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FINITE TIME BLOW-UP OF SOLUTIONS FOR A NONLINEAR
SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS
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ABSTRACT. In this article we study the blow-up in finite time of solutions for
the Cauchy problem of fractional ordinary equations
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¢+ b1 °DFt v+ by DY nenv= [ o), v(e)
for t > 0, where the derivatives are Caputo fractional derivatives of order «;, 3;,
and f and g are two continuously differentiable functions with polynomial
growth. First, we prove the existence and uniqueness of local solutions for

the above system supplemented with initial conditions, then we establish that
they blow-up in finite time.
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1. INTRODUCTION

In this work, we study the system of ordinary fractional differential equations
ug +ay °Dylu+ az “Dg?u + - - + a, “DyTu
¢ _
(t — 5) 71
= —— f(u(s),v(s))ds,
/O (=) (u(s),v(s))
v+ by CD&U + by cDgiv +t b, CD&‘U

= [t vs)as
0

I'(1—12)
for ¢t > 0, with initial data
u(0) =up >0, v(0)=1v9 >0, (1.2)
and where 0 < a; < 1,0< 8 <1,i=1,...,n,0< v <1,j=1,2, f and g are
two real continuous differentiable functions defined on R xR, a;, b; i = 1,...,n are
positive constants, I' is the Euler function and Dy}, Dgi, 1=1,...,n, are Caputo

fractional derivatives.
In recent years, fractional differential equations have played an important role
in the study of models for many phenomena in various fields of physics, biology
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and engineering, such as aerodynamics, viscoelasticity, control of dynamic systems,
electrochemistry, porous media, etc (see [IL B [6] M4] and the references therein);
their study attracted the attention of many researchers (see for instance [8] 10, [11]
12] and the references therein). In addition, a particular attention was given for
the study of the local existence and uniqueness of solutions for these systems and
their properties like the blow-up in finite time, the global existence, the asymptotic
behavior, etc. (see [3, [10] 111 [12]).

In [9], the profile of the blowing-up solutions has been investigated for the fol-
lowing nonlinear nonlocal system

ue(t) + DG, (u—wuo)(t) = [v(®)]*, t>0, ¢>1,
vi(t) + Dg, (v —=v0)(t) = [u(®)P, ¢>0, p>1,
u(0) =up >0, v(0)=1vy >0,

as well as for solutions of systems obtained by dropping either the usual derivatives
or the fractional derivatives.

In [7], some results on the blow-up of the solutions and lower bounds of the
maximal time have been established for the system

w(t) + pDF, (u—uo)(t) = e*®@, >0, p>0,
ve(t) + aDg+ (v —wo)(t) =e*®, t>0, 0>0,
u(0) =up >0, v(0)=1vy >0,

and the subsystem obtained by dropping the usual derivatives.

In the spirit of the interesting works [4 [7, @], we prove that the non global
existence of solutions to - holds for polynomial nonlinearities. For the
existence of solutions for the system —, we will use the Schauder theorem.

Our paper is organized as follows: In Section 2, we give some preliminary re-
sults for fractional derivatives. In Section 3, we will prove the local existence and
uniqueness of the solutions. In Section 4, we will state and prove our main result
on the blow- up in finite time of solutions for system -.

2. PRELIMINARIES AND MATHEMATICAL BACKGROUND

For the convenience of the reader, we shall recall some known results concerning
fractional integrals and derivatives that will be useful in the sequel.

The Riemann-Liouville fractional integral of order 0 < o < 1 with lower limit 0
is defined for a locally integrable function ¢ : Ry — R by

J&gp(t)_r(la)/o (th)l_ads, t>0,

where I is the Euler Gamma function.
The left-handed and right-handed Riemann-Liouville fractional derivatives of
order o with 0 < o < 1 of a continuous function v (¢) are defined by

o 1 d Ty
D0+w(t) = m@/o st, t> 07

and

D50 = e | s, t0,
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respectively. One can see that
d —a
@J(:)l“’ ¥(t) = Dgy(t), t>0.
The integration by parts formula (see [14]) in [0, T] reads

T T
/ W(t) DS k(t)dt = / (DS h(t)k(t)dt,
0 0

for functions h, k in C([0,T]) such that D, k and Dg._h are continuous.
The Caputo fractional derivative of order 0 < e < 1 of an absolutely continuous
function ¢(t) of order 0 < av < 1 is defined by

"D 0lt) = 17 50l0) = g [ (5= 07 ).

