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Abstract. We consider vibrations modeled by the standard linear solid model

of viscoelasticity with boundary dissipation. We establish the well-posedness
and the exponential stability.

1. Introduction

We consider in this paper vibrations modeled by the standard linear solid model
of viscoelasticity

αuttt + utt − a2∆u− a2α∆ut = 0, (t, x) ∈ (0,∞)× Ω (1.1)

with boundary dissipation. Here, Ω is a bounded open connected domain with
smooth boundary Γ = ∂Ω in Rn (n ≥ 1) and α is a positive constant. The function
u = u(x, t) represents the vibrations of flexible structures. In the above equation,
a > 0 is the constant wave velocity. The initial conditions are given by

u(0, x) = u0(x), ut(0, x) = u1(x), utt(0, x) = u2(x), x ∈ Ω (1.2)

and the dissipative boundary condition is given by

∂u

∂ν
+ α

∂ut

∂ν
= −ut − αutt on Γ. (1.3)

We denote by ν, the unit normal of Γ pointing towards the exterior of Ω.
Equation (1.1) is given by the standard linear model of viscoelasticity. We refer

to [1] for mathematical formulation of problem (1.1)-(1.3). Let us consider

v = αut + u, (t, x) ∈ [0,∞)× Ω. (1.4)

Then, (1.1) can be rewritten as

vtt − a2∆v = 0 in (0,∞)× Ω, (1.5)
∂v

∂ν
= −vt on Γ. (1.6)
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The initial conditions of problem (1.5)-(1.6) are given by

v(0, x) = αut(0, x) + u(0, x) = v0(x),

vt(0, x) = αutt(0, x) + ut(0, x) = v1(x),
(1.7)

for x ∈ Ω.
For vibrations modeled for coupled system of thermoviscoelastic equations type,

there are relatively few mathematical results, see for instance [13] and references
therein. The asymptotic behaviour of solutions to the equations of linear viscoelas-
ticity as t tends to infinity has been studied by many authors (see the book of Liu
and Zheng [12] for a general survey on these topics). Research in the stabiliza-
tion of mathematical models of vibrating, flexible structure has been considerably
stimulated by an increasing number of questions of practical concern among others.
Gorain [8] considered the stabilization for the vibrations modeled by the standard
linear model of viscoelastic defined in Ω subject to the undamped Dirichlet and
Neumann boundary where the boundary Γ consists of two parts Γ0 and Γ1 such
that Γ = Γ0 ∪Γ1. He proved that the amplitude of the vibrations remains bounded
in the sense of a suitable norm in an appropriate space. In Alves et. al. [1] the
authors generalized the work given by Gorain [8] for coupled system with a thermal
effect and they proved the similar result. Other results can be founded in [1, 7, 9]
and references therein.

We have a result related to the total energy of the system (1.5)-(1.7) as follows.

Lemma 1.1. For every solution of the system (1.5)-(1.7) the total energy E :
[0,∞)→ [0,∞) is given in time t by

E(t) =
1
2

∫
Ω

(
|vt|2 + a2 |∇v|2

)
dx

and satisfies
d

dt
E(t) = −a2

∫
Γ

|vt|2 dΓ ≤ 0. (1.8)

Proof. Multiplying (1.5) by vt and using the Green formula together with the
boundary dissipation condition (1.6) the lemma follows. �

In this work we extend the results given in [1] and [8], where in this paper we
consider the case α = β and we put the boundary dissipation.

This paper is organized as follows: Section 2 briefly outlines the notations and the
well-posedness of the system is established. In Section 3, we show the exponential
stability of the system (1.9)-(1.11), using suitable multiplier techniques.

Remark 1.2. The negativity of the integral on the right hand side of (1.8) shows
that some amount of energy of the system is dissipating throughout the domain
due to consideration of small internal damping of the structure.

