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UNIQUE CONTINUATION OF POSITIVE SOLUTIONS FOR
DOUBLY DEGENERATE QUASILINEAR ELLIPTIC EQUATIONS

GIUSEPPE DI FAZIO, MARIA STELLA FANCIULLO, PIETRO ZAMBONI

Communicated by Giovanni Molica Bisci

Abstract. We consider quasilinear elliptic equations that are degenerate in
two ways. One kind of degeneracy is due to the particular structure of the

given vector fields. Another is a consequence of the weights that we impose
to the quadratic form of the associated differential operator. Nonetheless we

prove that positive solutions satisfy unique continuation property.

1. Introduction

This note is a further step in the study of qualitative properties of generalized
solutions of degenerate elliptic PDE’s. Indeed, in the last decades many papers
have been devoted to investigations of qualitative and quantitative properties of
solutions. Among several kind of degeneracy, we focus our attention to the case
where the operator is associated to a non commuting system of vector fields of a
particular kind. Moreover, we also study the possibility of regularity for the weak
solutions where minimal assumptions on the lower order coefficients are assumed
(see [5, 6, 16, 17, 18]). A different kind of degeneracy has been investigated by
Fabes, Kenig and Serapioni and Gutierrez in [21] and [25] respectively (see also
[9, 27]). There the degeneracy was given by a Muckenhoupt weight of the class A2.
However, degeneracy given by a A2 weight is not the only possibility. Studies about
a different kind of degeneracy started in [23] and [24] (see also [10, 11, 12, 14, 19, 26])
where the weight is a suitable power of a function that belongs to the class of strong
A∞ weights introduced by David and Semmes in [7].

In this note we prove that the positive solutions of a quasilinear strongly de-
generate elliptic equation satisfy the unique continuation property. To make the
statement precise, we let Ω be a bounded domain in RN (N ≥ 2), let z = (x, y) ∈ RN
and denote points in RN in such a way that x ∈ Rn and y ∈ Rm, n+m = N .

Let us consider a quasilinear elliptic equation of the kind

divA(z, u,∇λu) +B(z, u,∇λu) = 0 (1.1)
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where A and B are measurable functions satisfying the following structure condi-
tions

|A(z, u, ξ)| ≤ aω(z)[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + b|u|p−1

|B(z, u, ξ)| ≤ c[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + d|u|p−1

ξ ·A(z, u, ξ) ≥ ω(z)[|ξx|2 + λ2(x)|ξy|2]
p
2 − d|u|p .

Here ω = v1− p
N , 1 < p < N , v is a strong A∞ weight, ∇λu = (∇xu(z), λ(x)∇yu(z))

and λ is a function satisfying (H1), (H2), (H3) (see Section 2).
Regarding equation (1.1) we will show that if u is a non negative solution of

(1.1), then u cannot have zeros of infinite order unless it is identically zero in Ω.
We remark here that the equation we consider is doubly degenerate in the fol-

lowing sense. It is a Grushin operator which exhibits further degeneracy given by
a strong A∞ weight. Moreover, we assume the lower order coefficients to belong
to suitable Stummel - Kato classes (see Section 4). This kind of assumption is
necessary for regularity of solutions at least in some cases (see [8]).

We use the following two key ideas. The first is based on a method in [4] to
prove that a suitable power of any positive solution satisfies a doubling inequality.
The other one is the clever use of a Fefferman Poincare’ type inequality∫

B

|V (z)||u(z)|p ω(z) dz ≤ C
∫
B

|∇λu(z)|pω dz , (1.2)

proved in the Section 4 (see also [5, 15, 13]) that is needed in order to handle the
lower order terms. We then get our result because the solution has zeros of infinite
order and, satisfies a doubling inequality at the same time. This is possible if and
only if the solution is identically zero.

2. Preliminaries

To fix the notation we denote by z = (x, y) points in RN , where x and y belong
to Rn and Rm respectively and n+m = N . Let us denote by λ = λ(x) a function
such that verifies the following assumptions

(H1) λ is a continuous nonnegative function vanishing only at a finite number of
points.

(H2) λn is a strong A∞ weight (see Definition 2.5).
(H3) λ satisfies an infinite order reverse Hölder inequality, i.e. for any x0 ∈ Rn,

r > 0 we have

–
∫
|x−x0|<r

λ(x)dx ∼ max
|x−x0|<r

λ(x) .

