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Abstract. This article determines the rate of growth to infinity of scalar

autonomous nonlinear functional and Volterra differential equations. In these

equations, the right-hand side is a positive continuous linear functional of f(x).
We assume f grows sublinearly, leading to subexponential growth in the so-

lutions. The main results show that the solution of the functional differential
equations are asymptotic to that of an auxiliary autonomous ordinary differen-

tial equation with right-hand side proportional to f . This happens provided f

grows more slowly than l(x) = x/ log x. The linear-logarithmic growth rate is
also shown to be critical: if f grows more rapidly than l, the ODE dominates

the FDE; if f is asymptotic to a constant multiple of l, the FDE and ODE grow

at the same rate, modulo a constant non-unit factor; if f grows more slowly
than l, the ODE and FDE grow at exactly the same rate. A partial converse

of the last result is also proven. In the case when the growth rate is slower

than that of the ODE, sharp bounds on the growth rate are determined. The
Volterra and finite memory equations can have differing asymptotic behaviour

and we explore the source of these differences.

1. Introduction

We investigate growth rates to infinity of solutions to nonlinear autonomous
functional and Volterra differential equations of the form

x′(t) =
∫

[−τ,0]
µ(ds)f(x(t+ s)), t > 0; x0 = ψ ∈ C([−τ, 0]; (0,∞)), (1.1)

and

x′(t) =
∫

[0,t]

µ(ds)f(x(t− s)), t ≥ 0; x(0) = ψ > 0. (1.2)

The analysis of stability and convergence to equilibrium of solutions has attracted
considerable attention from investigators in functional, delay, and Volterra equa-
tions, both in continuous and discrete time. Rates of convergence in Volterra equa-
tions are also an important topic of study (see, for example, [7, 12, 30]). Fur-
thermore, the interplay between memory, intrinsic nonlinearity, and positivity or
oscillation of solutions of functional differential equations is a vibrant theme of
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research in nonlinear analysis (see, for example, [1, 13, 16]). In our work, solu-
tions cannot grow exponentially fast due to sublinear nonlinearity and we obtain
sharp conditions for particular growth rates by exploiting heavily the positivity of
solutions.

Concentrating momentarily on (1.1); we suppose that τ > 0 and µ is a positive
finite Borel measure on [−τ, 0], so µ(E) ∈ [0,∞) for all Borel sets E ⊆ [−τ, 0] and
µ([−τ, 0]) =: M ∈ (0,∞). In the case of (1.2), we have M := µ([0,∞)). If f is pos-
itive, by the Riesz representation theorem, (1.1) is equivalent to x′(t) = L([f(x)]t)
for t > 0, where L is a positive continuous linear functional from C([−τ, 0]; R+) to
R+. Uniqueness of a continuous solution of (1.1) or (1.2) is guaranteed by asking
that f is continuously differentiable (see [15] for existence results and properties
of measures); positivity of solutions is guaranteed by the positivity of µ and f on
[0,∞). Non–explosion of solutions in finite time, as well as subexponential growth
to infinity (in the sense that log x(t)/t→ 0 as t→∞), follows from the hypothesis
that f ′(x)→ 0 as x→∞.

When f is a positive continuous function such that

there exists φ ∈ S such that f(x) ∼ φ(x) as x→∞ (1.3)

where S is the class
S = {φ ∈ C1((0,∞); (0,∞)) ∩ C(R+, (0,∞)) :

lim
x→∞

φ′(x) = 0 and φ′(x) > 0 for all x > 0}, (1.4)

then

lim
t→∞

F (x(t))
t

= M,

where
F (x) =

∫ x

1

1
f(u)

du, x > 0 (1.5)

(see [4] for further details). Furthermore,

lim sup
x→∞

f(x)F (x)
x

< +∞ (1.6)

implies

lim
t→∞

x(t)
F−1(Mt)

= 1.

The theorems stated above develop results in [2] which require coefficients to
be regularly varying at infinity, and consider only a single fixed delay. Since we
refer often to the class of regularly varying function, we remind the reader of the
definition (see [20], or [8] for a more modern account): a measurable function g :
(0,∞)→ (0,∞) is regularly varying at infinity with index β ∈ R if g(λt)/g(t)→ λβ

as t→∞, for every λ > 0, and we write g ∈ RV∞(β).
Therefore, under (1.6), the rates of growth of solutions of (1.1) and of

y′(t) = Mf(y(t)), t > 0; y(0) = y0 > 0 (1.7)

are the same, in the sense that x(t)/y(t) → 1 as t → ∞. The non-delay equation
(1.7) can be considered as a special type of equation (1.1) in which all the mass
of µ is concentrated at 0. On the other hand, if f is linear, collapsing the mass of
µ to zero generates different rates of (exponential) growth in the solutions of (1.1)
and (1.7). The condition (1.6) holds for f ∈ RV∞(β) where β < 1, but does not
hold if f is in RV∞(1). Therefore, the phenomenon that solutions of (1.7) yield the
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growth rate of those of (1.1) ceases for some critical rate of growth of f faster than
functions in RV∞(β) for β < 1, but slower than linear.

In [3], the authors showed (under some technical conditions) that the critical
growth rate is O(x/ log x): more precisely, if we define

λ := lim
x→∞

f(x)
x/ log(x)

∈ [0,∞], (1.8)

and C :=
∫
[−τ,0] |s|µ(ds), then

lim
t→∞

x(t)
y(t)

= e−λC , (1.9)

provided f is ultimately increasing and f ′ ∈ RV∞(0), a hypothesis stronger than,
but implying f ∈ RV∞(1). In this paper one of our main results (Theorem 2.1)
extends the results from [3] by removing entirely the assumption that f ′ ∈ RV∞(0):
instead, we assume that f ∈ S (with S as in (1.4)). As mentioned above

lim
t→∞

F (x(t))
t

= M, lim
t→∞

F (y(t))
t

= M. (1.10)

In the linear case, the asymptotic relation (1.10) would mean that x and y share
the same Liapunov exponent, but would not necessarily obey x(t) ∼ Ky(t) as
t→∞. Therefore our results identify a subtle distinction in the growth rates of x
and y, which are in some sense closer than Hartman–Grobman type of asymptotic
equivalence embodied by (1.10). By contrast, the relation (1.9) is in the spirit of a
Hartman-Wintner type-result (see [19, Cor X.16.4], [18]). We note of course, that
there is a huge literature in asymptotic integration and Hartman-Wintner type-
results in determining the asymptotic behaviour of functional differential equations
(see e.g., [5, 6, 9, 14, 17, 21, 26, 27] and the introductions of [9, 25] for reviews of
the development of the literature to date). However, most work in the literature is
concerned with equations whose leading order behaviour is linear, with perturbed
terms either being nonautonomous, or of smaller than linear order. In our work, as
f(x)/x → 0 as x → ∞, no leading order linear behaviour is present, necessitating
a different approach.

