenvalues of
boundary value problems consisting of equation (1.1) with boundary condition (1.4)
to problems with boundary conditions (1.4) and (1.5). This characterization will
be used below to extend the very general Eastham, Kong, Wu, Zettl [7] inequalities
for boundary conditions (1.4) to boundary conditions (1.4) and (1.5) for fixed C.

Consider the equation

My = −(py′)′ + qy = λwy on J = [a, b], λ ∈ C, −∞ < a < b <∞ (3.1)

with coefficients satisfying

p−1, q, w ∈ L(J,R), p > 0, w > 0 a.e. on J, (3.2)

and boundary conditions

AY (a) +BY (b) = 0, (3.3)

Y (c+) = CY (c−), a < c < b, (3.4)

and the matrices A,B,C satisfy

AEA∗ = BEB∗, rank(A : B) = 2, det(C) = 1, (3.5)

where

A,B ∈M2(C), C ∈M2(R), E =
(

0 −1
1 0

)
. (3.6)
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Although the next result follows from the standard linear ODE theory we state
it as a theorem here since it plays a major role below.

Theorem 3.1. Let (3.1) to (3.4) hold and let λ ∈ C. Every initial condition at a
determines a unique solution on [a, b] which satisfies the jump condition (3.4) and
there are exactly two such linearly independent solutions of equation (3.1) for every
λ ∈ C.

Proof. See Remark 1.2. The proof that there are exactly two such linearly inde-
pendent solutions is similar to the proof in the general linear ode theory for the
case when C = I and hence omitted. �

Definition 3.2. A solution on [a, b] satisfying (3.4) is called a C jump solution or
just a jump solution when C remains fixed. A complex number λ is an eigenvalue of
problem (3.1) to (3.6) if there exists a nontrivial C jump solution y on [a, b] which
satisfies both boundary conditions (3.3) and (3.4).

As mentioned in Section 1, condition (3.2) implies that all solutions are contin-
uous on [a, b]. So if C 6= I, the identity matrix, how can we get an eigenfunction
satisfying both conditions (3.3) and (3.4))? The next theorem answers this ques-
tion.

Notation. Below, for a fixed boundary condition (3.4), we extend solutions y from
[a, c] to [c, b] as in Remark 1.2, and continue to use the same notation y for the
extended solution. Thus if y is an eigenfunction satisfying (3.3) then it is such an
extended solution.

Let

P =
(

0 1/p
q 0

)
, W =

(
0 0
w 0

)
. (3.7)

Then the scalar equation (3.1) is equivalent to the first order system

Y ′ = (P − λW )Y =
(

0 1/p
q − λw 0

)
Y, Y =

(
y

(py′)

)
. (3.8)

For fixed boundary condition (3.4) let u, v be the extended solutions of (3.1) on
[a, b] determined by the initial conditions:

u(a) = 1 = v[1](a), v(a) = 0 = u[1](a)

Let

Φ =
(
u v
u[1] v[1]

)
.

Then
Φ′ = (P − λW ) Φ on J, Φ(a, λ) = I, λ ∈ C.

Define the characteristic function δ by

δ(λ) = det[A+B Φ(b, a, λ)], λ ∈ C. (3.9)

This function δ is a transcendental function whose zeros characterize the eigenvalues
as we will see below.

Lemma 3.3. The characteristic function δ is well defined and is an entire function
of λ for fixed (a, b, A,B,C, P,W ).

The proof of the above lemma is similar to the case when C = I, see [33, Chapter
2].



EJDE-2017/127 STURM-LIOUVILLE PROBLEMS 15

Lemma 3.4. For fixed boundary condition (3.4) and δ(λ) defined as above in (3.9)
we have:

(1) A complex number λ is an eigenvalue of the boundary value problem (3.1)
to (3.6) if and only if δ(λ) = 0.

(2) The geometric multiplicity of an eigenvalue λ is equal to the number of
linearly independent vector solutions C = Y (a) of the linear algebra system

[A+BΦ(b, a, λ)]C = 0. (3.10)

Proof. Suppose δ(λ) = 0. Then (3.10) has a nontrivial vector solution for C. Solve
the IVP

Y ′ = (P − λW )Y on J, Y (a) = C.

Then
Y (b) = Φ(b, a, λ)Y (a) and [A+BΦ(b, a, λ)]Y (a) = 0.

From this it follows that the top component of Y , say, y is an eigenfunction of
(3.1) to (3.6) and λ is an eigenvalue of this BVP. (Recall that the eigenfunctions
are extended solutions on [a, b].

