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QUALITATIVE PROPERTIES OF A THIRD-ORDER
DIFFERENTIAL EQUATION WITH A PIECEWISE

CONSTANT ARGUMENT

HUSEYIN BEREKETOGLU, MEHTAP LAFCI, GIZEM S. OZTEPE

Abstract. We consider a third order differential equation with piecewise con-
stant argument and investigate oscillation, nonoscillation and periodicity prop-

erties of its solutions.

1. Introduction

For many years, oscillation, non-oscillation and periodicity of third order differ-
ential equations have been investigated. Kim [15] studied oscillation properties of
the equation

y′′′ + py′′ + qy′ + ry = 0,

where p, q and r are continuous on an interval. Tryhuk [24] established sufficient
conditions for the existence of two linearly independent oscillatory solutions of the
third order differential equation

y′′′ + p(t)y′ + q(t)y = 0.

Cecchi [6] investigated the oscillatory behavior of the linear third-order differential
equation of the form

y′′′ + p(x)y′ + q(x)y = 0,

where the function p(x) changes sign on the positive x-axis. Parhi and Das [18]
considered the equation

(r(t)y′′)′ + q(t)y′ + p(t)y = F (t),

and gave necessary and sufficient conditions for the existence of nonoscillatory or
oscillatory solutions of this equation. In [19], they also investigated oscillatory and
asymptotic properties of solutions of the equation

y′′′ + a(t)y′′ + b(t)y′ + c(t)y = 0,

where a ∈ C2, b ∈ C1, c ∈ C0, a(t), b(t), c(t) ≤ 0 eventually and b(t) 6= 0, c(t) 6= 0
on any interval of positive measure. The oscillation of the solutions of

(b(t)(a(t)y′(t))′)′ + (q1(t)y(t))′ + q2(t)y′(t) = 0
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and
(b(t)(a(t)y′(t))′)′ + q1(t)y(t) + q2(t))y(τ(t)) = 0

was studied in [8] by Dahiya. Adamets and Lomtatidze [1] analyzed oscillatory
properties of solutions of the third-order differential equation u′′′ + p(t)u = 0,
where p is a locally integrable function on [0,∞) which is eventually of one sign.
Han, Sun and Zhang [13] deduced new sufficient conditions which guarantee that
every solution x of the delayed third order differential equation

(x(t)− a(t)x(τ(t)))′′′ + p(t)x(δ(t)) = 0

is either oscillatory or tends to zero. In [9], the authors stated necessary and
sufficient conditions for the oscillation of the third-order nonhomogenous differential
equation

y′′′ + a(t)y′′ + b(t)y′ + c(t)y = f(t),
under certain conditions given in terms of differentiability, continuity and signs of
the coefficient functions and their derivatives. [10] was dedicated to studying the
nonoscillatory solutions of the equation with mixed arguments

(a(t)(x′(t))γ)′′ = q(t)f(x(τ(t))) + p(t)g(x(σ(t))),

where τ(t) < t, σ(t) > t. In 2015, Bartušek and Došlá [2] gave conditions under
which every solution of the equation

x′′′(t) + q(t)x′(t) + r(t)|x|λ(t) sgnx(t) = 0, t ≥ 0,

is either oscillatory or tends to zero. They also studied Kneser solutions vanishing
at infinity and the existence of oscillatory solutions. Shoukaku [21] considered

y′′′(t)− a(t)y′′(t)− b(t)y′(t)−
m∑
i=1

ci(t)y(σi(t)) = 0

using Riccati inequality. Ezeilo [11] studied the equation

x′′′ + ax′′ + bx′ + h(x) = p(t),

where a, b are constants, p(t) is continuous and periodic with least period w. Us-
ing the Leray-Schauder technique, under certain conditions on a, b, h, p, the au-
thor guaranteed the existence of one solution of this equation with least period w.
Tabueva In [22] studied the existence of a periodic solution of

x′′′ + αx′′ + βx′ + sinx = e(t).