When λ = +∞, equation (1.9) reads x(t) = o(y(t)) as t→∞. However, we are
still able to determine the rate of growth relatively precisely in this case, under the
additional assumption that f ′ is decreasing. In Theorem 2.2 we show that

x(t) = F−1(Mt− c(t) logF−1(Mt)), t ≥ 1,

where c is a C1 function such that c(t)→ C as t→∞.
We also prove results for the Volterra differential equation (1.2) where µ ∈

M([0,∞); R+). In this case, with λ defined by (1.8), we obtain

lim
t→∞

x(t)
y(t)

= exp
(
− λ

∫
[0,∞)

sµ(ds)
)
, (1.11)

except possibly in the case when λ = 0 and∫
[0,∞)

sµ(ds) = +∞

(see Theorem 2.4). In this last case, we provide necessary and sufficient conditions
under which x(t)/y(t) → 1 or x(t)/y(t) → 0 as t → ∞ (Theorem 2.5). We do not
believe that the sufficient conditions given in Theorem 2.5 are sharp in general.
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Hence, when f is regularly varying with unit index at infinity and C = +∞, we
provide what we believe is a sharp necessary condition under which x(t)/y(t)→ 1
as t→∞ in Theorem 2.6.

For both (1.1) and (1.2), in the case when the first moment of the measure µ is
finite, we show that the critical growth rate f(x) = o(x/ log x) as x→∞ is a sharp
condition to obtain x(t)/y(t)→ 1 as t→∞. More precisely in Theorem 2.3 we see
that when f ′ is decreasing, then f(x) = o(x/ log x) as x→∞ and x(t)/y(t)→ 1 as
t→∞ are equivalent.

The structure of the paper is as follows: in Section 2, we state and discuss the
main results of the paper. Section 3 contains examples. An important lemma which
allows direct asymptotic information about the solution to be deduced is given in
Section 4. The remaining sections of the paper are devoted to the proofs of the
main results.

2. Main results

In what follows, we interpret
e−∞ := 0

in order to streamline the statement of results. We first state our main result for
the solution of the functional differential equation (1.1).

Theorem 2.1. Let f(x) > 0 for all x > 0, f ′(x) > 0 for all x > x1, f ′(x)→ 0 as
x → ∞. Suppose f obeys (1.8), let τ > 0, µ ∈ M([−τ, 0]; R+) be a positive finite
Borel measure, with

M :=
∫

[−τ,0]
µ(ds), C :=

∫
[−τ,0]

|s|µ(ds),

F is defined by (1.5), and x is the unique continuous solution x of (1.1). Then

lim
t→∞

x(t) = +∞, lim
t→∞

F (x(t))
t

= M,

and moreover

lim
t→∞

x(t)
F−1(Mt)

= e−λC . (2.1)

The proof of this result, and others like it, consists of two main steps. The first
step is to show that x obeys

lim
t→∞

F (x(t))−Mt

log f(x(t))
= −C. (2.2)

Equation (2.2) is also true for solutions of the Volterra equation (1.2), even when
the first moment of the measure in that case is infinite. A key step in proving (2.2)
is to rewrite (1.1) in the form

x′(t) = Mf(x(t))−
∫

[−τ,0]
µ(ds){f(x(t))− f(x(t+ s))} =: Mf(x(t))− δ(t),

thereby viewing (1.1) as a perturbation of (1.7). Clearly, if the perturbed term δ
(which will be positive for large t, by the monotonicity of x and f) is small relative
to Mf(x(t)), we may expect x(t)/y(t) to tend to a finite limit. The first main task
is therefore to determine precise asymptotic information on δ.

Remarkably, in spite of the path dependence of x in δ, we show that δ(t) ∼
−C log f(x(t)) as t → ∞, and from this (2.2) readily follows. The second step in
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the proof of Theorem 2.1 can be found in Lemma 4.1 and involves viewing the limit
in (2.2) as a pair of asymptotic inequalities, from which the implicit asymptotic
information about x can be made explicit, as in (2.1).

We note that under these hypotheses we have f(x)/x → 0 as x → ∞. Since
f is ultimately increasing it must either have a finite limit or tend to infinity as
x→∞. In the former case, x′(t) tends to a finite limit, and (2.1) is trivially true.
Hence we assume, without loss of generality, in all the results and proofs below that
f(x)→∞ as x→∞.

We may take C > 0 in Theorem 2.1: the finiteness of the measure automatically
ensures that C is finite. If C = 0, it must follow that µ(ds) = Mδ0(ds) a.e. and
so (1.1) collapses to the ODE (1.7), rendering the result trivial. Therefore, it is
tacit in this result, and in subsequent theorems for Volterra equations, that the
first moment of µ, C, is positive. With this in mind, we now see that the solution
of (1.1) is exactly asymptotic to the solution of (1.7) when λ = 0, because in this
case

lim
t→∞

x(t)
F−1(Mt)

= 1.

However, a non–unit limit exists once λ is positive or infinite.
When λ = +∞, and C > 0, we should interpret (2.1) as

lim
t→∞

x(t)
F−1(Mt)

= 0.

This leads us to ask: can we still get direct asymptotic information about the slower
rate of growth of x in this case? The next result shows that we can, at the cost of
assuming f ′ is decreasing.

Theorem 2.2. Let f(x) > 0 for all x > 0, f ′(x) > 0 for all x > x1, f ′(x)→ 0 as
x→∞. Suppose f obeys (1.8), with λ = +∞, and f ′ is decreasing on [x2,∞). Let
τ > 0, µ ∈M([−τ, 0]; R+) be a positive finite Borel measure, with

M :=
∫

[−τ,0]
µ(ds), C :=

∫
[−τ,0]

|s|µ(ds) < +∞,

F is defined by (1.5), and x is the unique continuous solution x of (1.1). Then
there is a c ∈ C1((1,∞); R) with limt→∞ c(t) = C such that

x(t) = F−1
(
Mt− c(t) logF−1(Mt)

)
, t ≥ 1. (2.3)

The assumption that f ′ is decreasing is used for showing that log f(x(t)) ∼
log f(F−1(Mt)) as t → ∞ (using Lemma 8.2). Once this is achieved, (2.2) imme-
diately gives

lim
t→∞

−F (x(t))−Mt

logF−1(Mt)
= C,

because log f(x)/ log x→ 1 as x→∞ when λ = +∞. Defining c to be the function
in the last limit now gives (2.3). This approach could be used to prove all cases
in Theorem 2.1 directly, rather than by appealing to the implicit arguments used
in Lemma 4.1 (i.e., in the second step of the proof of Theorem 2.1). The direct
argument would then proceed by means of Lemma 8.3 and related results.

Given the asymptotic taxonomy established in Theorem 2.1, one might ask
whether the condition that f(x)/(x/ log x) → 0 as x → ∞ is necessary in or-
der to preserve the asymptotic behaviour of (1.7). The next result shows that it
is.
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Theorem 2.3. Let f(x) > 0 for all x > 0, f ′(x) > 0 for all x > x1, f ′(x) → 0
as x → ∞. Suppose in addition f ′ is decreasing on [x2,∞). Let τ > 0, µ ∈
M([−τ, 0]; R+) be a positive finite Borel measure, with

M :=
∫

[−τ,0]
µ(ds), C :=

∫
[−τ,0]

|s|µ(ds),

F is defined by (1.5), and x is the unique continuous solution x of (1.1). Then the
following are equivalent:

(a)

lim
x→∞

f(x)
x/ log x

= 0;

(b)

lim
t→∞

x(t)
F−1(Mt)

= 1.

The extra hypothesis that f ′ is monotone is needed to prove that (b) implies
(a): the proof that (a) implies (b) can still be established using the hypotheses of
Theorem 2.1.

We now state the result analogous to Theorem 2.1 for the solution of the Volterra
differential equation (1.2).