Conversely, if λ is an eigenvalue and y an eigenvector of λ, then Y =
(
y
py′

)
satisfies Y (b) = Φ(b, a, λ)Y (a) and consequently [A + BΦ(b, a, λ)]Y (a) = 0. Since
Y (a) = 0 would imply that y is the trivial solution in contradiction to it being an
eigenfunction, we have that det[A + BΦ(b, a, λ)] = 0. If (3.10) has two linearly
independent solutions for C, say C1, C2, then solve the IVP with the initial condi-
tions Y (a) = C1, Y (a) = C2 to obtain solutions Y1, Y2. Then Y1, Y2 are linearly
independent vector solutions of (3.8) and their top components y1, y2 are linearly
independent solutions of (3.1). Conversely, if y1, y2 are linearly dependent solutions
of (3.1) we can reverse the steps above to obtain two linearly independent vector
solutions of the algebraic system (3.10). �

It is convenient to classify the boundary conditions (BC) (3.3), (3.5) into two
mutually exclusive classes: separated and coupled. Note that, since the BC are
homogeneous, multiplication on the left by a nonzero constant or a nonsingular
matrix leads to equivalent boundary conditions.

Lemma 3.5 (Separated boundary conditions). Assume

A =
(
A1 A2

0 0

)
, B =

(
0 0
B1 B2

)
.

Then for λ ∈ C,

δ(λ) = −A2B1φ11(b, a, λ)−A2B2φ21(b, a, λ) +A1B1φ12(b, a, λ) +A1B2φ22(b, a, λ).

The proof of the above lemma follows from the definition of δ and a direct
computation. The characterization of the eigenvalues as zeros of an entire function
given by Lemma 3.4 reduces to a simpler and more informative form when the
boundary conditions are self-adjoint and coupled. This reduction is given by the
next lemma.

Theorem 3.6. Let (3.1) to (3.8) hold and fix (3.4) and P,W, J . Define Φ = (φij)
as above and suppose that

B = −I, A = eiγ K, 0 ≤ γ ≤ π, K ∈M2(R), detK = 1. (3.11)
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Let K = (kij) and define

D(λ,K) = k11 φ22(b, a, λ)−k12 φ21(b, a, λ)−k21 φ12(b, a, λ)+k22 φ11(b, a, λ), (3.12)

for λ ∈ C. Then
(1) The complex number λ is an eigenvalue of BVP (3.1) to (3.6) if and only if

D(λ,K) = 2 cos γ, 0 ≤ γ ≤ π. (3.13)

(2) If λ is an eigenvalue for A = eiγK, B = −I, 0 < γ < π, with eigenfunc-
tion u, then λ is also an eigenvalue for A = e−iγK, B = −I, but with
eigenfunction u.

Proof of Theorem 3.6. From the basic theory of linear ordinary differential equa-
tions, see [33], we have det Φ(b, a, λ) = 1. We abbreviate (φij(b, a, λ)) to φij and
D(λ,K) to D for simplicity of exposition. By (3.9) and (3.11) and recalling that
detK = 1 we get

δ(λ) = det(eiγ K − Φ) =
(
eiγk11 − φ11 eiγk12 − φ12

eiγk21 − φ21 eiγk22 − φ22

)
= (eiγk11 − φ11)(eiγk22 − φ22)− (eiγk12 − φ12)(eiγk21 − φ21)

= e2iγ(k11k22 − k12k21)− eiγD + det Φ.

(3.14)

By Lemma 3.4, λ is an eigenvalue if and only if δ(λ) = 0. Therefore λ is an
eigenvalue if and only if

D(λ) = (1 + e2iγ)/eiγ = e−iγ + eiγ

= cos(−γ) + i sin(−λ) + cos(γ) + i sin(γ)

= 2 cos(γ).

This proves part (1). Part (2) follows from (3.14) and by taking conjugates of
equation (3.1). �

Corollary 3.7. Let the hypotheses and notation of Theorem 3.6 hold. If λ is any
eigenvalue and D(λ,K) is given by (3.12) then

− 2 ≤ D(λ,K) ≤ 2. (3.15)

The above corollary follows directly from (3.13).

Corollary 3.8. Let the hypotheses and notation of Theorem 3.6 and let I denote
the identity matrix. Then

(1) A complex number λ is an eigenvalue of the periodic boundary condition

Y (b) = Y (a)

if and only if D(λ, I) = 2.
(2) A complex number λ is an eigenvalue of the semi-periodic boundary condi-

tion
Y (b) = −Y (a)

if and only if D(λ,−I) = −2.
(3) A complex number λ is an eigenvalue of the complex self-adjoint boundary

condition
Y (b) = eiγ Y (a), 0 < γ < π

if and only if D(λ, I) = 2 cos(γ).
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The above corollary follows directly from (3.13). Next we comment on the re-
markable characterization (3.13).