Ezeilo [12] showed that the equation

x′′′ + ψ(x′)x′′ + φ(x)x′ + θ(x) = p(t) + q(t, x, x′)

has an w-periodic solution, where ψ, φ, θ, p and q are continuous in their respective
arguments and p, q have a given period w, w > 0, in t. In 1979, Tejumola [23]
proved the existence of at least one w periodic solution of the third order differential
equation

x′′′ + f(x′)x′′ + g(x)x′ + h(x) = p(t, x, x′, x′′),
where p is w-periodic in its first argument. In [25], the author gave a theorem
on the existence of 2π-periodic solutions of the nonlinear third order differential
equation with multiple deviating arguments

c(t)x′′′(t)+
2∑
i=0

[ai(x(i))2k−1 +bi(x(i))2k−1(t−τi)]+g(t, x(t−τ(t)), x′(t−τ3)) = p(t),
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where ai, bi(i = 0, 1, 2) and τi(i = 0, 1, 2, 3) are constants, k is a positive integer.
Chen and Pan [7] proved sufficient conditions for the existence of periodic solutions
of third order differential equations with deviating arguments of the type

x′′′(t) + ax′′(t− τ2(t)) + bx′(t− τ1(t)) + cx(t) + f(t, x(t− τ(t)) = p(t).

As far as we know, there are some papers on the third-order differential equa-
tions with piecewise constant arguments. The oldest one was published in 1994 by
Papaschinopoulos and Schinas [17]. They considered the equation

(y(t) + py(t− 1))′′′ = −qy(2[
t+ 1

2
])

and proved existence, uniqueness and asymptotic stability of the solutions. Here
t ∈ [0,∞), p, q are real constants and [·] denotes the greatest integer function. Liang
and Wang [16] stated several sufficient conditions which insure that any solution of
the equation

(r2(t)(r1(t)x′(t))′)′ + p(t)x′(t) + f(t, x([t])) = 0, t ≥ 0

oscillates or converges to zero. Shao and Liang [20] established sufficient conditions
for the oscillation and asymptotic behaviour of the equation

(r(t)x′′(t))′ + f(t, x([t])) = 0.

In [5], the authors showed that every solution x(t) of a third-order nonlinear differ-
ential equation with piecewise constant arguments of the type

(r2(t)(r1(t)x′(t))′)′ + p(t)x′(t) + f(t, x([t− 1])) + g(t, x([t])) = 0

oscillates or converges to zero, where t ≥ 0, r1(t), r2(t) are continuous on [0,∞)
with r1(t), r2(t) > 0 and r′1(t) ≥ 0, p(t) is continuously differentiable on [0,∞) with
p(t) ≥ 0.

On the other hand, the first and third authors considered an impulsive first
order delay differential equation with piecewise constant argument in [14]. They
investigated its oscillatory and periodic solutions. Then in [3], the same authors
studied the oscillation, nonoscillation, periodicity and global asymptotic stability
of an advanced type impulsive first order nonhomogeneous differential equation
with piecewise constant arguments. Also, in 2011, oscillation, nonoscillation and
periodicity of a second order

x′′(t)− a2x(t) = bx([t− 1]) + cx([t] + dx([t+ 1]

differential equation with mixed type piecewise constant arguments were investi-
gated [4].

In this paper, we extend our results on oscillation, nonoscillation and periodicity
of solutions to first and second order linear differential equations with piecewise con-
stant arguments to a third order linear differential equation with piecewise constant
argument. For this purpose, we consider the following third order linear differential
equation with a piecewise constant argument

x′′′(t)− a2x′(t) = bx([t− 1]) (1.1)

with the initial conditions

x(−1) = α−1, x(0) = α0, x
′(0) = α1, x

′′(0) = α2, (1.2)

where a 6= 0 and a, b, α−1, α0, α1, α2 ∈ R.
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2. Existence and uniqueness

First we give the definition of a solution to (1.1). Then we use the technique in
[26] to investigate the solution of this equation.

A function x(t) defined on [0,∞) is said to be a solution of the initial value
problem (1.1)–(1.2) if it satisfies the following conditions:

(i) x is continuous on [0,∞),
(ii) x′′ exists and continuous on [0,∞),
(iii) x′′′ exists on [0,∞) with the possible exception of the points [t] ∈ [0,∞),

where one-sided derivatives exist,
(iv) x satisfies (1.1) on each interval [n, n+ 1) with n ∈ N .

Theorem 2.1. Equation (1.1) has a solution on [0,∞).

Proof. Let xn(t) be a solution of (1.1) on the interval [n, n+ 1) with the conditions

x(n) = cn, x(n− 1) = cn−1, x
′(n) = dn, x

′′(n) = en.