Theorem 2.4. Let f(x) > 0 for all x > 0, f ′(x) > 0 for all x > x1, f ′(x) → 0
as x → ∞. Suppose f obeys (1.8), µ ∈ M([0,∞); R+) is a positive finite Borel
measure, with

M :=
∫

[0,∞)

µ(ds), C :=
∫

[0,∞)

sµ(ds),

F is defined by (1.5), and x is the unique continuous solution x of (1.2).

(a) x obeys

lim
t→∞

x(t) = +∞, lim
t→∞

F (x(t))
t

= M.

(b) If C < +∞, then

lim
t→∞

x(t)
F−1(Mt)

= e−λC . (2.4)

(c) If C = +∞ and λ ∈ (0,∞] then (2.4) still prevails.

In the case when C is finite, we can prove a result for (1.2) exactly analo-
gous to Theorem 2.3 for (1.1), namely that x(t)/F−1(Mt) → 1 if and only if
f(x) log x/x → 0 as x → ∞, under the additional assumption that f ′(x) tends to
zero monotonically. Moreover, we also have a result for (1.2) which is an exact ana-
logue of Theorem 2.2 for (1.1), again assuming f ′(x) tends to zero monotonically.

In the functional differential equation (1.1), C is always finite. However, if µ is
a non–negative nontrivial finite measure in M([0,∞); R+), the first moment C can
be infinite. In this situation, if λ ∈ (0,∞), it can now happen that

lim
t→∞

x(t)
F−1(Mt)

= 0,
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which is in contrast to the finite memory case. Of course, if λ = +∞, it does not
matter whether C is finite or not, and we have

lim
t→∞

x(t)
F−1(Mt)

= 0,

which is the same as we see in the finite memory case.
It can therefore be seen that Theorem 2.4 addresses all cases except for that

when λ = 0, C =∞. Again, the different effect that unbounded memory can have
on the asymptotic behaviour is demonstrated: for (1.1), if λ = 0, it must follow
that

lim
t→∞

x(t)
F−1(Mt)

= 1.

However, this is not guaranteed to be the case for solutions of (1.2). The condition

lim sup
x→∞

f(x)
x

∫ x

1

1
f(u)

du < +∞ (2.5)

is nevertheless sufficient to ensure the existence of a unit limit in (2.4), and roughly
speaking, this condition is true for functions which grow more slowly that x1−ε for
some ε ∈ (0, 1) (more precisely it is true, if f ∈ RV∞(1 − ε) for some ε ∈ (0, 1)
or if x 7→ f(x)/x1−ε is asymptotic to a decreasing function) [4]. In the case that
f(x)/x→ 0 as x→∞, and f in RV∞(1), it is true that

lim
x→∞

f(x)
x

∫ x

1

1
f(u)

du = +∞, (2.6)

so the potential arises for a limit less than unity in (2.4) even when

lim
x→∞

f(x)
x/ log x

= 0

and C = +∞.
Our last result shows that different limits can indeed result in the case when

λ = 0, C = ∞, depending on how slowly
∫ t
0

∫
[s,∞)

µ(du) ds → ∞ as t → ∞. We
do not give a classification in all cases, but merely give sufficient conditions for
the limit in (2.4) to be zero or unity, and briefly show that some of our sufficient
conditions are also sometimes necessary. To simplify proofs, we assume here that
f is increasing on [0,∞).

Theorem 2.5. Let f(x) > 0 for all x > 0, f ′(x) > 0 for all x > 0, f ′(x) → 0 as
x → ∞. Suppose f obeys (1.8), and µ ∈ M([0,∞); R+) is a positive finite Borel
measure, F is given by (1.5), M :=

∫
[0,∞)

µ(ds) and let x be the unique continuous
solution x of (1.2).

(i) If

lim
x→∞

f(x)
x/ log x

∫
[0,F (x)/M ]

sµ(ds) = 0, (2.7)

lim
x→∞

f(x)
x

∫
[0,F (x)/M ]

∫
[s,∞)

µ(du) ds = 0, (2.8)

then

lim
t→∞

x(t)
F−1(Mt)

= 1. (2.9)
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(ii) If

lim
x→∞

f(x)
x

∫
[0,F (x)/M ]

∫
[s,∞)

µ(du) ds = +∞, (2.10)

then

lim
t→∞

x(t)
F−1(Mt)

= 0. (2.11)

(iii) If f ′ is decreasing on [x2,∞), then (2.9) implies (2.8).

We note that the condition (2.8) is a consequence of the condition (2.5), and if
(2.10) holds, then (2.5) cannot: indeed (2.10) implies (2.6).

We give some examples in the next section which illuminate the sufficient con-
ditions (2.7), (2.8), (2.10) under which we obtain unit or zero limits. However, it
can be seen that if the rate of growth of

t 7→
∫

[0,t]

∫
[s,∞)

µ(du) ds =: T (t)

to infinity as t → ∞ is faster, it is more likely that the solution of (1.2) will grow
strictly more slowly than that of (1.7), and the slower that T grows, and the faster
that

x 7→ f(x)
x/ log x

tends to zero as x→∞, the more likely it is that the solution of (1.2) will inherit
exactly the rate of growth of the solution of (1.7).

We do not attempt to improve the sufficient conditions in Theorem 2.5 here.
As the discussion above suggests, when f grows more slowly than a function in
RV∞(1), a unit limit in (2.4) is usually admitted. However, when f is in RV∞(1)
with λ = 0, it is interesting to speculate how close (2.7) is to being necessary in
order to obtain a unit limit in (2.4) (part (iii) confirms that (2.8) is necessary if f
is ultimately concave).

Theorem 2.6. Let f ′(x) > 0 for all x > 0 and f ′(x) → 0 as x → ∞ with f ′

decreasing. Suppose that f ∈ RV∞(1) such that

lim
x→∞

xf ′(x)
f(x)

= 1.

Let µ ∈ M([0,∞); R+) be a positive finite Borel measure, F is given by (1.5),
M :=

∫
[0,∞)

µ(ds) and let x be the unique continuous solution x of (1.2). Define

K(x) =
∫ x

1

{f(v)
v

∫
[F (x)/M−F (v)/M,F (x)/M ]

µ(ds)
}
dv. (2.12)

If x obeys (2.9), then (2.8) and

lim
x→∞

f(x)
x

∫ x

1

K(u)
1

f2(u)
du = 0, (2.13)

hold.

We have not made extensive use of the theory of regular variation in this paper,
even in Theorem 2.6. However, it seems that extracting good asymptotic informa-
tion along the lines needed to prove a converse of Theorem 2.6 may make greater
requests on this theory. The literature regarding the application of the theory of
regular variation to the asymptotic behaviour of ordinary and functional differential
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equations is extensive and growing (see for example the monographs of Marić [22]
and Řehák [29] and recent representative papers such as [10, 23, 24, 31]). Regular
variation has also been successfully utilised in the analysis of problems in partial
differential equations (see, for example, [11] and [28]).

3. Examples

Example 3.1. A simple example of a function f which obeys the hypotheses of
all theorems is now given. We use it throughout this section to illustrate the scope
of our general results. Let g(x) = (x+ 1)/ logθ(2 + x), for θ > 0. Clearly g(x) > 0
for x > 0 and

g′(x) =
1

logθ(2 + x)

(
1− (1 + x)θ

(2 + x) log(2 + x)

)
> 0, x > eθ − 2 =: s1(θ) > 0.

It is easy to see that g′(x)→ 0 as x→∞. Moreover,

g′′(x) =
θ log−(θ+2)(x+ 2){(θ + 1)(x+ 1)− (x+ 3) log(x+ 2)}

(x+ 2)2
.