The relation between the Riemann-Liouville and the Caputo fractional deriva-
tives for an absolutely continuous function ¢(t) is given by

°D§, 6(t) = D, (#(1) — 6(0)), 0<a<1.

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, we deal with the existence and uniqueness of local solutions for

problem (1.1)-(1.2). We say that (u,v) is a local classical solution if it satisfies
equations ([1.1)-(1.2) on some interval (0,7*). Our main result in this section reads
as follows.

Theorem 3.1. Assume that the functions f and g are of class C*(R xR, R). Then
system (L.1))-(1.2)) admits a unique local classical solution on a maximal interval
(0, Tmax) with the alternative: either Tyax = +00 and the solution is global; or

Toos <400 and lin (Ju(0)] + [o(0)]) = +oo.

Proof. For the sake of completeness, we give the proof of the existence of solutions
of (1.1)-(1.2). Let k£ > 0 be a positive constant and

h = min{al, 0'2} > 0, (31)
where
o1 = min{ min ( ! ) e (M) = }
b 1<i<n 2n2dmaX1gign(ﬁ) ’ oM )
. . 1 1—1ﬁi kF(Q _ 72) 1—1'v2
o9 1= mln{ min ( _ . ) ’ (7) }’
1<i<n 2n2bmax1§ign (27&)) oM

a= 11;1?;(”{@@}, b= él%xn{bi}'

Let C([0,h]) x C([0,A]) be the space of all continuous functions (x, ) on [0, h]
equipped with the norm

06 ) [loo = max([|xlloo, [|¥]lo0),
where

Ixllee = max Px(t)l,  |ltlle = max i(t)].

For simplicity, we assume a3 < ag < --- < ap and f1 < G < -+ < B,
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Now, in order to prove the existence of solutions for problem (L.1)-(1.2), we
rewrite it as a system of integral equations in C([0, h]) x C(]0, h]),

2(t) = —ar g7 a(t) = azJoa(t) = -+ — anJg T (t) + Iy f(wo
¢ ¢
- / o()ds.o+ [ y(s)ds)
’ 1-8 1-8 1-8 1— (3.2)
y(t) = =brJo [ "ry(t) = baJo [ y(t) — -+ = bnJo [T y(t) + Jo P g(uo
¢ ¢
—|—/ x(s)ds,v0+/ y(s)ds),
0 0
via the transformation
¢ ¢
u(t) = ug +/ x(s)ds, wv(t) =wg +/ y(s)ds,
0 0
and the relatlon D (t) = Jyr 174y (t), and we shall prove the existence of local

solutions for
So, let us deﬁne the operator A : C([0, h]) x C([0,h]) — C([0,h]) x C(]0,h]) by

Az,y) = (Au(z,y), As(z,y)),

Ay (a( Za“}l Yig
t

g vlf(uo—i—/t (s)dS,Uo+/0 y(s)ds),

Ag(x( Zb Jo My

t t
+ J1 ks (uo —|—/ x(8)ds, vg —|—/ y(s)ds).
0 0
Let us define the set

D = {(z,y) € C([0,h]) x C([0,h]), [[(z,y)lloc = sup([[z]loc, yllc) < K},

as a domain of the operator A, which is a convex, bounded, and closed subset of
the Banach space C([0, h]) x C([0, h]). Since f and g are continuously differentiable
on [ug — kh,ug + kh] x [vg — kh,vg + kh], there exists a positive constant M such
that for any ¢ in [0, k] and any (z,y) in D,

| f(uo +/0 x(s)ds, vo —l—/o y(s))ds| < M, (3.4)

where

(3.3)

}g((uo—I—/O x(s)ds, UO—|—/O y(s))ds| <M, (3.5)

and for any (u;,v;) in [ug — kh,uo + kh] X [vg — kh,vo + kh], 7 = 1,2, and any ¢
in [0, k], there exist two positive constants L; and Lo depending on ug, vg, k, h and
on f and g respectively such that