Remark 1.3. To make the problem more realistic, the internal material damp-
ing of the structure is incorporated (see [4, 7, 8]). The term 2ξvt is the damping
one appearing in governing differential equation (1.5). Since vt is order v (dis-
placements) from (1.4), and is not equal to orders vt (velocities), then, to obtain
uniform stability of the system, it is necessary to incorporate a separate damping
mechanism order of vt either in the governing equation or in the boundary. So,
damping coefficients ξ > 0 are crucially important in this discussion. Taking into
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account the internal material damping of the structure in the governing differential
equation (1.5), we have the following problem

vtt + 2ξvt − a2∆v = 0 in (0,∞)× Ω, (1.9)
∂v

∂ν
= −vt on Γ. (1.10)

The initial conditions of problem (1.9)-(1.10) are given by

v(0, x) = αut(0, x) + u(0, x) = v0(x),

vt(0, x) = αutt(0, x) + ut(0, x) = v1(x),
(1.11)

for x ∈ Ω. We remark that the existence and the regularity of the solution v of
(1.9)-(1.11) have similar properties of (1.5)-(1.7).

Finally, throughout this paper, C is a generic constant, not necessarily the same
at each occasion. It could be changed from line to line and depends on an increasing
way on the indicated quantities.

2. Setting of the semigroup

In this section we study the setting of the semigroup and establish the well-
posedness of the system (1.1)-(1.7). We will use the following standard L2(Ω)
space, where the scalar product and the norm are denoted by

〈ϕ,ψ〉L2(Ω) =
∫

Ω

ϕψ dx, ‖ψ‖2L2(Ω) =
∫

Ω

|ψ|2 dx.

Remark 2.1. Before considering the equation

vtt − a2∆v = 0 (2.1)

with the boundary condition

∂v

∂ν
= −vt on Γ, (2.2)

we go back to the classical non-homogeneous Neumann’s problem as follows: Find
u such that

−∆u = f in Ω and
∂u

∂ν
= g on Γ (2.3)

where f ∈ L2(Ω) and g ∈ H−1/2(Γ) satisfy the compatibility condition∫
Ω

fdx+ 〈g, 1〉Γ = 0.

Note that we never have the uniqueness of the solution u because problem (2.3)
only involves the derivative of u. It leads us to seek a solution u in the quotient
space H1(Ω)/R with the quotient norm, denoted by [u]H1(Ω) as follows

[u]H1(Ω) = ‖u‖H1(Ω)/R = inf
Q∈R
‖u+Q‖H1(Ω).

The space H1(Ω)/R is a Hilbert space and the semi-norm | · |H1(Ω) defines on
H1(Ω)/R a norm which is equivalent to the quotient norm. This property is called
the Poincaré-type inequality (see [11, 2, 3, 14]). Returning to (2.3), the problem
is equivalent to a variational formulation and by using Lax-Milgram’s theorem, we
can show there exists a unique solution u ∈ H1(Ω)/R. In addition, u belongs to
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H2(Ω)/R and then, in particular, g ∈ H1/2(Γ). Moreover, we have the following
estimate

|u|H1(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖H−1/2(Γ)).

The proof can be found in [6].

We now consider the phase space H = H1(Ω)/R×L2(Ω) with the inner product

〈U, V 〉H = a2

∫
Ω

∇v · ∇φdx +
∫

Ω

wψ dx,

where U = (v, w)T and V = (φ, ψ)T ∈ H. The norm in this space is

‖U‖2H = a2

∫
Ω

|∇v|2 dx +
∫

Ω

|w|2 dx.

We define the operator A : H → H by

A
(
v
w

)
=
(

w
a2∆v

)
. (2.4)

We want to find U = (v, w)T ∈ Ω such that for t ≥ 0,

d

dt
U(t) = AU(t),

U(0) = (v0, v1)T ,

(2.5)

where

D(A) =
{
U = (v, w)T ∈ H;w ∈ H1(Ω), v ∈ H2(Ω),

∂v

∂ν
= −vt = w on Γ

}
= V ×H1(Ω).

Here V ×H1(Ω) is defined as follows

V ×H1(Ω) :=
{
ϕ ∈ H2(Ω)/R;

∂ϕ

∂ν
= −ϕt = θ on Γ

}
× {θ ∈ H1(Ω)}.

Before showing the operator A generates a C0-semigroup of contractions on the
space H, we will consider the two following lemmas.