Since x+3 > x+1, by considering the term in the curly brackets, we have g′′(x) < 0
for all x > eθ+1 − 2 =: s(θ) > s1(θ). Now, define f(x) = g(x + s(θ)) for x ≥ 0.
Then by the definition of g, we see that f(x) > 0 for all x ≥ 0, f ′(x) > 0 for all
x > 0 and f ′′(x) < 0 for all x > 0. This function f fulfills the hypotheses of all
main results, but notice that taking f = g still suffices for all results in which we
only require f ′(x) > 0 for x sufficiently large.

By construction, λ in (1.8) is 0, 1, or +∞ according to whether θ is greater than,
equal to, or less than, unity. Computing F simply involves making a substitution
and splitting the resulting integral; doing so yields the formula

F (x) =
1

1 + θ
logθ+1

(
x+ eθ+1

)
− 1

1 + θ
logθ+1

(
1 + eθ+1

)
+
∫ log(x+eθ+1)

log(1+eθ+1)

wθ

ew − 1
dw, x > 1.

From here it is straightforward to show that

F (x) ∼ 1
1 + θ

logθ+1(x), F−1(x) ∼ exp
(
(θ + 1)

1
θ+1x

1
θ+1
)
, as x→∞.

Using the notation for M and C in Theorem 2.1, the solution of (1.1) obeys

x(t) ∼


o
(

exp
(
(θ + 1)

1
θ+1 (Mt)

1
θ+1
))
, θ < 1,

e−C exp
(
(θ + 1)

1
θ+1 (Mt)

1
θ+1
)
, θ = 1,

exp
(
(θ + 1)

1
θ+1 (Mt)

1
θ+1
)
, θ > 1,

as t → ∞. Naturally, one can obtain the same asymptotic representation for the
solution of (1.2) by Theorem 2.4 in the case where C =

∫
[0,∞)

sµ(ds) is finite.

Example 3.2. In this example, we show, in many cases of interest, that (2.7)
implies (2.8). We can see, roughly, that a claim of this type would follow from
information about the relative asymptotic behaviour of

t 7→
∫

[0,t]

uµ(du) and t 7→ t

∫
[t,∞)

µ(du) as t→∞
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because, for any t ≥ 0, we have∫ t

0

∫
[s,∞)

µ(du) ds =
∫

[0,t]

uµ(du) + t

∫
[t,∞)

µ(du). (3.1)

We specialise to the case when µ ∈ M([0,∞); R+) is absolutely continuous and
therefore we have µ(ds) = k(s) ds where k is continuous, non-negative and inte-
grable. Hence for every Borel set E ⊂ [0,∞) we have

µ(E) =
∫
E

k(s) ds.

Now suppose further that k ∈ RV∞(−α). Then integrability forces α ≥ 1. Also, if
α > 2, it follows that

C =
∫

[0,∞)

sµ(ds) =
∫ ∞

0

∫
[t,∞)

µ(ds) dt < +∞,

so to be of interest in Theorem 2.5, it is necessary for α ∈ [1, 2].
In the case α ∈ (1, 2), we have by Karamata’s theorem (see e.g. [8, Theorem

1.5.11])

t

∫
[t,∞)

µ(ds) ∼ 1
α− 1

t2k(t),
∫

[0,t]

sµ(ds) ∼ 1
2− α

t2k(t), as t→∞.

Hence by (3.1),∫ t

0

∫
[s,∞)

µ(du) ds ∼
(

1 +
2− α
α− 1

)∫
[0,t]

sµ(ds), as t→∞. (3.2)

Therefore, for α ∈ (1, 2), if (2.7) holds, then so does (2.8). Karamata’s theorem
applied to t 7→

∫
[0,t]

sµ(ds) also shows that this implication is true if α = 2 and
C = +∞.

Example 3.3. Let f be as in Example 3.1. Suppose that θ > 1 and note that
f ∈ RV∞(1), so

lim
x→∞

f(x)F (x)
x

=∞

and λ = 0 in (1.8). Therefore, in order to check whether x(t)/F−1(Mt) tends
to a non-unit limit, it is necessary to appeal to Theorem 2.5 in the case when
C = +∞. We saw in Example 3.2 that choosing µ to be absolutely continuous
with µ(ds) = k(s) ds and k ∈ RV∞(−α) for α ∈ [1, 2] allows us to consider the case
when C = +∞. Therefore, let k ∈ RV∞(−α) for α ∈ [1, 2].

We now show, using Theorem 2.5, that

α ∈
(
1 +

2
1 + θ

, 2
]

implies lim
t→∞

x(t)
F−1(Mt)

= 1 (3.3)

while

α ∈
[
1, 1 +

1
1 + θ

)
implies lim

t→∞

x(t)
F−1(Mt)

= 0 (3.4)

in the case that k ∈ L1(0,∞).
Therefore, the slower that f grows, the larger is θ, and the greater the range

of α for which (3.3) holds: hence, less rapid growth in f makes it easier for the
asymptotic behaviour of (1.7) to be preserved by the solution of (1.2). On the
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other hand, as θ ↓ 1, the range of values of α for which (3.3) holds narrows, and
indeed collapses to the singleton α ∈ {2}.

Viewing θ as fixed, we see that the larger the value of α, and the more rapidly the
memory of the past fades, the more likely it is that (3.3) holds, and the asymptotic
behaviour of (1.7) to be preserved by the solution of (1.2). Turning to (3.4), similar
considerations connect the relative strength of the nonlinearity and the rapidity at
which the memory fades, leading to growth in x which is slower than that in the
solution of (1.7).

We prove the claims (3.3) and (3.4). With F defined by (1.5), we have

F (x) ∼ 1
θ + 1

(log x)1+θ,
f(x)

x/ log x
∼ (log x)1−θ, as x→∞. (3.5)

By Karamata’s theorem,

t 7→
∫

[0,t]

sµ(ds) ∈ RV∞(2− α), t 7→
∫

[t,∞)

µ(ds) ∈ RV∞(1− α). (3.6)

Hence by (3.6) and (3.5), as x→∞,∫
[0,F (x)/M ]

sµ(ds) ∼
∫ 1

M(θ+1) log1+θ x

0

sk(s) ds ∼
( 1
M(θ + 1)

)2−α ∫ log1+θ x

0

sk(s) ds,

so (2.7) is equivalent to

lim
x→∞

(log x)1−θ
∫ log1+θ x

0

sk(s) ds = 0.

This in turn is equivalent to

lim
t→∞

t
1−θ
1+θ

∫ t

0

sk(s) ds = 0. (3.7)

Therefore, by the last example and Theorem 2.5, for α ∈ (1, 2), (3.7) implies
x(t)/F−1(Mt) → 1 as t → ∞. By Karamata’s theorem, the function in the limit
in (3.7) is in RV∞((1− θ)/(1 + θ) + 2− α), and the index is negative for the range
of α ∈ (1, 2) stated in (3.3). When α = 2, (2.7) is still equivalent to (3.7), and the
index of regular variation is negative because θ > 1. Hence we have shown (3.3).

We now prove (3.4). By (3.6) and (3.5), as x→∞∫
[F (x)/M,∞)

µ(ds) ∼
∫ ∞

1
M(θ+1) log1+θ x

k(s) ds ∼
( 1
M(θ + 1)

)1−α ∫ ∞
log1+θ x

k(s) ds

and
F (x)
M

∫
[F (x)/M,∞)

µ(du) ∼ (log x)1+θ
( 1
M(θ + 1)

)2−α ∫ ∞
log1+θ x

k(s) ds.