[ (ua(8), v1(8)) = fua(t), v2(t)] < Lal[(ur () — wa(t), v1(t) —va2(B))ll,  (36)
|9(u1(2),01(2)) = g(ua(t),v2(1))| < Lofl(ur(t) — uz(t), wa(t) —wa(®))ll, (3.7
where [|(u1(t) = uz(t), v1(t) = v2())[|=[ur(t) = w2 (t)] + [01(2) — v2(2)].
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Now, by using (3.1)) and (3.6) and (3.7), for all 21 = (z1,y1) € D and 25 =

(x2,y2) € D satistying ||z1 — 22|lcc < &, where J is a positive constant which will
be defined later, we obtain

[A1(21) — A1(22) 0
sup | — alJ1 Yig
2| E

Zazjl a;

RS TN (PATHPRY AT

t t
J&+ A“f(uo—i—/ xo(s)ds, vo+/ y2(s) ds) |
0 0
< sup |fZazJ1 i

— x2(t))
0<t<h

. ¢ (3.8)
1 L f( x1(s)ds, v 1(s)ds
wu+/ udo+Aymw
—ﬂwfém@®%+ém@%m

— 22| c0ds +

h2_’Yl _ -
T2 =) 21 — 22|l

< 1—ay 2—71
< (s (e o ey )0

and in the same way, we obtain

Lo
[|[A2(21) — Aa(22)[|oc < (nblgl?gn{ 2= ﬁz };hl iy T2 - 72)h2_72)5- (3.9)

Now, given an € > 0, pick § = min {wi, o , where

1 = 1—a; L 2—7
w1 _”“1?%{ —ai)};hi +r(2—71)h .
S 1-3; 2—
w2 _nb11<n?§n{ ﬂz)};hl + —Vz)h 72

One can see that ||A(z1) —

A(29)|leo < €, consequently, A is a continuous operator
on D.
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Next, from (3.3)), (3.4), (3.5) and (3.1)), for all z = (z,y) € D we have

[41(2)l 0

n
Q5

t
< su _— t—s) %x(s)ds
7O§t£h ;F(l—ai)/o( ) (s)

1 t t ¢
—1—7/ t—38)" " f(u —|—/a?sds,vo+/ys ds‘
L =) Jo ( ) (w0 0 ) 0 () (3.10)
" a; h 1 ' v
< 71200/ t—s_o"'ds—l—i/ t—s) ""Mds
< nka max {#}zﬂ:hl G ¥Mh1771 < k.
- 1<i<n *T(2 — o) P I'(2—m) -
and
[ A2(2)loo
t P 1 1
< t—s) Pzx(s)ds + ————Mh ™™
oiltlgh|z / ) (#) (2~ ) |
h
s 1 B (3.11)
z t—s) Pids + —— Mh"
< ZF 5! Hoo/o (t =) s + s

n

1 1
< 1-8; 1-72 < L.
nkb max {3 r(2- @)}Zh et T ER

i=1

Inequalities (3.10) and (3.11) assert that A(D) C D. Thus, the set A(D) is
uniformly bounded. Now, for all 0 < ¢; < ¢ < h with [t; — t2] < 7, and all

z = (z,y) € C([0, h]) x C([0, A]), from we have
[ A ( 2(t )) — A1 2(t2) )|

= ‘ — 71 — o) /Otl (t1 —s)" ¥ x(s)ds

1 1 . s .
+m/0 (t1 = )7 fuo + /O (7)dr, vo + /O y(r)dr)d
T Z F(il) /O (ta —s)"“a(s)ds

_ m/o (t2 - 3)_’71f(uo +/0 .’L'(T)dT, Vo +/0 y(T)dT)dS‘
<X ﬁ/o 1 ((t1 =)™ = (t2 — 5)7) (s)|ds

+ZF(1% )/2(t2 — ) " |a(s)lds

1 " -7 —g) M
o fy (7 )
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X ‘f(uo + /OS x(r)dr, vy + /OS y(7)dT)|ds

1 t2
+7/ ty — )
) J, 27

n

1 (03
<ka2m(t2—tl)l 4
i=1

f(qur/Osa:(T)dT,vo+/Osy(7)d7)‘ds

2M

e CRO (3.12)

Similarly, we obtain

[Aa(a(12)) — As(:(12)
WY gyt gyt (313)

From (3.12) and (3.13) it yields that A(D) is equicontinuous, and so by us-
ing Arzela-Ascoli theorem, we find that A(D) is relatively compact in C([0,h]) x

C([0,h)).