Remark 3.9. Note that in (3.13) D(λ,K) on the left is defined for any on K ∈
SL2(R) and the right side depends only on γ ∈ [0, π]. Recall the canonical form
of the coupled boundary conditions with A, B given by (3.11). When γ = 0,
D(λ,K) = 2 characterizes the eigenvalues when A = K; when γ = π, D(λ,K) = −2
characterizes the eigenvalues when A = −K; when γ ∈ (0, π) we have the complex
coupled boundary condition: A = eiγ K. Thus the characterization D(λ,K) =
2 cos γ suggests a close relationship between the eigenvalues of the complex coupled
condition with A = eiγK and the eigenvalues of the two real coupled conditions
with A = K and A = −K. Below we explore this relationship in some detail for the
special case when K = I, the identity matrix. Another project we plan to pursue
is to study this relationship for other K ∈ SL2(R) using the special features of this
well known special linear group of order 2 over the reals, i.e. SL2(R).

4. Canonical forms of self-adjoint boundary conditions

The boundary condition (1.4), (1.6) is homogeneous and thus clearly invariant
under multiplication by a nonsingular matrix or nonzero constant. This is a seri-
ous obstacle to studying the dependence of the eigenvalues on this condition. The
conditions (1.4), (1.6) can be divided into three mutually exclusive classes: sepa-
rated, real coupled and complex coupled. We refer to all nonseparated conditions
as coupled. These three classes are:

Separated self-adjoint BC. These are

A1y(a) +A2(py′)(a) = 0, A1, A2 ∈ R, (A1, A2) 6= (0, 0),

B1y(b) +B2(py′)(b) = 0, B1, B2 ∈ R, (B1, B2) 6= (0, 0).

These separated conditions can be parameterized as follows:

cosαy(a)− sinα(py′)(a) = 0, 0 ≤ α < π, (4.1)

cosβy(b)− sinβ(py′)(b) = 0, 0 < β ≤ π, (4.2)

choose α ∈ [0, π) such that

tanα =
−A2

A1
if A1 6= 0, and α = π/2 if A1 = 0,

similarly, choose β ∈ (0, π] such that

tanβ =
−B2

B1
if B1 6= 0, and β = π/2 if B1 = 0.

Note the different normalization in (4.2) for β than that used for α in (4.1).
This is for convenience in using the Prüfer transformation which is widely used for
the theoretical studies of eigenvalues and their eigenfunction and for the numerical
computation of these. For example the FORTRAN code SLEIGN2 [1, 5, 2, 3, 4]
uses this normalization.
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All real coupled self-adjoint BC. These can be formulated as follows:

Y (b) = K Y (a), Y =
(

y
(py′)

)
,

where K ∈ SL2(R), i.e. K satisfies

K =
(
k11 k12

k21 k22

)
, kij ∈ R, detK = 1. (4.3)

All complex coupled self-adjoint BC. These are:

Y (b) = eiγKY (a),

where K satisfies (4.3) and −π < γ < 0, or 0 < γ < π.

Lemma 4.1. Given a boundary condition (1.4), (1.6) it is equivalent to exactly
one of the separated, real coupled, or complex coupled boundary conditions defined
above and each of these conditions can be written in the form (1.4), (1.6).

For a proof of the above lemma, see [33].

Notation 4.2. For fixed coefficients p, q, w, fixed endpoints a, b and a fixed jump
condition (1.5) we use the following notation for the eigenvalues of the boundary
conditions (1.4), (1.6):

λn(α, β), λn(K), λn(γ,K), n ∈ N0. (4.4)

Here and below N0 = {0, 1, 2, 3, · · · }. Note that λn is uniquely defined although its
eigenfunction may not be unique and this notation covers all self-adjoint bound-
ary conditions (1.4), (1.6). Since each of these has a unique representation as a
separated, real coupled, or complex coupled condition we can study how the eigen-
values change when this boundary condition changes. The existence of eigenvalues
is discussed in the next section.

5. Existence of eigenvalues

Theorem 5.1. Let (1.1) to (1.6) hold and let S satisfy (1.7). Then the spectrum
of S is real, discrete, bounded below and not bounded above. We have

(1) There are an infinite but countable number of eigenvalues with no finite
accumulation point.