Therefore by (3.1), (2.10) is equivalent to

min
(

log x ·
∫ ∞

log1+θ x

k(s) ds,
1

logθ x

∫ log1+θ x

0

sk(s) ds
)
→ +∞, x→∞.

Hence (2.10) is equivalent to

min
(
t1/(1+θ) ·

∫ ∞
t

k(s) ds, t−
θ

1+θ

∫ t

0

sk(s) ds
)
→ +∞ as t→∞, (3.8)



12 J. A. D. APPLEBY, D. D. PATTERSON EJDE-2017/21

and this implies x(t)/F−1(Mt)→ 0 as t→∞. Both functions in the minimum are
in RV∞(1/(1 + θ)− α + 1). Therefore, if α is in the interval specified in (3.4), we
have that the index of regular variation is positive, and therefore (3.8) holds. This
proves the required asymptotic behaviour in (3.4).

Example 3.4. We now present a simple application of Theorem 2.2 again with f
as in Example 3.1. Since Theorem 2.2 deals with the case when λ = ∞ we must
have θ ∈ (0, 1). We have shown already that f obeys both 0 < f ′(x)→ 0 as x→∞
and f decreasing on [x2,∞) for some x2 > 0. Hence the unique continuous solution,
x, of (1.1) obeys

x(t) ∼ F−1
(
Mt− c(t) logF−1(Mt)

)
∼ exp

(
(θ + 1)

1
1+θ
[
Mt− c(t)(Mt)

1
1+θ
] 1

1+θ
)
, as t→∞,

where limt→∞ c(t) = C(1 + θ)1/(1+θ). It is instructive to rewrite the above expres-
sion in the form

x(t) ∼ exp
(

(θ + 1)
1

1+θ [(Mt)1/(1+θ) − c̃(t)(Mt)(1−θ)/(1+θ)]
)

= y(t) exp
(
− (θ + 1)

1
1+θ c̃(t)(Mt)(1−θ)/(1+θ)

)
, as t→∞,

(3.9)

where a simple application of the mean value theorem shows that

c̃(t) ∼ C {(θ + 1)}−1/(1+θ)

and y(t) is the solution to (1.7) with unit initial condition. Restating the conclusion
of Theorem 2.2 in the form (3.9) shows explicitly that the solution of (1.1) is
asymptotic to the solution of (1.7) times a retarding factor which tends to zero as
t → ∞. Notice that the main term in the exponent in the retarding factor is of
the order t(1−θ)/(1+θ); from Example 3.1, the corresponding growth term in y is
of the order t1/(1+θ). Since θ ∈ (0, 1) the solution x still grows, at a rate roughly
described by exp(Ktθ/(1+θ)).

4. An implicit asymptotic relation

We state and prove two key lemmata which enable direct asymptotic information
to be obtained for solutions of (1.1) and (1.2) from the indirect asymptotic relation

lim
t→∞

F (x(t))−Mt

log f(x(t))
= −C. (4.1)

In the first result, C is finite: in the second, C = +∞.

Lemma 4.1. Let M > 0, C ∈ (0,∞). Suppose x(t) → ∞ as t → ∞ is such that
(4.1) holds with C ∈ [0,∞) and f is increasing on [x1,∞) and obeys (1.8) with
λ ∈ [0,∞]. If x also obeys

lim sup
t→∞

x(t)
F−1(Mt)

≤ 1, (4.2)

then

lim
t→∞

x(t)
F−1(Mt)

= e−λC .



EJDE-2017/21 HARTMAN-WINTNER GROWTH RATES OF SUBLINEAR FDES 13

Proof. We consider separately the cases where λ ∈ (0,∞), λ = 0 and λ = +∞.
Case I: λ = 0. In this case we have

lim sup
x→∞

log f(x)
log x

≤ 1.

Therefore by (4.1)

lim sup
t→∞

Mt− F (x(t))
log x(t)

= lim sup
t→∞

Mt− F (x(t))
log f(x(t))

· log f(x(t))
log x(t)

≤ C.

Hence

L0 := lim inf
t→∞

F (x(t))−Mt

log x(t)
≥ −C. (4.3)

Thus, for every ε > 0, there is T3 > 0 such that for t ≥ T3 we have (F (x(t)) −
Mt)/ log x(t) > −C − 1 = −(C + 1). Hence with 3µ∗/4 := C + 1 > 0 we have

F (x(t)) +
3
4
µ∗ log x(t) > Mt, t ≥ T3. (4.4)

Recall the estimate (4.2). Suppose, in contradiction to the conclusion when λ = 0,
that

lim inf
t→∞

x(t)
F−1(Mt)

= Λ ∈ [0, 1). (4.5)

Since Λ ∈ [0, 1), there is ε0 > 0 such that

Λ + ε < e−εµ
∗
, ε < ε0.

Define ϕ(ε) = e−εµ
∗
. By (4.5), if Λ ∈ [0, 1), for all ε ∈ (0, ε0) there is a sequence

τ εn ↑ ∞ as n→∞ such that

x(τ εn) < (Λ + ε)F−1(Mτ εn) < ϕ(ε)F−1(Mτ εn) =: vεn.

Since τ εn ↑ ∞, it follows that there is N1 ∈ N such that τ εn > T4 for all n > N1.
Hence for n > N1 we have from (4.4)

F (x(τ εn)) +
3
4
µ∗ log x(τ εn) > Mτ εn.

Now x(τ εn) < vεn. Hence for n > N1

Mτ εn < F (x(τ εn)) +
3
4
µ∗ log x(τ εn) < F (vεn) +

3
4
µ∗ log vεn.

Since Mτ εn = F (vεn/ϕ(ε)), so

F (vεn/ϕ(ε)) < F (vεn) +
3
4
µ∗ log vεn, n > N1. (4.6)

We wish to show that (4.6) is impossible. If we can show that

There is x3(ε) > 0 such that F (x/ϕ(ε))−F (x)− 3
4
µ∗ log x > 0, x > x3(ε), (4.7)

we may take vεn > x3(ε) (which will be true for all n > N2(ε)), so that for n >
N3 = max(N1, N2) we have

F (vεn/ϕ(ε))− F (vεn)− 3
4
µ∗ log vεn > 0 > F (vεn/ϕ(ε))− F (vεn)− 3

4
µ∗ log vεn,

where we used (4.7) to get the first inequality, and (4.6) to get the second. This
generates the required contradiction. Therefore, it suffices to prove (4.7).



14 J. A. D. APPLEBY, D. D. PATTERSON EJDE-2017/21

Since f(x) = o(x/ log x), for every ε ∈ (0, ε0) there is an x3(ε) > 0 such that
f(x) < εx/ log x for x ≥ x3(ε). Thus for x ≥ x3(ε) we obtain∫ x/ϕ(ε)

x

1
f(u)

du ≥ 1
ε

∫ x/ϕ(ε)

x

log u
u

du ≥ log x
ε

∫ x/ϕ(ε)

x

1
u
du.

Hence for x ≥ x3(ε), from the fact ϕ(ε) = e−µ
∗ε, we obtain that

1
log x

∫ x/ϕ(ε)

x

1
f(u)

du ≥ 1
ε

(log(x/ϕ(ε))− log(x)) =
1
ε

log
(

1
ϕ(ε)

)
= µ∗.