Finally, by Schauder theorem, we conclude that the operator A has at least one
fixed point, this means that the system of integral equations (3.2)) has at least one
local continuous solution (z,y) defined on [0, h]. Now, since for all ¢ € [0, h],

u(t) = ug Jr/o x(s)ds, wv(t) =wo +/O y(s)ds, (3.14)

where z and y are solutions of system (3.2)) of integral equations, it follows that
uw'(t) = z(t), v'(t) = y(t) for any ¢ in (0, k).
Using the definition of Caputo fractional derivative, we find for all ¢ in (0, h),

c o —ay 1 r —a; .
Doiu(t):Jé+ 1$(t)IMA (t*S) ll’(S)dS, 1:1,...,11,
. - (3.15)
cpliy(t) = Ji P tzi/ t—s) Piy(s)ds, i=1,...,n.
0+’U( ) (U y( ) F(l 7 ﬂz) o ( S) y(S) S, 1 9 s T
Combining (3.14)), (3.15) and (3.2)), for all ¢ in (0, h) we obtain
= o, du(t) _
v ZaiJ@ AU (), v(s)
(3.16)

)+ Zb Jo, p.d = Jy, "g(u(s), v(s)).

Since (u( ) ( )) = (o, vo), we conclude that (u,v) is a classical solution for (|L.1))-
(1.2) on , and this solution may be extended (see [2]) to a maximal interval
(0, Trmax) Wlth the alternative: either Ti,.x = +0o0 and the solution is global; or

Tiax <400 and  lim (Ju(t)| + |v(t)]) = +oc.

> L max

Next, we shall prove uniqueness. Assume that the Cauchy problem (1.1})-(1.2)
admits two classical solutions (u1, v1) and (ug, v2) with the same initial data (ug, vo)
on (0, Tynax). Observe that for all ¢ € (0, p) with p < Tiax, these solutions satisfy
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the following equalities:

(ug —u2)e + Z%Dfﬂ(m —Uuy) = Jé;%(f(ulvvl) — flug,v2)),
i1

- (3.17)
(v1 —v2)s + Z biDyL (vy — v2) = Joi " (g(ur, v1) — gluz, va)).
Integrating over (0,t) yields
(= w)(t)+ [ > 0uDf; (i~ us)(5) ds
:/ Jor " (f(ua(s),v1(s)) = f(ua(s),va(s)))ds
0 (3.18)

(v1 — va)( /pr us)(s)) ds

_ / Je (glur(5),v1(s)) — glua(s), val(s)))ds.

Let 0 := max{ai,aa,...,an, 01,02, Bn;71,72}. Using (3.18) and the fact
that f and g are locally Lipshitz on [0, h], thanks to (3.6)) and (3.7)), for all ¢ € (0, p),

we have
[ua (t) — ua(t)]

(3.19)

TR 9T ) Tl (s) — ua(s), o (s) — va(s)lds

<d, / (t = 5)l|ur(5) — us(s), v1 () — va(s))l|ds,

where
1 i -7
dy = na max {Fa——s T —ay)’ P+ 1—71)p9
and
s (£) = ua(t), vi() = va(8))]| = [ua () — ua ()] + o1 (£) = va(t)].
Similarly,
—v aS bi 5) P
i) =0l < [ (3 gt
+ Ly iﬁ; Jls(s) = a(s), va(s) = va(s) s
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' - L —s 0—3; L —s 0—~2
S/o{iz_;m—ﬁ,-)“ e e I
X (t = 5) s (5) — ua(s), 01 (s) — va(s)) s

t
< dz/ (t — 5)"°llus(s) — ua(s), v1(s) — va(s)|ds, (3.20)
0
where
1 L
— *,31' 2 60—z
b= b max (s e ag”

Then from and ( -, we find
([ (ua(t) — U2(t)7”01( ) — v2(t)]

t 3.21
< (dy + dg)/o (t — 8) " \lur(s) — ua(s),vi(s) —va(s)||ds VYt € (0,p). (3.21)

Finally using Gronwall’s inequality (see [0, p. 6]), we deduce the uniqueness and
this completes the proof. ([

4. BLOW UP RESULTS

This section is devoted to the blow up of solutions of the system (|L.1])-(1.2))
whenever the nonlinear terms satisfy certain growth conditions. Our main result
reads as follows.