Let u : RN → R be a almost everywhere differentiable function in RN . We denote its
λ-gradient by ∇λu(z) = (∇xu(z), λ(x)∇yu(z)) and |∇λu|2 = |∇xu|2 +λ2(x)|∇yu|2.

Then, we define the Carnot-Carathéodory metric (C-C metric) ρ in RN with
respect to ∇λ in the following way.

Definition 2.1 (λ sub unit curve). An absolutely continuous curve γ = (γ1, γ2, . . . , γN ) :
[0, T ]→ RN is said to be a λ-sub unitary curve if the following inequality holds

〈γ′(t), z〉2 ≤ |x|2 + λ(γ1(t), . . . , γn(t))|y|2

for any z = (x, y) ∈ RN , and almost any t ∈ [0, T ].
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Definition 2.2 (λ Carnot-Caratheodory distance). If z1,z2 are points in RN , let
us consider the set of all λ-sub unitary curves connecting z1 and z2. We set

ρ(z1, z2) = inf
{
T ≥ 0 : ∃ a sub-unit curve γ : [0, T ]→ RN ,

such that γ(0) = z1 and γ(T ) = z2

}
.

If there are no such curves we set ρ(z1, z2) = +∞.
We denote by B(z0, r) the λ Carnot-Caratheodory metric ball centered at z0 of

radius r. We also write B or Br if the center of the ball has no relevance.

We recall the definition of the Aq and the strong A∞ weights with respect to the
λ metric (see [23, 24]).

Definition 2.3 (Aq weights). Let q > 1 and let v be a nonnegative locally inte-
grable function in RN . We say that v is a weight of the Muckenhoupt class Aq
if

sup
B

( 1
|B|

∫
B

v(z) dz
)( 1
|B|

∫
B

[v(z)]
−1
q−1 dz

)q−1

≡ C0 < +∞

the supremum being taken over all Carnot-Carathéodory metric balls B in RN .
The number C0 is called the Aq constant of v.

We recall the doubling property.

Lemma 2.4 (Doubling property). Let v ∈ Aq. There exists a positive constant c
such that for any C-C metric ball Br,

v(Br) ≤ c v(Br/2).

For a proof of the above lemma, see [3]. Now we give the definition of strong
A∞ weight with respect to the function λ.

Definition 2.5. Let v be a Aq weight for some q > 1. For any z1, z2 in RN we set

δ(z1, z2) = inf
(∫

B

v(z)λ
m
N−1 (x)dz

)1/N

where the infimum is taken over the C-C balls B such that z1, z2 ∈ B.
For any curve γ : [0, T ]→ RN , we define its v-length as

l(γ) = lim inf
|σ|→0

p−1∑
i=0

δ(γ(ti+1), γ(ti))

where σ = {t0, . . . , tp} is a partition of [0, T ].
Then we define a distance d(z1, z2) as the infimum of the v-lengths of λ-sub

unitary curves connecting z1 and z2. If there exist positive constants c1 and c2
such that

c1δ(z1, z2) ≤ d(z1, z2) ≤ c2δ(z1, z2)
we say that v is a strong A∞ weight for the metric ρ.

Example 2.6. A strong A∞ weight is the function v(z) = ρ(z, z0)α with α ≥ 0
and z0 ∈ RN (see [24]).

Proposition 2.7. Let 0 < α < 1 and let v be a strong A∞ weight. Then the
measure vα satisfies the doubling property.

Proof. Since v is a strong A∞ there exists q such that v ∈ Aq. This implies that
vα ∈ A(q−1)α+1 and, as a consequence, vα satisfies the doubling property. �
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Lemma 2.8. Let v be a strong A∞ weight. Then for every compact set E there
exist two positive constant r0 and γ such that

v(B(z0, r)) ≤ γrN

for all z0 ∈ E and for all 0 < r < r0.

The above lemma is a consequence of [22, Theorem 2.3]. We can define Lebesgue
and Sobolev classes with respect to the strong A∞ weights.

Definition 2.9. Let v be a strong A∞ weight and ω = v1−p/N , Ω ⊂ RN . For any
u ∈ C∞0 (Ω) we set

‖u‖Lpv(Ω) =
(∫

Ω

|u(z)|p ω(z) dz
)1/p

1 ≤ p <∞ .