(2) The eigenvalues can be ordered to satisfy

−∞ < λ0 ≤ λ1 ≤ λ2 ≤ . . . ; λn → +∞, as n→∞. (5.1)

Each eigenvalue may be simple or double but there cannot be two consecu-
tive equalities in (5.1) since, as pointed out in Theorem 3.1, for any value
of λ, the equation (1.1) has exactly two linearly independent extended so-
lutions. Note that λn is well defined for each n ∈ N0 but there is some
arbitrariness in the indexing of the eigenfunctions corresponding to a dou-
ble eigenvalue since every nontrivial extended solution of the equation for
such an eigenvalue is an eigenfunction. Let σ(S) = {λn : n ∈ N0} where
the eigenvlaues are ordered to satisfy (5.1).

(3) If the boundary condition is separated then strict inequality holds everywhere
in (5.1). Furthermore, if un is an eigenfunction of λn, then un is unique
up to constant multiples and has exactly n zeros in the open interval (a, b)
for each n ∈ N0.
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(4) Let S be determined by a real coupled boundary condition matrix K and un
be a real-valued eigenfunction of λn(K). Then the number of zeros of un in
the open interval (a, b) is 0 or 1, if n = 0, and n− 1 or n or n+ 1 if n ≥ 1.

(5) Let S be determined by a complex coupled boundary condition (K, γ) and let
σ(S) = {λn : n ∈ N0}. Then all eigenvalues are simple and strict inequality
holds everywhere in (5.1). Moreover, if un is an eigenfunction of λn then
the number of zeros of Reun on [a, b) is 0 or 1 if n = 0, and n− 1 or n or
n+ 1 if n ≥ 1. The same conclusion holds for Imun. Moreover, un has no
zero in [a, b], n ∈ N0.

See [33] for a proof or a reference to a proof and note that these proofs can be
generalized to the boundary conditions used here.

Remark 5.2. Note that Theorem 5.1 justifies the notation 4.2. Thus for each S
satisfy (1.7) we have that the spectrum σ(S) of S is given by

(1) σ(S) = {λn(α, β), n ∈ N0} if the boundary condition of S is separated and
determined by the parameters α, β;

(2) σ(S) = {λn(K), n ∈ N0} if the boundary condition of S is real coupled
with coupling constant K;

(3) σ(S) = {λn(γ,K), n ∈ N0} if the boundary condition of S is complex
coupled with coupling constants K, γ.

Remark 5.3. It is the canonical forms of the boundary conditions which make
it possible to introduce the notation of Remark 5.2. This notation identifies λn
uniquely and makes it possible to study the dependence of the eigenvalues on the
boundary conditions and on the equations. No comparable canonical representation
of all self-adjoint boundary conditions is known for higher order ordinary differen-
tial equations. There are some recent results [14, 15] but these are much more
complicated and thus more difficult to use for the study of the dependence of the
eigenvalues on the problem. But note that the jump condition (1.5) determined by
C at the point c remains fixed as A and B vary.

6. Eigenvalue inequalities

In this section we give a complete description of how, for a fixed equation and
fixed matrix C, the eigenvalues change as the boundary conditions (1.4) determined
the matrices A,B vary. Since the Dirichlet and Neumann boundary conditions play
a special role we introduce the notation

λDn = λn(0, π), λNn = λn(π/2, π/2), n ∈ N0. (6.1)

Theorem 6.1. Let (1.1) to (1.6) hold, let S satisfy (1.7) and let λDn be defined by
(6.1). Then for all (A,B) satisfying (1.4) we have

(1)
λn(A,B) ≤ λDn , n ∈ N0. (6.2)

Equality can hold in (6.2) for non Dirichlet eigenvalues.
(2) For all (A,B) satisfying (1.4) we have

λDn ≤ λn+2(A,B), n ∈ N0.

(3) The range of λ0(A,B) is (−∞, λD0 ].
(4) The range of λ1(A,B) is (−∞, λD0 ].
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(5) The range of λn(A,B) is (λDn−2, λ
D
n ] for n ≥ 2.

Moreover, (3), (4), (5) still hold when A,B are restricted to be real.

For a proof of the above theorem, see [33]. Next we investigate how the eigen-
values change when the boundary conditions change more closely.

According to a well-known classical result (see [8] and [6] for the case of smooth
coefficients and [31] for the general case), we have the following inequalities for
K = I, the identity matrix:

λN0 ≤ λ0(I) < λ0(eiγI) < λ0(−I) ≤ {λD0 , λN1 }
≤ λ1(−I) < λ1(eiγI) < λ1(I) ≤ {λD1 , λN2 }
≤ λ2(I) < λ2(eiγI) < λ2(−I) ≤ {λD2 , λN3 }
≤ λ3(−I) < λ3(eiγI) < λ3(I) ≤ {λD3 , λN4 } ≤ . . . ,

(6.3)

where γ ∈ (−π, π) and γ 6= 0. In (6.3) notation {λDn , λNn+1} means either of λDn and
λNn+1 and there is no comparison made between these two. These inequalities are
well known in Flochet theory.