Then (1.1) reduces to
x′′′(t)− a2x′(t) = bx(n− 1).

The solution of the above equation is found as

xn(t) = Kn + Ln cosh a(t− n) +Mn sinh a(t− n)− b

a2
txn(n− 1) (2.1)

with arbitrary constants Kn, Ln and Mn. Writing t = n in (2.1), we obtain

cn = Kn + Ln −
b

a2
ncn−1. (2.2)

If we take t = n in the first and second derivatives of (2.1), respectively, we find

Mn =
dn
a

+
b

a3
cn−1, Ln =

en
a2
. (2.3)

From (2.2) and (2.3),

Kn = cn −
en
a2

+
b

a2
ncn−1 (2.4)

is obtained. Substituting (2.3) and (2.4) in (2.1), we have

xn(t) =
−1 + cosh a(t− n)

a2
en +

sinh a(t− n)
a

dn + cn

+ [
b

a2
n− b

a2
t+

b

a3
sinh a(t− n)]cn−1.

(2.5)

First and second derivatives of (2.5) are found as

x′n(t) =
sinh a(t− n)

a
en + cosh a(t− n)dn + [

b

a2
cosh a(t− n)− b

a2
]cn−1, (2.6)

x′′n(t) = cosh a(t− n)en + a sinh a(t− n)dn +
b

a
sinh a(t− n)cn−1. (2.7)

Writing t = n+ 1 in (2.5), (2.6) and (2.7), it follows that

cn+1 = cn +
sinh a
a

dn +
(cosh a

a2
− 1
a2

)
en +

(b sinh a
a3

− b

a2

)
cn−1, (2.8)

dn+1 = (cosh a)dn +
sinh a
a

en + (
(b cosh a

a2
− b

a2

)
cn−1, (2.9)

en+1 = a(sinh a)dn + (cosh a)en +
b sinh a
a

cn−1. (2.10)
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Now, let us introduce the vector vn = col(cn, dn, en) and the matrices

A =

1 sinh a
a

cosh a
a2 − 1

a2

0 cosh a sinh a
a

0 a sinh a cosh a

 , B =

 b sinh a
a3 − b

a2 0 0
b cosh a
a2 − b

a2 0 0
b sinh a
a 0 0


so we can rewrite the system (2.8)-(2.10) as

vn+1 = Avn +Bvn−1. (2.11)

Looking for a nonzero solution of this difference equation system in the form of
vn = kλn, with a constant vector k, leads us to

det(λ2I − λA−B) = 0,

and characteristic equation

λ4 + (−1− 2 cosh a)λ3 + (1 +
b

a2
− b

a3
sinh a+ 2 cosh a)λ2

+ (−1− 2b
a2

cosh a+
2b
a3

sinh a)λ+ (
b

a2
− b

a3
sinh a) = 0.

(2.12)

Assuming that these roots are simple, we write the general solution of (2.12),

vn = λn1k1 + λn2k2 + λn3k3 + λn4k4, (2.13)

where vn = col(cn, dn, en) and kj = col(kij), i = 1, 2, 3, 4 which can be found from
adequate initial or boundary conditions. If some λj is a multiple zero of (2.12),
then the expression for vn also includes products of λnj by n, n2 or n3. Finally,
the solution xn(t) is obtained by substituting the appropriate components of the
vectors vn and vn−1 in (2.5). �

Remark 2.2. From (2.8), (2.9) and (2.10), we obtain

dn =
−a

2 sinh a
cn+2 +

a(1 + cosh a)
sinh a

cn+1

+
(−a3 − 2a3 cosh a− ab+ b sinh a)

2a2 sinh a
cn

+
ab+ 2ab cosh a− 3b sinh a

2a2 sinh a
cn−1,

(2.14)

en =
−a2

2(1− cosh a)
cn+2 +

a2 cosh a
1− cosh a

cn+1

− (−a3 + 2a3 cosh a+ ab− b sinh a)
2a(1− cosh a)

cn

− ab− 2ab cosh a+ b sinh a
2a(1− cosh a)

cn−1.