We define Lpv(Ω) to be the completion of C∞0 (Ω) with respect to the above norm.
In a similar way we define Sobolev classes. Let 1 < p < N . For any u ∈ C∞(Ω) we
set

‖u‖H1,p
v (Ω) =

(∫
Ω

|u(z)|p ω(z) dz
)1/p

+
(∫

Ω

|∇λu(z)|p ω(z) dz
)1/p

. (2.1)

We define H1,p
0,v (Ω) to be the completion of C∞0 (Ω) with respect to the norm (2.1)

and H1,p
v (Ω) to be the completion of C∞(Ω) with respect to the same norm.

Now, to recall the Sobolev embedding theorem and the representation formula
proved in [24, Theorem I and Corollary 3.2], we need another assumption on strong
A∞ weights.

A strong A∞ weight v satisfies the local boundedness condition near the zeros
of λ if the following condition holds

(H4) if λ(x1) = 0, then v(x, y) is bounded as x→ x1 uniformly in y for y in any
bounded set.

Theorem 2.10. Let u1, u2 ∈ L1
loc be positive functions such that u1 is doubling,

1 ≤ p < q < +∞. Assume that there exist positive constants c1 and c2 such that,
for all C-C balls B0 = B(z0, r0) and Br = B(z, r) ⊂ c1B0, we have

r

r0

(u1(Br)
u1(B0)

)1/q

≤ c2
(u2(Br)
u2(B0)

)1/p

,

where u1(B0) =
∫
B0
u1(z)dz.

If there exists a strong A∞ weight w satisfying condition (H4) such that u2w
−(N−1)/N

belongs to the class Ap with respect to the (doubling) measure w(N−1)/Ndz, then the
following Sobolev-Poincaré inequality hold(

–
∫
B(z0,r)

|g − µ|qu1(z)dz
)1/q

≤ Cr
(

–
∫
B(z0,r)

|∇λg|pu2(z)dz
)1/p

for any Lipschitz continuous function g, where µ can be chosen to be the u1-average
of g over B(z0, r).

If v is a strong A∞ weight, by taking u1 = u2 = v1−p/N in Theorem 2.10 the
result follows by observing that a positive power of a strong A∞ weight is doubling.
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Theorem 2.11. Let 1 < p < N and let v be a strong A∞. If there exists a strong
A∞ weight w satisfying (H4) such that v1−p/Nw−(N−1)/N belongs to Ap with respect
to the (doubling) measure w(N−1)/Ndz, then there exists a constant q > p such that(

–
∫
B(z0,r)

|g − µ|qv1−p/N (z)dz
)1/q

≤ Cr
(

–
∫
B(z0,r)

|∇λg|pv1−p/N (z)dz
)1/p

(2.2)

for any Lipschitz continuous function g, where µ can be chosen to be the v1−p/N -
average of g over B(z0, r).

Remark 2.12. We stress that if we take the weights v = w = ρα(0, z) and the
function λ(x) = |x|σ, (α, σ > 0), the assumptions of Theorem 2.11 are satisfied
(see also [23]).

3. BMOω, A2(ω) and functions with zeros of infinite order

In this section we denote by v be a strongA∞ weight, 1 < p < N and ω = v1−p/N .

Definition 3.1. Let f be a locally integrable function in RN with respect to ω. We
say that f belongs to the class BMOω if

sup
B

1
ω(B)

∫
B

|f(ζ)− fB |ω(ζ)dζ < +∞ ,

where the supremum is taken over the balls B.

Definition 3.2. A locally integrable function u such that 1
u is also locally integrable

u belongs to the class A2(ω) if∫
B

u(ζ)ω(ζ)dζ
∫
B

1
u(ζ)

ω(ζ)dζ ≤ C(ω(B))2

for any C-C ball B.

Theorem 3.3. Let u be a function in the class A2(ω). Then∫
B2r

uωdz ≤ C
∫
Br

uωdz

for any C-C ball Br.

The proof of the above theorem is similar to that of [20, Theorem 4.5], and is
omitted.

Definition 3.4. Let Ω be a bounded domain of RN . Let µ be a locally integrable
function such that 1

µ is locally integrable and u ∈ L1
loc(Ω). We say that u has a

zero of infinite order at z0 ∈ Ω if

lim
σ→0

∫
B(z0,σ)

u(z)µ(z)dz

(µ(B(z0, σ)))k
= 0 , ∀k > 0 .