Eastham, Kong, Wu and Zettl [7] extended these inequalities to general K ∈
SL2(R). A key feature of this extension is the identification of separated boundary
conditions which play the role of the Dirichlet and Neumann conditions in (6.3).
These are given next.

For K ∈ SL2(R), K =
(
k11 k12

k21 k22

)
, denote by µn = µn(K) and νn = νn(K),

n ∈ N0, the eigenvalues for the separated boundary conditions

y(a) = 0, k22y(b)− k12y
[1](b) = 0; (6.4)

y[1](a) = 0, k21y(b)− k11y
[1](b) = 0; (6.5)

respectively. Note that (k22, k12) 6= (0, 0) 6= (k21, k11) since detK = 1. Therefore
each of these is a self-adjoint separated boundary condition with a countably infinite
number of only real eigenvalues.

Theorem 6.2. Let (1.1) to (1.7) hold. Let µn and νn, n ∈ N0 be the eigenvalues
for (6.4), and (6.5), respectively. Then we have

• Suppose that k12 < 0 and k11 ≤ 0. Then
(1) λ0(K) is simple;
(2) λ0(K) < λ0(−K);
(3) The following inequalities hold for −π < γ < 0 and 0 < γ < π:

−∞ < λ0(K) < λ0(γ,K) < λ0(−K) ≤ {µ0, ν0}
≤ λ1(−K) < λ1(γ,K) < λ1(K) ≤ {µ1, ν1}
≤ λ2(K) < λ2(γ,K) < λ2(−K) ≤ {µ2, ν2}
≤ λ3(−K) < λ3(γ,K) < λ3(−K) ≤ {µ3, ν3} ≤ . . .

• Suppose that k12 ≤ 0 and k11 > 0. Then
(1) λ0(K) is simple;
(2) λ0(K) < λ0(−K)
(3) The following inequalities hold for −π < γ < 0 and 0 < γ < π:

ν0 ≤ λ0(K) < λ0(γ,K) < λ0(−K) ≤ {µ0, ν1}
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< λ1(−K) < λ1(γ,K) < λ1(K) ≤ {µ1, ν2}
≤ λ2(K) < λ2(γ,K) < λ2(−K) ≤ {µ2, ν3}
≤ λ3(−K) < λ3(γ,K) < λ3(K) ≤ {µ3, ν4} ≤ . . .

• Furthermore, for 0 < α < β < π we have

λ0(β,K) < λ0(α,K) < λ1(α,K) < λ1(β,K) < λ2(β,K) < λ2(α,K)

< λ3(α,K) < λ3(β,K) < . . .

• If neither of the above cases holds for K then one of them must hold for
−K. The notation {µn, νm} is used to indicate either υn or νm but no
comparison is made between µn and νm.

Proof. For K a diagonal matrix these inequalities were established in Weidmann
[31]. The general result is proven in Eastham, Kong, Wu and Zettl [7]. �

Next we mention some interesting consequences of Theorem 6.2.

Remark 6.3. For separated boundary conditions the Prüfer transformation is a
powerful tool for proving the existence of eigenvalues, studying their properties and
computing them numerically. There is no comparable tool for coupled conditions.
For coupled conditions the standard existence proof for the eigenvalues is based on
operator theory in Hilbert space; the Green’s function is constructed and used as
a kernel in the definition of an integral operator whose eigenvalues are those of the
problem or their reciprocals, see Coddington and Levinson [6] or Weidmann [31].

A proof based on Theorem 6.2 was given in [7] and goes as follows: Starting with
the eigenvalues µn and νn, n ∈ N0, of the separated BC (6.4), (6.5) the proof of [7,
Theorem 4.8.1] (although this is not explicitly pointed out there) actually shows
that there is one and only one eigenvalue of the coupled condition determined by
K in the interval (−∞, µ0] and it is λ0(γ,K); there is exactly one eigenvalue in the
interval [µ0, µ1] and it is λ1(γ,K); there is exactly one eigenvalue in the interval
[µn, µn+1] and it is λn+1(γ,K), for n ∈ N0. This not only proves the existence of
the eigenvalues of K but can be used to construct an algorithm to compute them.
Such an algorithm is used by SLEIGN2, see [1], see also [2, 3]. This is the first
existence proof for coupled eigenvalues which does not use the self-adjoint operator
in Hilbert space and thus can be described as the first ‘elementary’ existence proof.