(2.15)

Substituting (2.14) and (2.15) in (2.8), gives us the difference equation

cn+3 + (−1− 2 cosh a)cn+2 + (1 +
b

a2
− b

a3
sinh a+ 2 cosh a)cn+1

+ (−1− 2b
a2

cosh a+
2b
a3

sinh a)cn + (
b

a2
− b

a3
sinh a)cn−1 = 0

(2.16)

whose characteristic equation is the same as (2.12).
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Theorem 2.3. The boundary-value problem for (1.1) with the conditions

x(−1) = c−1, x(0) = c0, x(1) = c1, x(N − 1) = cN−1 (2.17)

has a unique solution on 0 ≤ t <∞ if N > 2 is an integer and both of the following
hypotheses are satisfied:

(i) The roots of (2.12) λj (characteristic roots) are nontrivial and distinct,
(ii) λN1 λ2λ3λ4(−λ2

4λ1λ2 + λ4λ1λ
2
2 + λ2

4λ1λ3 − λ1λ
2
2λ3 − λ4λ1λ

2
3 + λ1λ2λ

2
3)

+ λ1λ2λ
N
3 λ4(−λ2

4λ1λ3 + λ4λ
2
1λ3 + λ2

4λ2λ3 − λ2
1λ2λ3 − λ4λ

2
2λ3 + λ1λ

2
2λ3)

6= λ1λ2λ3λ
N
4 (−λ4λ

2
1λ2 + λ4λ1λ

2
2 + λ4λ

2
1λ3 − λ4λ

2
2λ3 − λ4λ1λ

2
3 + λ4λ2λ

2
3)

+ λ1λ
N
2 λ3λ4(−λ2

4λ1λ2 + λ4λ
2
1λ3 + λ2

4λ2λ3 − λ2
1λ2λ3 − λ4λ2λ

2
3 + λ1λ2λ

2
3).

Proof. The first row of the vector equation (2.13) gives us

cn = λn1k11 + λn2k21 + λn3k31 + λn4k41. (2.18)

We get following system by applying the boundary conditions (2.17) to (2.18),
respectively.

λ−1
1 k11 + λ−1

2 k21 + λ−1
3 k31 + λ−1

4 k41 = c−1, (2.19)

k11 + k21 + k31 + k41 = c0, (2.20)

λ1k11 + λ2k21 + λ3k31 + λ4k41 = c1, (2.21)

λN−1
1 k11 + λN−1

2 k21 + λN−1
3 k31 + λN−1

4 k41 = cN−1. (2.22)

From hypothesis (ii), the determination of the coefficients of this system is different
from zero. Hence, we can find kij and also cn uniquely. Furthermore, once the values
cn have been found, we calculate dn and en from (2.14) and (2.15), respectively.
Substituting cn, dn, en in (2.5), the unique solution xn(t) is obtained. �

The following four theorems depend on the characteristic roots. Their proofs are
omitted because they are very similar to the proof of Theorem 2.3.

Theorem 2.4. Let us assume that all characteristic roots are nontrivial and two
of them are equal (λ1 = λ2), others are different from each other (λ3 6= λ4). If

λN1

[
(1−N)λ1λ3λ

3
4 + (N − 2)λ2

1λ3λ
2
4 +Nλ3

4λ
2
3 + (2−N)λ2

1λ
2
3λ4

−Nλ2
4λ

3
3 + (N − 1)λ1λ

3
3λ4

]
6= λN3

[
λ1λ3λ

3
4 − 2λ2

1λ3λ
2
4 + λ3

1λ3λ4

]
+ λN4

[
2λ2

1λ
2
3λ4 − λ1λ

3
3λ4 − λ3

1λ3λ4

]
,

then the boundary-value problem for (1.1) with the conditions (2.17) has a unique
solution on [0,∞).

Theorem 2.5. If the characteristic roots λj are nontrivial, λ1 = λ2, λ3 = λ4 and

λN1

[
(N − 2)λ2

1λ2 + 2(1−N)λ1λ
2
2 +Nλ3

2

]
6= λN2

[
(2−N)λ1λ

2
2 + 2(N − 1)λ2

1λ2 +Nλ3
1

]
,

then the boundary-value problem for (1.1) with the conditions (2.17) has a unique
solution on [0,∞).
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Theorem 2.6. If the characteristic roots λj are nontrivial, λ1 = λ2 = λ3 and

λN1

[
(−N2 + 3N − 2)λ3

1λ2 + (2N2 − 5N + 2)λ2
1λ

2
2 + (2−N)λ4

1λ
2
2

+ (−N2 + 2N − 1)λ1λ
3
2 + (N − 1)λ3

1λ
3
2

]
6= λN2

[
λ5

1λ2 − λ3
1λ2

]
,

then the boundary-value problem for (1.1) with the conditions (2.17) has a unique
solution on [0,∞).