Since

F (x/ϕ(ε))− F (x)− 3
4
µ∗ log x = log x

( 1
log x

∫ x/ϕ(ε)

x

1
f(u)

du− 3
4
µ∗
)
,

for x ≥ x3(ε) we have

F (x/ϕ(ε))− F (x)− 3
4
µ∗ log x ≥ log x

µ∗

4
> 0.

This is (4.7). Hence, in contradiction to (4.5) we have

lim inf
t→∞

x(t)
F−1(Mt)

≥ 1.

Combining this with (4.2) we obtain

lim
t→∞

x(t)
F−1(Mt)

= 1 = e−λC ,

because λ = 0. We have therefore proven the result in the case λ = 0.
Case II: λ ∈ (0,∞). In this case, we have that

lim
x→∞

log f(x)
log x

= 1.

Therefore, from (4.1), we obtain

lim
t→∞

F (x(t))−Mt

log x(t)
= −C,

and so, for every ε ∈ (0, 1) there is a T3(ε) > 0 such that

− C(1 + ε) log x(t) < F (x(t))−Mt < −C(1− ε) log x(t), t ≥ T3(ε). (4.8)

By (4.2), we have Λ̄ := lim supt→∞ x(t)/F−1(Mt) ≤ 1. Suppose that

e−λC < Λ̄ ≤ 1. (4.9)

Since Λ̄ > e−λC there is ε0 < 1/2 such that

e3Cελ <
Λ̄

e−λC
, ε < ε0. (4.10)

By (4.9), for every ε ∈ (0, ε0 ∧ 1/2), there is a sequence tεn ↑ ∞ such that

x(tεn) > Λ̄e−εCλF−1(Mtεn),

so by (4.10), x(tεn) > e−Cλe2εCλF−1(Mtεn). Put ϕ(ε) = e2Cλε. Since tεn ↑ ∞, it
follows that there is N1(ε) ∈ N such that tεN1

> T3(ε). Thus tεn > T3(ε) for all n ≥
N1(ε). Define uεn = e−λCϕ(ε)F−1(Mtεn). Then x(tεn) > uεn and F (eλCuεn/ϕ(ε)) =
Mtεn. We see also that uεn →∞ as n→∞.
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Next, as f(x) ∼ λx/ log x as x→∞, we can show that

lim
x→∞

1
x/f(x)

∫ x

xeλC/ϕ(ε)

1
f(u)

du = − log
( eλC
ϕ(ε)

)
= −λC + 2ελC.

Therefore

lim
x→∞

{ 1
log x

∫ x

xeλC/ϕ(ε)

1
f(u)

du+ C(1− ε)
}

= Cε.

Thus for every η ∈ (0, 1/2) there is x̃3(η, ε) > 0 such that x > x̃3(η, ε) implies

C(1− ε) +
1

log x

∫ x

xeλC/ϕ(ε)

1
f(u)

du > Cε(1− η).

Put η = 1/4 and let x3(ε) = x̃3(1/4, ε). Then for x > x3(ε) we have

C(1− ε) +
1

log x

∫ x

xeλC/ϕ(ε)

1
f(u)

du > Cε
3
4
> 0.

Next, as uεn → ∞ as n → ∞, there is N2(ε) ∈ N such that uεn > x3(ε) > 1 for all
n ≥ N2(ε). Let N3(ε) = max(N1, N2). Then for n ≥ N3(ε) we have

C(1− ε) +
1

log uεn

∫ uεn

uεne
λC/ϕ(ε)

1
f(u)

du > 0. (4.11)

Since tεn > T3(ε) for all n ≥ N3(ε), x(tεn) > e−λCϕ(ε)F−1(Mtεn), and so x(tεn) > uεn.
By (4.8), as tεn > T3(ε) and F and x 7→ log(x) are increasing, we have

0 > F (x(tεn))−Mtεn + C(1− ε) log x(tεn)

> F (uεn)−Mtεn + C(1− ε) log uεn
= F (uεn)− F (eλcuεn/ϕ(ε)) + C(1− ε) log uεn

=
∫ uεn

uεne
λC/ϕ(ε)

1
f(u)

du+ C(1− ε) log uεn

= log uεn
{
C(1− ε) +

1
log uεn

∫ uεn

uεne
λC/ϕ(ε)

1
f(u)

du
}
> 0,

where we used (4.11) at the last step. This gives the desired contradiction to (4.9).
Hence we must have

lim sup
t→∞

x(t)
F−1(Mt)

≤ e−λC . (4.12)

Next we suppose that

lim inf
t→∞

x(t)
F−1(Mt)

=: Λ < e−λC . (4.13)

Recall from (4.8) that

F (x(t))−Mt+ C(1 + ε) log x(t) > 0, t > T3(ε).

Let ϕ2(ε) = e−2εCλ. Since Λ < e−λC and ϕ2(ε) → 1 as ε → 0+, there is ε1 < 1/2
such that ε < ε1 implies Λ + ε < e−λCϕ2(ε). By (4.13), it follows that there is
τ εn ↑ ∞ such that

x(τ εn) < (Λ + ε)F−1(Mτ εn) < e−λCϕ2(ε)F−1(Mτ εn)
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Since τ εn → ∞ as n → ∞, there is an N4(ε) ∈ N such that τ εn > T3(ε) for all n ≥
N4(ε). Define vεn = e−λCϕ2(ε)F−1(Mτ εn), so x(τ εn) > vεn and F (eλCvεn/ϕ2(ε)) =
Mτ εn. Next, vεn →∞ as n→∞ and we obtain as before

lim
x→∞

1
x/f(x)

∫ x

xeλC/ϕ2(ε)

1
f(u)

du = −λC + logϕ2(ε).

Thus, as f(x)/(x/ log x)→ λ as x→∞, and logϕ2(ε) = −2Cλε, we obtain

lim
x→∞

{ 1
log x

∫ x

xeλC/ϕ2(ε)

1
f(u)

du+ C(1 + ε)
}

= −Cε.

Therefore, for every η ∈ (0, 1/2) there exists x̃4(η, ε) > 0 such that x > x̃4(η, ε)
implies

C(1 + ε) +
1

log x

∫ x

xeλC/ϕ2(ε)

1
f(u)

du < −Cε+ Cεη.

Put η = 1/4, and let x4(ε) = x̃4(1/4, ε). Then for x > x4(ε)

C(1 + ε) +
1

log x

∫ x

xeλC/ϕ2(ε)

1
f(u)

du < −3
4
Cε < 0.

Since vεn → ∞ as n → ∞, there is N5(ε) ∈ N such that vεn > x4(ε) > 1 for all
n ≥ N5(ε). Let N6(ε) = max(N4(ε), N5(ε)). Then for n ≥ N6(ε) we have

C(1 + ε) +
1

log vεn

∫ vεn

vεne
λC/ϕ2(ε)

1
f(u)

du < 0. (4.14)

Since τ εn > T3(ε) for all n ≥ N6(ε), x(τ εn) > vεn, and F and x 7→ log x are increasing,
by (4.8) we have

0 < F (x(τ εn))−Mτ εn + C(1 + ε) log x(τ εn)

< F (vεn)−Mτ εn + C(1 + ε) log vεn
= F (vεn)− F (eλCvεn/ϕ2(ε)) + C(1 + ε) log vεn

=
∫ vεn

vεne
λC/ϕ2(ε)

1
f(u)

+ C(1 + ε) log vεn

= log vεn
{ 1

log vεn

∫ vεn

vεne
λC/ϕ2(ε)

1
f(u)

+ C(1 + ε)
}
< 0,

by (4.14), a contradiction. Hence the supposition (4.13) is false. Thus

lim inf
t→∞

x(t)
F−1(Mt)

≥ e−λC .