Theorem 3.5. Let u ∈ L1
loc(Ω), u ≥ 0 a.e. in Ω, u 6≡ 0. If there exist positive

numbers C and σ0 such that∫
B(z,2σ)

uωdz ≤ C
∫
B(z,σ)

uωdz

for any 0 < σ < σ0 and any z ∈ Ω then u cannot have zeros of infinite order in Ω.
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Proof. We argue by contradiction. Let z0 ∈ Ω be a zero of infinite order for u.
Using Theorem 3.3 k times, Hölder inequality and Lemma 2.8 k times we obtain∫

Br

uωdz ≤ Ck
∫
B r

2k

uωdz

= Ckω(Br/2k)β1/(ω(Br/2k)β)
∫
B
r/2k

uω dx

≤ Ckγβ(1−p/N)
( r

2k
)β(N−p)

|Br|
βp
N 1/ω(Br/2k)β

∫
B
r/2k

uω dx.

(3.1)

Now, if we choose β = log2N−p C, we obtain∫
Br

uωdz ≤ γβ(1−p/N)rβ(N−p)|Br|βp/N1/ω(Br/2k)β
∫
B
r/2k

uω dx.,

from which, as k →∞, we have that uω ≡ 0 in Br and, since ω 6≡ 0, u ≡ 0. �

4. Stummel- Kato classes and embedding theorem

In this section we give the definition of Stummel-Kato classes with respect to a
strong A∞ weight and then prove our embedding result. Our starting point is a
representation formula (see [24, Corollary 3.2]) proved by Franchi, Gutierrez and
Wheeden.

Lemma 4.1 (Representation formula). Let Ω be a bounded domain in RN , v a
strong A∞ weight satisfying (H4) and u a compactly supported smooth function in
a metric ball B = BR ⊂ Ω. Then there exists c independent of u such that

|u(z)| ≤ c
∫
B

|∇λu(ξ)|v1− 1
N (ξ)k(z, ξ)dξ

for almost all z ∈ B, where

k(z, ξ) =
(∫

Bρ(z,ξ)(z)

v(ζ)λ
m
N−1 (χ)dζ

) 1−N
N

.

Definition 4.2. Let V be a locally integrable function in Ω, r > 0, and p ∈]1, N [.
Let v be a strong A∞ weight. We set ω(z) ≡ v1− p

N (z) and

φ(V ; r) ≡ sup
z∈Ω

(∫
B(z,r)

k(z, ξ)v(ξ)
(∫

B(z,r)

|V (ζ)|k(ζ, ξ)ω(ζ)dζ
) 1
p−1

dξ
)p−1

.

We say that V belongs to the class S̃v(Ω) if φ(V ; r) is bounded in a right neighbor-
hood of the origin.

Remark 4.3. If v(z) = 1, λ(x) = 1 and p = 2 the previous definitions give back
the classical Stummel-Kato class (see [1]).

By using the representation formula we now prove an embedding Theorem re-
lated to the Stummel-Kato classes.

Theorem 4.4. Let v be a strong A∞ weight satisfying (H4) and 1 < p < N . If V
belongs to the class S̃v(Ω), then there exists a constant C such that ∀u ∈ C∞0 (Ω)(∫

B

|V (z)||u(z)|pω(z) dz
)1/p

≤ Cφ1/p (V ; 2R)
(∫

B

|∇λu(z)|pω dz
)1/p

, (4.1)
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where ω(z) ≡ v1− p
N (z) and R is the radius of a metric ball B, containing the support

of u.

Proof. From the representation formula in Lemma 4.1 it follows that∫
B

|V (z)||u(z)|pω(z) dz

≤ C
∫
B

|V (z)||u(z)|p−1
(∫

B

|∇λu(ξ)|k(z, ξ)v1− 1
N (ξ) dξ

)
ω(z) dz

= C

∫
B

|∇λu(ξ)|v1− 1
N (ξ)

(∫
B

|V (z)||u(z)|p−1k(z, ξ)ω(z) dz
)
dξ

≤ C
(∫

B

|∇λu(ξ)|pv1− p
N (ξ) dξ

)1/p

×
(∫

B

(∫
B

|V (z)||u(z)|p−1k(z, ξ)ω(z) dz
)p′

v(ξ) dξ
)1/p′

.