Theorem 2.7. If λ1 = λ2 = λ3 = λ4 = λ and

2N − 3N2 +N3 + (−2N + 3N2 −N3)λ2 6= 0,

then the boundary-value problem for (1.1) with the conditions (2.17) has a unique
solution on [0,∞).

3. Main results

This section deals with the oscillation, nonoscillation and the periodicity of the
solutions of (1.1). Also, we give an example to illustrate our results.

Theorem 3.1. If

0 <
b

a2
<

1 + 4 cosh a
2 cosh a− 2

,

then there exist oscillatory solutions of (1.1).

Proof. Equation (2.12) can be written as a polynomial of λ,

f(λ) = λ4 + β1λ
3 + β2λ

2 + β3λ+ β4, (3.1)

where
β1 = −1− 2 cosh a,

β2 = 1 +
b

a2
− b

a3
sinh a+ 2 cosh a,

β3 = −1− 2b
a2

cosh a+
2b
a3

sinh a,

β4 =
b

a2
− b

a3
sinh a.

(3.2)

To prove the oscillation of solutions, we need to show that there exists a unique
negative root of the characteristic equation (2.12). For this reason let us take the
polynomial

f(−λ) = λ4 − β1λ
3 + β2λ

2 − β3λ+ β4.

Now, if hypothesis is true, then we find that

β1 < 0, β2 > 0, β3 < 0, β4 < 0.

By using Descartes’ rule of signs, we conclude that there exists a unique negative
root of (2.12). Let us take λ1 as this root. Now, consider the following boundary
conditions

x(0) = c0, x(−1) = c−1 = c0λ
−1
1 , x(1) = c1 = c0λ1, x(2) = c2 = c0λ

2
1.

Applying these conditions to (2.18), the coefficients ki1, i = 1, 2, 3, 4 are found as

k11 = c0, k21 = k31 = k41 = 0

and therefore, (2.18) becomes cn = x(n) = c0λ
n
1 . Since λ1 < 0, we see that

x(n)x(n+ 1) = λ1c
2
0λ

2n
1 < 0, c0 6= 0
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and so the solution x(t) of (1.1) has a zero in each interval (n, n+1). So there exist
oscillatory solutions. �

Theorem 3.2. If

0 < b <
a3(1 + 2 cosh a)

sinh a− a
(3.3)

or

b <
a3

2(sinh a− a cosh a)
(3.4)

is satisfied, then there exist nonoscillatory solutions of (1.1).

Proof. From (3.3), we have β1 < 0, β2 > 0, β3 < 0, β4 < 0. Also, we obtain
β1 < 0, β2 > 0, β3 > 0, β4 < 0 by using (3.4) where β1, β2, β3, β4 are given by (3.2).
So, from Descartes’ rule of sign, if any of the above conditions is satisfied, then
we obtain that the characteristic equation (2.12) has at least one positive root.
Therefore, there are nonoscillatory solutions of (1.1). �

Theorem 3.3. If

b >
a3(1 + 2 cosh a)

sinh a− a
, (3.5)

then there exist both oscillatory and nonoscillatory solutions of (1.1).

Proof. Condition (3.5) implies that β1 < 0, β2 < 0, β3 < 0, β4 < 0, where β1, β2,
β3, β4 are given by (3.2). Hence, from Descartes’ rule of sign, we conclude that
there exists a single positive root of (2.12). So, the other roots are negative or
complex. Positive root generates nonoscillatory solutions, and others give us the
oscillatory solutions of (1.1). �

Theorem 3.4. A necessary and sufficient condition for the solution of problem
(1.1)-(1.2) to be k periodic, k ∈ N − {0}, is

c(k) = c(0), c(k − 1) = c(−1), d(k) = d(0), e(k) = e(0). (3.6)

Here {c(n)}n≥−1 is the solution of (2.16) with the initial conditions

c(−1) = α−1, c(0) = α0, d(0) = α1, e(0) = α2.

Proof. In this proof, we use technique in [14]. If x(t) is periodic with period k, then
x(t+ k) = x(t) for t ∈ [0,∞). This implies that the equalities (3.6) is true.