Combining this and (4.12) gives

lim
t→∞

x(t)
F−1(Mt)

= e−λC , (4.15)

as desired. This completes the proof when λ ∈ (0,∞).
Case III: λ = +∞. In this case, we have that f(x)/x → 0 as x → ∞ and
f(x)/(x/ log x)→∞ as x→∞, so therefore log f(x)/ log x→ 1 as x→∞. Hence,
from (4.1), we obtain

lim
t→∞

F (x(t))−Mt

log x(t)
= −C,
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and so, for every ε ∈ (0, 1/2) there is a T3(ε) > 0 such that (4.8) holds, i.e.,

−C(1 + ε) log x(t) < F (x(t))−Mt < −C(1− ε) log x(t), t ≥ T3(ε).

Recall the estimate (4.2). Suppose, in contradiction to the conclusion when λ =
+∞, that

lim inf
t→∞

x(t)
F−1(Mt)

= Λ̄ ∈ (0, 1]. (4.16)

There is a sequence tεn ↑ ∞ as n→∞ such that

x(tεn) > Λ̄(1− ε)F−1(Mtεn) > K(ε)F−1(Mtεn) =: uεn,

where K(ε) ∈ (0, Λ̄(1− ε)) ⊂ (0, 1). Since tεn ↑ ∞, it follows that there is N1(ε) ∈ N
such that tεn > T3(ε) for all n ≥ N1(ε). Hence for n ≥ N1(ε) we have

F (x(tεn))−Mtεn < −C(1− ε) log x(tεn). (4.17)

Since K(ε) < 1 and f is increasing, we have

1
log x

∫ x/K(ε)

x

1
f(u)

du < (K(ε)−1 − 1)
x

f(x) log x
.

Since f(x)/(x/ log x)→∞ as x→∞, letting x→∞ gives

lim
x→∞

1
log x

∫ x/K(ε)

x

1
f(u)

du = 0.

Therefore, for every η ∈ (0, 1/2), there is x̃5(η, ε) such that x > x̃5(η, ε) implies

1
log x

∫ x/K(ε)

x

1
f(u)

du < Cη.

Pick η = ε, and set x5(ε) = x̃5(ε, ε). Then for x ≥ x5(ε) we have

1
log x

∫ x/K(ε)

x

1
f(u)

du < Cε.

Since un → ∞ as n → ∞, there is N2(ε) ∈ N such that for n ≥ N2(ε) we have
uεn > x5(ε). Hence

1
log uεn

∫ uεn/K(ε)

uεn

1
f(u)

du < Cε, n ≥ N2(ε). (4.18)

Finally, let N3(ε) = max(N1(ε), N2(ε)). Since uεn < x(tεn), we have F (uεn) <
F (x(tεn)) and log uεn < log x(tεn). Therefore by (4.17) and (4.18)

0 > F (x(tεn)) + C(1− ε) log x(tεn)−Mtεn

> F (uεn) + C(1− ε) log uεn −Mtεn

= F (uεn) + C(1− ε) log uεn − F (uεn/K(ε))

= C(1− ε) log uεn −
∫ uεn/K(ε)

uεn

1
f(u)

du

= log uεn
{
C(1− ε)− 1

log uεn

∫ uεn/K(ε)

uεn

1
f(u)

du
}

> log uεn(C(1− ε)− Cε)
= log uεnC(1− 2ε) > 0,
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a contradiction. Hence the supposition (4.16) is false, and we have x(t)/F−1(Mt)→
0 as t→∞ as claimed. �

For the Volterra equation (1.2), we will need a new variant of Lemma 4.1 to
cover the case when ∫

[0,∞)

sµ(ds) = +∞.

Lemma 4.2. Let M > 0. Suppose x(t)→∞ as t→∞ is such that

lim
t→∞

F (x(t))−Mt

log x(t)
= −∞. (4.19)

Suppose also f is increasing and obeys (1.8) with λ ∈ (0,∞] and f ′(x) → 0 as
x→∞. If x also obeys (4.2) then

lim
t→∞

x(t)
F−1(Mt)

= 0.

Proof. From (4.19), we are free to prepare the estimate: For every ε ∈ (0, 1) there
is T3(ε) > 0 such that

F (x(t)) +
2
ε

log x(t)−Mt < 0, t ≥ T3(ε) (4.20)

for later use. We now proceed to derive the result that x(t)/F−1(Mt) → 0 as
t→∞ by emulating the proof of Lemma 4.1. Suppose not. Then, in view of (4.2),
we have

lim sup
t→∞

x(t)
F−1(Mt)

=: Λ̄ ∈ (0, 1]. (4.21)

Then there is a sequence tn ↑ ∞ as n→∞ such that x(tεn) > Λ̄(1− ε)F−1(Mtεn) >
K(ε)F−1(Mtεn) where K(ε) ∈ (0, Λ̄(1− ε)) ⊂ (0, 1). Since tεn ↑ ∞ as n→∞, there
is N1(ε) ∈ N such that tεn > T3(ε) for all n ≥ N1(ε). Define uεn = K(ε)F−1(Mtεn).
Then x(tεn) > uεn and F (uεn/K(ε)) = Mtεn. Moreover uεn → ∞ as n → ∞. If
λ = +∞, take K(ε) = Λ̄(1 − ε)/2, while if λ ∈ (0,∞), take K(ε) = e−λ(1/ε−1).
There is ε0 ∈ (0, 1) such that e−λ(1/ε−1) < Λ̄(1− ε) for all ε < ε0 ∧ 1.

In the case that λ ∈ (0,∞), it is a direct calculation to show that

lim
x→∞

1
log x

∫ x/K(ε)

x

1
f(u)

du =
1
λ

log
( 1
K(ε)

)
. (4.22)

If λ = +∞, since f is increasing on [x1,∞), for x > x1 we have

0 <
1

log x

∫ x/K(ε)

x

1
f(u)

du ≤
( 1
K(ε)

− 1
)x/ log x

f(x)
,

so as (x/ log x)/f(x)→ 0 as x→∞, we obtain

lim
x→∞

1
log x

∫ x/K(ε)

x

1
f(u)

du = 0.

Hence combining this estimate with (4.22) we obtain

lim
x→∞

1
log x

∫ x/K(ε)

x

1
f(u)

du =

{
− 1
λ logK(ε), λ ∈ (0,∞),

0, λ = +∞
(4.23)
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We seek to obtain a consolidated estimate covering these cases. Let ε ∈ (0, ε0 ∧ 1).
When λ = +∞, it is clear that there is x3(ε) > 1 such that∫ x/K(ε)

x

1
f(u)

du < log x <
2
ε

log x, x ≥ x3(ε).

For λ ∈ (0,∞), there is x3(ε) > 1 such that for x ≥ x3(ε) we have∫ x/K(ε)

x

1
f(u)

du <
(

1− 1
λ

logK(ε)
)

log x =
1
ε

log x,

where we used the definition of K(ε) to obtain the last equality. Therefore we see
for every ε < ε0 ∧ 1 that there is x3(ε) > 1 such that∫ x/K(ε)

x

1
f(u)

du <
2
ε

log x, x ≥ x3(ε), (4.24)

regardless as to whether λ ∈ (0,∞]. Therefore this implies for x ≥ x3(ε) that

F (x/K(ε))− F (x)− 2
ε

log x =
∫ x/K(ε)

x

1
f(u)

du− 2
ε

log x < 0.