By considering the last integral we can write(∫
B

|V (z)||u(z)|p−1k(z, ξ)ω(z) dz
)p′

≤
(∫

B

|V (z)|k(z, ξ)ω(z) dz
)p′/p ∫

B

|V (z)||u(z)|pk(z, ξ)ω(z) dz

and then, we obtain∫
B

|V (z)||u(z)|pω(z) dz

≤
(∫

B

|∇λu(ξ)|pv1− p
N (ξ) dξ

)1/p(∫
B

(∫
B

|V (ζ)|k(ζ, ξ)ω(ζ) dζ
)1/p−1

×
∫
B

|V (z)|k(z, ξ)|u(z)|p ω(z) dzv(ξ) dξ
)1/p′

so ∫
B

|V (z)||u(z)|pω(z) dz

=
(∫

B

|∇λu(ξ)|pv1− p
N (ξ) dξ

)1/p
∫
B

|V (z)||u(z)|p
∫
B

k(z, ξ)

×
(∫

B

|V (ζ)|k(ζ, ξ)ω(ζ) dζ
) 1
p−1

v(ξ) dξ ω(z) dz

≤
(∫

B

|∇λu(ξ)|pω(ξ) dξ
)1/p(∫

B

φ
1
p−1 (V ;R)|V (z)||u(z)|p ω(z) dz

)1/p′

= φ1/p(V ;R)
(∫

B

|∇λu(ξ)|pω(ξ) dξ
)1/p(∫

B

|V (z)||u(z)|p ω dz
)1/p′

from which (4.1) easily follows. �

5. Unique continuation property

In this section we show how to apply the results obtained in the previous section
in order to get unique continuation property for positive solutions of equation (1.1).
Let Ω be a bounded domain in RN and λ be a function satisfying (H1), (H2), (H3).
Moreover, let v be a strong A∞ weight satisfying (H4).
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We consider the quasilinear equation

divA(z, u,∇λu) +B(z, u,∇λu) = 0 (5.1)

where A and B are given measurable functions that satisfy the following structure
conditions

|A(z, u, ξ)| ≤ aω(z)[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + b(z)|u|p−1

|B(z, u, ξ)| ≤ c(z)[|ξx|2 + λ2(x)|ξy|2]
p−1
2 + d(z)|u|p−1

ξ ·A(z, u, ξ) ≥ ω(z)[|ξx|2 + λ2(x)|ξy|2]
p
2 − d(z)|u|p ,

(5.2)

where ω = v1− p
N , 1 < p < N .

Definition 5.1. A function u ∈ H1,p
v (Ω) is a local weak solution of (5.1) in Ω if∫

Ω

A(z, u(z),∇λu(z))∇λϕ(z) dz +
∫

Ω

B(z, u(z),∇λu(z)) ϕ(z) dz = 0 , (5.3)

for every ϕ ∈ H1,p
0,v (Ω).

Theorem 5.2. Let u be a non negative weak solution of (5.1) that is not identically
zero in Ω. Let us assume that the structure conditions (5.2) hold assuming that

a ∈ R ,
( b
ω

)p/p−1

,
( c
ω

)p
,
d

ω
,∈ S̃v(Ω) . (5.4)

Then u has no zero of infinite order in Ω.

Proof. Let z0 ∈ Ω and B(z0, r) be a ball such that B(z0, 2r) ⊂ Ω. Let Bh ⊂ B(z0, r)
and η ∈ W 1,p

0 (Ω) be a non negative function supported in B2h. Using ϕ = ηpu1−p

as test function in (5.3) we obtain (see [12])∫
Ω

ηp|∇λ log u|pω dz ≤ C1

{∫
Ω

|∇λη|pω dz +
∫

Ω

V ηp dz
}
, (5.5)

where

V =
b

p
p−1

ω
1
p−1

+
cp

ωp−1
+ d .

From (5.4) V
ω ∈ S̃v(Ω) and by Theorem 4.4 we obtain∫

Ω

V ηp dz ≤ C2

∫
Ω

|∇λη|pω dz

and then, from (5.5), we have∫
Ω

ηp|∇λ log u|pω dz ≤ C3(p, a, φV
ω
,diam Ω)

∫
Ω

|∇λη|pω dz .

Choosing η(z) so that η(z) ≡ 1 in Bh, 0 ≤ η ≤ 1 in B2r \Bh and |∇λη| ≤ 3/h, we
obtain ∫

Bh

|∇λ log u|pω dz ≤ C4(p, a, φV
ω
,diam Ω)

ω(Bh)
hp

.

Therefore, by Poincaré-Sobolev inequality (2.2) and John-Nirenberg lemma (see
[2]), we have log u ∈ BMOω.

Then there exists a constant δ > 0 such that uδ ∈ A2(ω). By Theorem 3.3,
uδ has the doubling property. Then from Theorem 3.5 uδ and u have no zero of
infinite order. �
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