Lemma 2.2. The operator A is dissipative.

Proof. We observe that if U = (v, w)T ∈ D(A), then

〈AU,U〉H = a2

∫
Ω

∇w · ∇v dx+ a2

∫
Ω

∆v · w dx

= a2

∫
Ω

∇w · ∇v dx− a2

∫
Ω

∇v · ∇ω dx+ a2

∫
Γ

∂v

∂ν
ω dΓ

= 2 a2 i

∫
Ω

Im(∇ω · ∇v)− a2

∫
Γ

|ω|2 dΓ.

Taking the real part of the above relation, we obtain

Re〈AU,U〉H = −a2

∫
Γ

|ω|2 dΓ ≤ 0, U ∈ D(A). (2.6)

�
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Let H be a Hilbert space and A be an operator in H. We define the resolvent
set of A as follows

%(A) = {λ ∈ C : w 7→ (λI −A)−1w ∈ L(X)}
where L(X) is the linear continuous mapping from X into X.

Lemma 2.3. We have 0 ∈ %(A).

Proof. We prove that with a given F = (f, g)T ∈ H satisfying the compatibility
condition ∫

Ω

g dx+ a2〈f, 1〉Γ = 0, (2.7)

there exists a unique U = (v, w)T ∈ D(A) such that AU = F . Then

w = f in H1(Ω), (2.8)

a2∆v = g in L2(Ω). (2.9)

By associating the boundary condition and by the definition of the domain D(A),
we obtain

−∆v = h :=
g

a2
∈ L2(Ω)

∂v

∂ν
= f |Γ ∈ H−1/2(Γ),

(2.10)

with the compatibility condition (2.7). Thanks to Remark 2.1 and some calculation,
we obtain

‖A−1F‖H ≤ C ‖F‖H.
The result follows. �

Proposition 2.4. The operator A generates a C0-semigroup S(t) of contractions
on the space H, (t ∈ [0,∞)).

Proof. Note first that D(A) is dense in H. We have showed that A is a dissipative
operator (see Lemma 2.2) and 0 belongs to %(A). Our conclusion will follow by using
Lemma 2.2, Lemma 2.3 and the well known Lumer-Phillips Theorem [15]. �

The first result of this paper follows from Proposition 2.4, [10, Theorem 4.3.2]
and [15] which can be stated in the following theorem.

Theorem 2.5. If U0 ∈ D(A) then U(t) = S(t)U0 is the unique solution of (2.5)
satisfying

S(t)U0 ∈ C([0,∞); D(A)) ∩ C1([0,∞); H). (2.11)

Remark 2.6. Note that if U0 ∈ D(A), then U(t) = S(t)U0 is the unique solution
of (1.5)-(1.7) satisfying

S(t)U0 ∈ C([0,∞);D(A)) ∩ C1([0,∞);H).

Moreover, D(A) ⊆ H2(Ω)×H1(Ω). Then

(v, w) ∈ D(A)⇒ v ∈ H2(Ω) ∧ vt ∈ H1(Ω).

Hence

v ∈ C([0,∞);H2(Ω)), v ∈ C1([0,∞);H1(Ω)).

In addition, from (2.11) we have vt ∈ H1(Ω) ∧ vtt ∈ L2(Ω). Then

v ∈ C1([0,∞);H1(Ω)), v ∈ C2([0,∞);L2(Ω)).
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Thus

v ∈ C([0,∞);H2(Ω)) ∩ C1([0,∞);H1(Ω)) ∩ C2([0,∞);L2(Ω)). (2.12)

Then from Remark 1.3, we have the following regularity result.

Corollary 2.7. If (v0, v1) ∈ V × H1(Ω), then there exists a unique solution v of
problem (1.5)-(1.7) (or problem (1.9)-(1.11), respectively) satisfying

v ∈ C([0,∞);H2(Ω)) ∩ C1([0,∞);H1(Ω)) ∩ C2([0,∞);L2(Ω)).