Theorem 4.1. Assume that the assumptions of Theorem [3.1] hold, and that the
functions f and g satisfy the growth conditions:

f(&m) >aln|?,  forall§,neR,
g(&,m) > bgP,  for all §,m € R,

for some positive constants a, b. Then for all positive initial data, the solution of
(1.1)-(L.2) blows up in a finite time.

Proof. We proceed by contradiction. We assume that Tj,,x = +00 and we consider
the function used in [4],

(4.1)

o(t) = T-MT —t)* fortel0,T], A>1,
~]o fort > T.

Then by multiplying the first equation in (1.1]) by ¢ and integrating over (0,T"), we

obtain
T
1d (D (u d
/O w(t) t+/ Za — wo))(t)dt

' (4.2)
- /0 (Jo, " F(u(t), (1)) d(t)dt.
Let

)Z/O P(s dS——mT MNT -t teo,T).
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Integrating by parts, and since (T") = 0, yields

/ R
/T

(
)y (t)dt (4.3)

/0 (Joy ™ f(u(t), v(1))p(t)dt = —
== | (D} flul?)

t),v(t)))(t)dt
(
0
( (

/0 D (0)) F((u(t) olt) .

Recall (see []) the formulas

_ ~ . AL'(A =)
DY = TMT — )M h o AMATY)
r-0(t) = Cxy, (T -1) ,  whereC) ,, T =27, +1)
and
) 1 _ . s
D) = ~ 5 O ) DT — 0P = O o) 1), (44)

for j = 1,2, where Cﬁ\m = %HCAH,W j=1,2. Then

—/ (D71 (t) £ ( ))dt = / Crmy O)(T — ) 77 f(u(t),v(t))dt.  (4.5)
0

From (4.2), (4.3) and (4.5)) and since ug is positive and ¢ is in C*(]0,T]), thanks
to (4.1)), an integration by parts yields

C/ S()(T — )0 f(u(t), o(t))dt

(4.6)
< - /O dt+z / aip(t))dt
Observe that if p’ is the conjugate of p, then
T
| utoa
T 1-73 —(A—2
:/0 () (G(0)F (D) VAT — 1) T T ) 7 (¢ ()t
T
<Gy [ OPsOT -0 dr
0 (4.7)

o/ (T ’ z ,
+ ()" [ oy =y S
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and for all 1 <i <n,

T
/0 () (D (ara(t))dt

—(A=v92)

N / u(t)(@(8) 7 ($()# (T — ) 7 (T — 1) D (a;(t))dt

<G | PO - e 4
’ (M;lzwyl/p“f/ /OT<¢<t>>’p'/p<T T
<O [ otu) @00 -0
! (z)éi’fw)‘”’”a’“ /OTW’(’f))‘p'/p(T — 1) O YD g(0) .

Furthermore,
le/ flu ()T —t) " dt
/ (u(t), ()BT — )1 d

4 \P'/p / % /
' /o —(1=2) B
() / (6(t) /7T = )~ (1) dt

L 4n p/p (1) o /
v (35—) Z / (0 (D (et

Analogously, if ¢’ is the conjugate of g, we obtain

(4.9)

T
Chn / g(u(t), v(£) ()T — 1)1 2dt
<= [ v+ Y [ uoD (hvel)

< 5Cho [ H )0 0 (4.10)
4

a/a [T / / /
(oo)'@ g0 o

A7 0
N l_)q,( 4n, q "/q Z/ —q /q _ t)*(1771)q'/q|D§f_¢(t)|q'dt‘
)\ Y1

Denote

T
A=), / Flut), v(t)d(t) (T — ),

Bi= Gy [ alu(®.00)o(0(T — ',
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o= [ oy mw -0 i
D= / —a'/a(7 — )= (=)' a) g (1) dt,
E = / —»'/p(T ~(1-w) & Z |DS ¢ ()7 dt,