Remark 6.4. By Theorem 6.2 for any K ∈ SL2(R) either λ0(K) or λ0(−K)
is simple. This extends the classical result that the lowest periodic eigenvalue is
simple, to the general case of arbitrary coupled self-adjoint BC’s. Here simple refers
to both the algebraic and geometric multiplicities, since these are equal.

Theorem 6.5. Let (1.1) to (1.7) hold. Let µn and νn, n ∈ N0 be the eigenvalues
for (6.4), and (6.5), respectively. Then

(1) An eigenvalue λn(K) is double if and only if there exist k,m ∈ N0 such
that

λn(K) = µk = νm;
(2) Given eigenvalues λn(K) and λn+1(K) of K, distinct or not, there exist

eigenvalues υk, νm of the separated boundary conditions (6.4), (6.5) such
that

λn(K) ≤ {µk, νm} ≤ λn+1(K).

For a proof of the above theorem, see [17, Theorem 4.3 and Corollary 4.2].
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7. Continuity of eigenvalues

In this section we study the continuity of the eigenvalues as functions of each
parameter of the problem. We extend the notation (4.4) for the eigenvalues to
include the coefficients and the endpoints

λn(a, b, α, β, p, q, w), λn(a, b,K, p, q, w), λn(a, b, γ,K, p, q, w), n ∈ N0. (7.1)

When we study the dependence on one parameter x with the others fixed we
abbreviate the notation to λn(x); thus λn(q) indicates that we are studying λn as
a function of q ∈ L(J,R) with all other parameters of the problem fixed, λn(a)
indicates that we are studying λn as a function of the left endpoint with all other
parameters fixed, etc. Since C is fixed in our results below we do not include it in
the notation (7.1).

The eigenvalues are continuous functions of each of 1
p , q, w, a, b; they are not

continuous functions of the boundary conditions, in general. The continuity on the
coefficients 1

p , q, w is with respect to the L(J,R) norm; the continuity on K is with
respect to any matrix norm and the continuity with respect to a, b, α, β, γ is in the
reals R. We will see below that even though, in general, λn is not a continuous
function of the boundary conditions for fixed n, it can always be embedded in a
“continuous branch” of eigenvalues by varying the index n. For separated boundary
conditions there is a jump discontinuity when either y(a) = 0 or y(b) = 0. We
also characterize the coupled boundary conditions at which the eigenvalues are not
continuous and show that all discontinuities are finite or infinite jumps. The set
of boundary conditions at which the eigenvalues have discontinuities we call “the
jump set” since all discontinuities are of the jump type.

We start with the continuous dependence on the coefficients and the endpoints.
For all results in this section C is fixed.

Theorem 7.1. Let (1.1) to (1.7) hold and let n ∈ N0. Then
(1) λn(1/p) is a continuous function of 1/p ∈ L(J,R);
(2) λn(q) is a continuous function of q ∈ L(J,R);
(3) λn(w) is a continuous function of w ∈ L(J,R);
(4) λn(a) is a continuous function of a.
(5) λn(b) is a continuous function of b.

For a proof of the above theorem, see Kong, Wu and Zettl [17, Section 2]. Next
we characterize the boundary conditions at which λn is not continuous, we call this
set the “jump” set since all discontinuities are of jump type.

Definition 7.2 (Jump set of boundary conditions). The jump set of boundary
conditions J is the union of

(1) the (real and complex) coupled conditions

Y (b) = eiγ K Y (a), Y =
(

y
(py′)

)
, −π < γ ≤ π,

where the 2× 2 matrix K = (kij) ∈ SL2(R) satisfies k12 = 0, and
(2) the separated boundary conditions

A1y(a) +A2(py′)(a) = 0, A1, A2 ∈ R, (A1, A2) 6= (0, 0)

B1y(b) +B2(py′)(b) = 0, B1, B2 ∈ R, (B1, B2) 6= (0, 0)
(7.2)
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satisfying A2B2 = 0. Note that these are precisely the conditions where
either α = 0 or β = π or both α = 0 and β = π.

Theorem 7.3. Let (1.1) to (1.7) hold and let n ∈ N0. Let J be given by Defini-
tion7.2. Then

(1) If the boundary condition is not on the jump set J, then λn is a continuous
function of the boundary condition.

(2) If n ∈ N = {1, 2, 3, · · ·}, k12 = 0 and λn = λn−1, then λn is continuous at
K.