From (1.4), we get an ordinary differential equation. In this case, taking ϕ(t) =
exp{t/α} as the integrating factor, we conclude that

u(t) = u0 exp{−t/α}+
1
α

∫ t

0

exp{−(t− s)/α}v(s) ds. (2.13)

Then we deduce from (2.13) that u(0) = u0 and ut(0) = u1. Also observe that from
(1.6), we have

∂u

∂ν
=
∂u0

∂ν
exp{−t/α} − 1

α

∫ t

0

exp{−(t− s)/α}vs(s) ds,

∂ut

∂ν
= − 1

α

∂u0

∂ν
exp{−t/α}+

1
α2

∫ t

0

exp{−(t− s)/α}vs(s) ds− vt

α
.

Adding the results above, we obtain

∂u

∂ν
+ α

∂ut

∂ν
= −vt = −(u+ αut)t

Now we check the regularity of u.

ut(t) = −u0

α
exp{−t/α}+

1
α
v(t)− 1

α2
exp{−t/α}

∫ t

0

exp{s/α}v(s) ds (2.14)

utt(t) =
u0

α2
exp{−t/α}+

1
α3

exp{−t/α}
∫ t

0

exp{s/α}v(s) ds

+
1
α2
v(t) +

1
α
vt(t)

(2.15)

uttt(t) =
u0

α3
exp{−t/α} − 1

α4
exp{−t/α}

∫ t

0

exp{s/α}v(s) ds

+
1
α3
v(t) +

1
α2
vt(t) +

1
α
vtt.

(2.16)

As v ∈ C([0,∞);H2(Ω)), from (2.13), we conclude that u ∈ C1([0,∞);H2(Ω)).
Similarly, we conclude that

u ∈ C2([0,∞);H1(Ω)) ∩ C3([0,∞);L2(Ω)).

Theorem 2.8. If (u0, u1, u2) ∈ H2(Ω)×H1(Ω)×L2(Ω), then there exists a unique
solution u of (1.1)-(1.3) satisfying

u ∈ C1([0,∞);H2(Ω)) ∩ C2([0,∞);H1(Ω)) ∩ C3([0,∞);L2(Ω)).
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3. Asymptotic behaviour

In this section we state and prove the exponential stability result for system
(1.9)-(1.11). The main tool is to use the multipliers technique. Now we will state
the main result of this section.

Theorem 3.1. Let v be the solution of system (1.9)-(1.11) given by Corollary 2.7.
Then there exist positive constants C and K such that

E(t) ≤ CE(0)e−Kt, ∀t ≥ 0,

where E(t) is the total energy of system (1.9)-(1.11).

Before proving Theorem 3.1, we give the following lemma.

Lemma 3.2. Let v be the solution of (1.9)-(1.11) given by Corollary 2.7. Then
the functional

F1(t) =
∫

Ω

vvt dx+
1
2
a2

∫
Γ

v2 dΓ (3.1)

satisfies
d

dt

[
F1(t) + ξ

∫
Ω

v2dx
]

=
∫

Ω

|vt|2 dx− a2

∫
Ω

|∇v|2 dx. (3.2)

Proof. Differentiating (3.1) in the t-variable, using Green’s Theorem and (1.5)-(1.6)
we have

d

dt
F1(t) =

∫
Ω

|vt|2 dx+
∫

Ω

vvtt dx+
a2

2
d

dt

∫
Γ

v2 dΓ

=
∫

Ω

|vt|2 dx+ a2

∫
Ω

v∆v dx− ξ d
dt

∫
Ω

v2 dx+
a2

2
d

dt

∫
Γ

v2 dΓ

=
∫

Ω

|vt|2 dx− a2

∫
Ω

|∇v|2 dx+ a2

∫
Γ

∂v

∂ν
v dΓ

− ξ d
dt

∫
Ω

v2 dx+
a2

2
d

dt

∫
Γ

v2 dΓ

=
∫

Ω

|vt|2 dx− a2

∫
Ω

|∇v|2 dx− a2

∫
Γ

vtv dΓ

− ξ d
dt

∫
Ω

v2 dx+
a2

2
d

dt

∫
Γ

v2 dΓ

=
∫

Ω

|vt|2 dx− a2

∫
Ω

|∇v|2 dx− a2

2
d

dt

∫
Γ

|v|2 dΓ

− ξ d
dt

∫
Ω

v2 dx+
a2

2
d

dt

∫
Γ

v2 dΓ.