F::/O (p(t))~9/9(T — t)—(l—w)q’/qz\ng;(ﬁ(t)\qldt.

i=1
From (4.9) and (4.10) we have
1 4 '/
a<lipy ( P'/p
2 Cj\,’m

4 q/q
aC, ~

A

(C+ np'/p(—lp’E)’

(=

A+ ( (D + /959 F),

A< (a4 ()" D45 1)) + () (€4 nF )
vy A2

(i)q,/q(p + nq'/ng/F) + (i)p,/p(c + n%’ap/E);

4 // ’ -/
+ ()" (D F)
aCAm

4 4 d'/q 4 p'/p o
< D +n?/1%7 F) 4 C+nra’ E).
*3(acgw> (Dn ) (bcgw> (CtnraB)

Taking into account (4.2), (4.7) and (4.8)), we deduce that
T
" / DS g(t)dt
0

” T
== | DY (aro(t))dt

a Jo

< 1(_/0Tu(t) gb’(t)dt—}—/OTA u(t) D%ﬂ(aiqb(t))dt)

ai

%(%B + (Z)lem)p//p(C + n%aP’E))

<L) e (o) b
»Y1 32

3

IN
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For \ > max{% +p -1, % + ¢ — 1}, it holds

T
/ D ¢p(t)dt = Cp, NT' ™, (4.11)
0
where
L(A+1) ‘
A= V1<i<n.
Coix P\ —a; +2) v L=

Also there exists a positive constant K such that
C < KT(’Y2*1)%+1*PI’ D< KT(Wl*l)qf,’Jrl*q/,

E < KZT(W—”%“""%, F< KZTW—U%H—W, Vi<i<n. (4.12)

i=1 i=1
Consequently,
T
uo/ D7t ¢(t)dt
0
2 4 q//q g 1 /7/11 4 3.
< %(aCf\ ) K(T(vl Dg+i-da' | pd'/apa ZT(% DL+1 qﬁl) (4.13)
V1 i=1
i(%)”//pK(Tm—n%u—p/ LS ar ZT(Wz—l)%+1—p'ai).
3&1 Av2 i=1

Using (4.11)) and (4.13)), we obtain

K{l( 4 )(I//q(T(’Yl—l)%"F(Xl—q/
A 3a1 aC’g\’71

4+ nd/apd Z T(’Yl*l)%,‘i’al*q/ﬁi) }
i=1

4 4 ~\P'/p 2’ ,
o ) (o
T30, ey

UQ S 071

a1,

(4.14)

n ’
+nva’ Y T<V2*1>%+a1*1"ai) }

i=1
Similarly we obtain
T
vo [ Dy $(t)dt
0
1/1 4 ~Nd'/a -
<—(=4 D +n?/97 F
<5 +(acgm) (D+n )

2
<3 ) e () e ),
:
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which yields

4 4 q'/q
<1 K{ ( ) (T(W -4 ' 4 B1—q
R R Te

+ nd'/apd Z T(71—1)%/+61—q/ﬂi) }

=1

2 4 p'/p » /
K{i( ) (T('YZ*l),*JFﬁl*p
+ ﬁl’ 3b1 bC;\ 2 !

Jrn,,ap ZT’YZ— +ﬁ1—pa1>}'

One can observe that
/ /

(1—1) +a1—¢ <0, (’72—1) + a1 —p' <0,

(4.15)

/

(71—1) +ﬂ1—q <0, (2—1) +8—p <0,

I . (4.16)
(fyg—l)p+a1—paz<0 (71—1)q+51—qﬂ1<0 V1l <i<n,

l

(72—1)p + 0 —po <Pr—a1, (m —1)q +ao1 —¢'Bi <ag — B,
V1l<i<n.
Inequalities (4.16]) reduce to
(72—1) +61 pa; <0, V1<i<n,

or
/

('yl—l) +o1—¢B3; <0, VI<i<n.

Taking the limit when T approaches infinity in and -, we find

0<up<0 or 0<v0§0. (4.17)

This leads to a contradiction and consequently the maximal time of existence for

the solution to (1.1])-(1.2) is finite and this completes the proof. O
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