(3) The lowest eigenvalue λ0 has an infinite jump discontinuity at each sepa-
rated or (real or complex) coupled boundary condition in J.

(4) Let n ∈ N. If the boundary condition is in J and λn is simple, then λn has
a finite jump discontinuity at this boundary condition.

For a proof of the above theorem, see [17, Section 3]. For the important special
case of separated boundary conditions in canonical form (4.1), (4.2) there is a
stronger result.

Lemma 7.4. For any n ∈ N0, λn(α, β) is jointly continuous on [0, α)× (0, π] and
strictly decreasing in α for each fixed β and strictly increasing in β for each fixed
α.

The proof of the above lemma can be found in [17]. The next theorem gives more
detailed information about separated boundary conditions (7.2) not in canonical
form, in particular for the separated jump boundary conditions.

Theorem 7.5 (Everitt-Möller-Zettl). Fix a, b, p, q, w and consider the conditions
(7.2).

• Fix B1, B2 and let A1 = 1. Consider λn = λn(A2) as a function of A2 ∈ R.
Then for each n ∈ N0, λn(A2) is continuous at A2 for A2 > 0 and A2 < 0
but has a jump discontinuity at A2 = 0. More precisely we have
(1) λn(A2)→ λn(0) as A2 → 0−, n ∈ N0.
(2) λ0(A2)→ −∞ as A2 → 0+.
(3) λn+1(A2)→ λn(0) as A2 → 0+.

• Fix A1, A2 and let B1 = 1. Consider λn = λn(B2) as a function of B2 ∈ R.
Then for each n ∈ N0, λn(B2) is continuous at B2 for B2 > 0 and B2 < 0
but has a jump discontinuity at B2 = 0. More precisely we have:
(1) λn(B2)→ λn(0) as B2 → 0+, n ∈ N0.
(2) λ0(B2)→ −∞ as B2 → 0−.
(3) λn+1(B2)→ λn(0) as B2 → 0−.

For a proof of the above theorem, see Everitt, Möller and Zettl [10, 11, 12].

Remark 7.6. Note that λ0(A2) has an infinite jump discontinuity at A2 = 0, but
for all n ≥ 1, λn(A2) has a finite jump discontinuity at A2 = 0, λn(A2) is left but
not right continuous at 0. Similarly, λ0(B2) has an infinite jump discontinuity at
B2 = 0, but for all n ≥ 1, λn(B2) has a finite jump discontinuity at B2 = 0 λn(B2)
is right but not left continuous at 0. In all cases λn(0) is embedded in a continuous
branch of eigenvalues as A2 or B2 passes through zero but this branch is not given
by a fixed index n; in order to preserve continuity the index “jumps” from n to
n+ 1 as A2 or B2 pass through zero from the appropriate direction.
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Remark 7.7. This forced “index jumping” in order to stay on a continuous branch
of eigenvalues plays an important role in some of the algorithms and their numerical
implementations used in the code SLEIGN2 [1] for the numerical approximation of
the spectrum of regular and singular SLP.

Remark 7.8. This “index jumping” phenomenon in order to stay on a “continuous
eigenvalue branch” is quite general: It applies to all simple eigenvalues for all
boundary conditions on the jump set J, separated, real coupled, or complex coupled.
For details the reader is referred to [17, Theorems 3.39, 3.73, 3.76, Propositions 3.71,
3.72].

Remark 7.9. Kong and Zettl [20] have shown that each continuous eigenvalue
branch is in fact differentiable everywhere including the point A2 = 0 (or B2 = 0)
where the index jumps. This also follows from Möller and Zettl [21].

Remark 7.10. Remarkably, if the boundary condition is in J and λn is simple
then it can be embedded in a continuous eigenvalue branch and this branch is
differentiable. Möller-Zettl [21] extended this result to abstract operators in Banach
space.

8. Differentiability of eigenvalues

Now that the continuities of λn have been characterized it is natural to investigate
the differentiability of λn as a function of the parameters of the problem. This we
embark upon next. Here for each n ∈ N0, un denotes a normalized eigenfunction
of λn. For all cases except when γ 6= 0 we choose un to be real valued. Again C is
fixed in this section.

Theorem 8.1. Let (1.1) to (1.7) hold. Let n ∈ N0.
(1) Assume that p, q, w are continuous at a and p(a) 6= 0, then λn(a) is differ-

entiable at a and

λ′n(a) =
1

p(a)
|pu′n|2(a)− |un|2(a)[q(a)− λn(a)w(a)].