For the proof of sufficiency case, suppose that (3.6) is satisfied. From (2.5),

xk(t) =
−1 + cosh a(t− k)

a2
ek +

sinh a(t− k)
a

dk + ck

+
( b
a2
k − b

a2
t+

b

a3
sinh a(t− k)

)
ck−1, k ≤ t < k + 1,

(3.7)

x0(t) =
−1 + cosh at

a2
e0 +

sinh at
a

d0 + c0

+
(
− b

a2
t+

b

a3
sinh at

)
c−1, 0 ≤ t < 1.

(3.8)
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So xk(t) = x0(t− k), k ≤ t < k + 1. Moreover

xk+1(t)

=
−1 + cosh a(t− (k + 1))

a2
ek+1 +

sinh a(t− (k + 1))
a

dk+1 + ck+1

+
( b
a2

(k + 1)− b

a2
t+

b

a3
sinh a(t− (k + 1))

)
ck, k + 1 ≤ t < k + 2,

(3.9)

x1(t) =
−1 + cosh a(t− 1)

a2
e1 +

sinh a(t− 1)
a

d1 + c1

+ (
b

a2
− b

a2
t+

b

a3
sinh a(t− 1))c0, 1 ≤ t < 2.

(3.10)

To show that
xk+1(t) = x1(t− k), (3.11)

we need to show that

c(k + 1) = c(1), d(k + 1) = d(1), e(k + 1) = e(1). (3.12)

For this purpose, by using the continuity at t = k + 1, we obtain

xk(k + 1) = xk+1(k + 1), k ≤ t < k + 1.

Here, xk(k+ 1) and xk+1(k+ 1) are obtained by taking t = k+ 1 in (3.7) and (3.9),
respectively. Hence

x(k + 1) =
−1 + cosh a

a2
ek +

sinh a
a

dk + ck +
(−b
a2

+
b

a3
sinh a

)
ck−1 (3.13)

where x(k + 1) = xk+1(k + 1).
By using the same procedure at t = 1, we find

x(1) =
−1 + cosh a

a2
e0 +

sinh a
a

d0 + c0

(−b
a2

+
b

a3
sinh a

)
c−1. (3.14)

Considering (3.6) in (3.13) and (3.14), we obtain x(k + 1) = x(1), that is

c(k + 1) = c(k).

Taking the derivatives of (3.7) and (3.8) gives us

x′k(t) =
sinh a(t− k)

a
ek + cosh a(t− k)dk

+
( b
a2

cosh a(t− k)− b

a2

)
ck−1, k ≤ t < k + 1,

(3.15)

x′0(t) =
sinh at
a

e0 + (cosh at)d0 +
( b
a2

cosh at− b

a2

)
c−1, 0 < t < 1. (3.16)

Using continuity at t = k + 1 and t = 1 in (3.15) and (3.16), we find

x′(k + 1) =
sinh a
a

ek + (cosh a)dk +
( b
a2

cosh a− b

a2

)
ck−1, k ≤ t < k + 1,

(3.17)

x′(1) =
sinh a
a

e0 + (cosh a)d0 +
( b
a2

cosh a− b

a2

)
c−1, 0 < t < 1. (3.18)

Considering (3.6) in (3.17) and (3.18), we have x′(k + 1) = x′(1) i.e.

d(k + 1) = d(1).
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Similarly, from the continuity at t = k + 1 and t = 1 in the following derivatives

x′′k(t) = (cosh a(t− k))ek + a(sinh a(t− k))dk +
b

a
(sinh a(t− k))ck−1, k ≤ t < k + 1,

x′′0(t) = (cosh at)e0 + (a sinh at)d0 +
b

a
(sinh at)c−1, 0 < t < 1,

of (3.15) and (3.16), we obtain e(k + 1) = e(1). Therefore, we find (3.12). By
induction, xk+n(t) = xn(t− k). �

As an example we consider the differential equation

x′′′(t)− x′(t) = (0.1)x([t− 1]), (3.19)

which is a special case of (1.1) with a = 1, b = 0.1. It is easily checked that (3.19)
satisfies the condition of Theorem 3.1. Thus there are oscillatory solutions of (3.19).
The solution xn(t) of (3.19) with the initial conditions

x(−1) = −64.91, x(0) = 1, x′(0) = −1.76448, x′′(0) = 1.94854

for n = 0, 1, . . . , 13 is shown in Figure 1

Figure 1. Solution of of (3.19)
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