(3.3)

Hence
d

dt

[
F1(t) + ξ

∫
Ω

v2 dx
]

=
∫

Ω

|vt|2 dx− a2

∫
Ω

|∇v|2 dx. (3.4)

�

Proof of Theorem 3.1. We define

F(t) = F1(t) + ξ

∫
Ω

v2 dx, (3.5)

G(t) = E(t) + εF(t). (3.6)
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Similarly as in Lemma 1.1, we deduce

d

dt
G(t) =

d

dt
E(t) +

d

dt
F(t)

= −2ξ
∫

Ω

|vt|2 dx− a2

∫
Γ

|vt|2 dΓ + ε

∫
Ω

|vt|2 dx− a2ε

∫
Ω

|∇v|2 dx

≤ −(2ξ − ε)
∫

Ω

|vt|2 dx− a2

∫
Γ

|vt|2 dΓ− a2ε

∫
Ω

|∇v|2 dx

≤ −(2ξ − ε)
∫

Ω

|vt|2 dx− a2ε

∫
Ω

|∇v|2 dx,

(3.7)

where 2ξ − ε > 0 if and only if 2ξ > ε > 0. We consider κ1 = min{2ξ − ε, ε} > 0.
Then

d

dt
G(t) ≤ −κ1E(t). (3.8)

On the other hand,

|G(t)− E(t)|

= ε |F(t)| = ε |F1(t)|+ εξ

∫
Ω

|v|2 dx

≤ ε
∫

Ω

|v| |vt| dx+
a2ε

2

∫
Γ

|v|2 dΓ + εξ

∫
Ω

|v|2 dx

≤ ε
(1

2

∫
Ω

|v|2 dx+
1
2

∫
Ω

|vt|2 dx
)

+
a2ε

2

∫
Γ

|v|2 dΓ + εξ

∫
Ω

|v|2 dx

=
ε

2
‖v‖2L2(Ω) +

ε

2
‖vt‖2L2(Ω) +

a2ε

2
‖v‖2L2(Γ) + εξ‖v‖2L2(Ω)

≤ ε

2
cP ‖∇v‖2L2(Ω) +

ε

2
‖vt‖2L2(Ω) +

a2ε

2
‖v‖2L2(Γ) + εξ ‖v‖2L2(Ω).

(3.9)

We have

‖v‖H1/2(Γ) ≤ c ‖v‖H1(Ω).

Moreover, H1/2(Γ) ↪→ L2(Γ). Then

‖v‖L2(Γ) ≤ c0 ‖v‖H1/2(Γ) =⇒ ‖v‖L2(Γ) ≤ c1 ‖v‖H1(Ω).

Hence

‖v‖L2(Γ) ≤ c2
(
‖v‖L2(Ω) + ‖∇v‖L2(Ω)

)
≤ c3 ‖∇v‖L2(Ω).

Replacing into (3.9) we obtain

|G(t)− E(t)|

≤ ε

2
cP ‖∇v‖2L2(Ω) +

ε

2
‖vt‖2L2(Ω) +

a2εc23
2
‖∇v‖2L2(Ω) + εξcP ‖v‖2L2(Ω)

≤ εcE(t).

(3.10)

Then

−εcE(t) ≤ G(t)− E(t) ≤ εcE(t)⇐⇒ (1− εc)E(t) ≤ G(t)− E(t) ≤ (1 + εc)E(t).

Observe that we can choose ε such that ε < 1/c. Therefore,

κ2E(t) ≤ G(t) ≤ κ3E(t), κ2, κ3 > 0. (3.11)
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From (3.8) and (3.10) we conclude that

E(t) ≤ CE(0)e−Kt, ∀t ≥ 0.

Then the statement of the theorem follows. �
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Departamento de Matemática, Universidad del B́ıo B́ıo, Collao 1202, Casilla 5-C, Con-
cepción, Chile

E-mail address: overa@ubiobio.cl

Verónica Poblete
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