(2) Assume that p, q, w are continuous at b and p(b) 6= 0, then λn(b) is differ-
entiable at b and

λ′n(b) = − 1
p(b)
|pu′n|2(b) + |un|2(b) [q(b)− λn(b)w(b)].

(3) Let −π < γ < 0 or 0 < γ < π. Then λn(γ) is differentiable at γ and

λ′n(γ) = −2 Im[un(b) (pu′n)(b)],

where Im[z] denotes the imaginary part of z.
(4) Let α ∈ (0, π). Then λn(α) is differentiable and its derivative is given by

λ′n(α) = −u2(a)− (pu′)2(a).

(5) Let β ∈ (0, π). Then λn(β) is differentiable and its derivative is given by

λ′n(β) = u2(b) + (pu′)2(b).

For a proof of the above theorem, see [20]. Next we study the differentiability of
the eigenvalues with respect to the remaining parameters: 1

p , q, w and K.

Theorem 8.2. Let (1.1) to (1.7) hold. Let n ∈ N0.
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(1) Assume that λn(q) is a simple eigenvalue with real valued normalized eigen-
function un(·, q). Then λn(·, q) is differentiable in L(J,R) and its Frechet
derivative is given by

λ′n(q)h =
∫ b

a

|un(·, q)|2h, h ∈ L(J,R). (8.1)

(2) Assume that λn(1/p) is a simple eigenvalue with real valued normalized
eigenfunction un(·, 1

p ). Then λn(·, 1/p) is differentiable in L(J,R) and its
Frechet derivative is given by

λ′n(1/p)h = −
∫ b

a

|u[1]
n (·, 1/p)|2h, h ∈ L(J,R).

(3) Assume that λn(w) is a simple eigenvalue with real valued normalized eigen-
function un(·, w). Then λn(·, w) is differentiable in L(J,R) and its Frechet
derivative is given by

λ′n(w)h = −λn(w)
∫ b

a

|un(·, w)|2 h, h ∈ L(J,R).

(4) Assume that λn(K) is a simple eigenvalue with real valued normalized
eigenfunction un(·,K). Then λn(·,K) is differentiable and its Frechet de-
rivative is given by the bounded linear transformation defined by

λ′n(K)H = [pun′(b),−un(b)]HK−1

(
un(b)

(pu′n)(b)

)
, H ∈M2,2(C).

For the proof of (1), (2), (3), see [20], and for (4) see [21].

9. Monotonicity of eigenvalues

In this section we fix a boundary condition and study how the eigenvalues change
when coefficient changes monotonically.

Theorem 9.1. Let (1.1) to (1.7) hold, let n ∈ N0.

(1) Fix p, w. Suppose Q ∈ L([a, b],R ) and assume that Q ≥ q a.e. on [a, b].
Then λn(Q) ≥ λn(q). If Q > q on a subset of [a, b] having positive Lebesgue
measure, then λn(Q) > λn(q).

(2) Fix q, w. Suppose 1/P ∈ L([a, b],R) and 0 < P ≤ p a.e. on [a, b]. Then
λn(1/P ) ≥ λn(1/p); if 1/P < 1/p on a subset of [a, b] having positive
Lebesgue measure, then λn(1/P ) < λn(1/p).

(3) Fix p, q. Suppose W ∈ L([a, b],R) and W ≥ w > 0 a.e. on [a, b]. Then
λn(W ) ≥ λn(w) if λn(W ) < 0 and λn(w) < 0; but λn(W ) ≤ λn(w) if
λn(W ) > 0 and λn(w) > 0. Furthermore, if strict inequality holds in the
hypothesis on a set of positive Lebesgue measure, then strict inequality holds
in the conclusion.

Proof. We give the proof for (1), the proofs of (2) and (3) are similar. Define a
function f : R → R by

f(t) = λn(s(t)), s(t) = q + t(Q− q), t ∈ [0, 1].



26 A. WANG, A. ZETTL EJDE-2017/127

Then s(t) ∈ L((a, b),R) for each t ∈ [0, 1]. From the chain rule in Banach space
and formula (8.1) for λ′n(q) we have

f ′(t) = λ′n((s(t)) s′(t) =
∫ b

a

|u2(r, s(t))| (Q(r)− q(r)) dr ≥ 0, t ∈ [0, 1].

Hence f is nondecreasing on [0, 1] and f(1) = λn(Q) ≥ λn(q) = f(0). The strict
inequality part of the theorem also follows from this argument. �
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[11] W. N. Everitt, M. Möller, A. Zettl; Sturm-Liouville problems and discontinuous eigenvalues,

Proc. Roy. Soc. Edinburgh, 129A, 1999, 707-716.
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