Therefore as uεn → ∞ as n → ∞, there is N2(ε) ∈ N such that for n ≥ N2(ε) we
have uεn > x3(ε). Thus with n ≥ N3(ε) := max(N1(ε), N2(ε)) we have

F (uεn/K(ε))− F (uεn)− 2
ε

log uεn < 0. (4.25)

On the other hand, as n ≥ N3(ε) ≥ N1(ε) and tεn > T3(ε) for n ≥ N1(ε), we have
from (4.20) that

F (x(tεn))−Mtεn +
2
ε

log x(tεn) < 0. (4.26)

Therefore for n ≥ N3(ε), since F (uεn/K(ε)) = Mtεn and x(tεn) > uεn we obtain from
(4.25) and (4.26) that

0 > F (x(tεn))−Mtεn +
2
ε

log x(tεn)

= −F (uεn/K(ε)) + F (x(tεn)) +
2
ε

log x(tεn)

> −F (uεn/K(ε)) + F (uεn) +
2
ε

log uεn > 0,

which is a contradiction, and the monotonicity of x 7→ F (x) + ε−1 log x was used
at the penultimate step. This implies that (4.21) is false, so we must have that
lim supt→∞ x(t)/F−1(Mt) = 0, as claimed. �

5. Proof of Theorem 2.1

Our hypotheses on ψ and the positivity of f immediately yield that x(t)→∞ as
t→∞. Thus there exists T1 such that x(t) > x1 for all t ≥ T1. Letting t > T1 + τ ,
and noting that t 7→ x(t) is increasing on [0,∞) we have

0 < x′(t) =
∫

[−τ,0]
µ(ds)f(x(t+s)) ≤

∫
[−τ,0]

µ(ds)f(x(t)) ≤Mf(x(t)), t > T1 +τ.
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This means that x′(t)/x(t) → 0 as t → ∞. Notice also that integration of the
inequality x′(s)/f(x(s)) ≤ M for s ∈ [T1 + τ, t) yields F (x(t)) − F (x(T1 + τ)) ≤
M(t− (T1 + τ)) for t ≥ τ , from which the elementary estimate

lim sup
t→∞

x(t)
F−1(Mt)

≤ 1 (5.1)

results. In deducing (5.1), we have used the fact that the sublinearity of f implies
that F−1(y + c)/F−1(y)→ 1 as y →∞ for any c ∈ R.

Furthermore, for t > T1 + τ , f(x(t + s)) ≥ f(x(t − τ)) for s ∈ [−τ, 0]. Thus
x′(t) ≥ Mf(x(t − τ)), t > T1 + τ . Applying the Mean Value Theorem to the
continuous function f ◦ x for each t > T1 + τ there exists θt ∈ [0, τ ] such that
f(x(t)) = f(x(t − τ)) + f ′(x(t − θt))τ . Combining this identity with the fact that
f ′(x) → 0 as t → ∞, we see that f(x(t − τ))/f(x(t)) → 1 as t → ∞. Hence
limt→∞ x′(t)/f(x(t)) = M . Now for every ε ∈ (0, 1/2) there exists T2(ε) > 0 such
that

M(1− ε) < x′(t)
f(x(t))

≤M, for all t > T2(ε).

Define next

M̃(x) :=
∫

[−τ,−x]
µ(ds), x ∈ [0, τ ],

δ(t) :=
∫

[−τ,0]
µ(ds){f(x(t))− f(x(t+ s))}, t ≥ 0

For t ≥ τ , we have

δ(t) =
∫ t

t−τ
M̃(t− s)f ′(x(s))x′(s) ds, t ≥ τ.

Therefore, if we take T3(ε) = max(T1 + τ, T2(ε)) we have

δ(t) <
∫ t

t−τ
M̃(t− s)f ′(x(s))Mf(x(s)) ds ≤

∫ t

t−τ
M̃(t− s)f ′(x(s)) dsMf(x(t))

and

δ(t) >
∫ t

t−τ
M̃(t− s)f ′(x(s))M(1− ε)f(x(s)) ds

≥
∫ t

t−τ
M̃(t− s)f ′(x(s)) ds ·M(1− ε)f(x(t− τ).

Since f(x(t−τ))/f(x(t))→ 1 as t→∞, taking the limit superior and limit inferior
as t → ∞, and then letting ε → 0+ we obtain I1(t)/I(t) → 1 as t → ∞, where we
have defined

I1(t) =
δ(t)

f(x(t))M
, I(t) =

∫ t

t−τ
M̃(t− s)f ′(x(s)) ds.

With this notation,
1
M

x′(t)
f(x(t))

= 1− I1(t). (5.2)

We also define J and J1 by

J(t) = M

∫ t

T (ε)

I(s) ds, J1(t) = M

∫ t

T (ε)

I1(s) ds, t ≥ T (ε), (5.3)
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Next, for every ε ∈ (0, 1/2) define T (ε) > T1 + τ such that for t ≥ T (ε)

M(1− ε) < x′(t)
f(x(t))

≤M, f(x(t− τ)) > (1− ε)f(x(t))

Integration of (5.2) over [T (ε), t], and using (5.3) yields

F (x(t))−Mt = F (x(T (ε)))−MT (ε)− J1(t), t ≥ T (ε). (5.4)

Next, set

J∗ = M

∫ T (ε)

T (ε)−τ

(∫ u+τ

T (ε)∨u
M̃(s− u) ds

)
f ′(x(u)) du.

We will now prove for t ≥ T (ε) + τ , that

J(t) = J∗ +M

∫ t−τ

T (ε)

∫ τ

0

M̃(v) dvf ′(x(u)) du

+M

∫ t

t−τ

∫ t−u

0

M̃(v) dvf ′(x(u)) du.

(5.5)

First, for t ≥ T (ε) + τ we have

J(t) = M

∫ t

T (ε)

I(s) ds = M

∫ t

T (ε)

∫ s

s−τ
M̃(s− u)f ′(x(u)) du ds.

By reversing the order of integration we obtain

J(t) = M

∫ t

T (ε)−τ

(∫ (u+τ)∧t

T (ε)∨u
M̃(s− u) ds

)
f ′(x(u)) du.

Splitting the integral gives

J(t) = M

∫ T (ε)

T (ε)−τ

(∫ u+τ

T (ε)∨u
M̃(s− u) ds

)
f ′(x(u)) du

+M

∫ t−τ

T (ε)

(∫ u+τ

T (ε)∨u
M̃(s− u) ds

)
f ′(x(u)) du

+M

∫ t

t−τ

(∫ t

T (ε)∨u
M̃(s− u) ds

)
f ′(x(u)) du,

and noting that the first integral is J∗ and tidying up the limits of the integrals
yields

J(t) = J∗ +M

∫ t−τ

T (ε)

(∫ u+τ

u

M̃(s− u) ds
)
f ′(x(u)) du

+M

∫ t

t−τ

(∫ t

u

M̃(s− u) ds
)
f ′(x(u)) du.

Substituting v = s− u in the inner integrals now gives (5.5).
Now that we have proven (5.5), we will use it to obtain asymptotic estimates on

J . Since each of the integrands in (5.5) are positive for t ≥ T (ε) + τ , we have

J(t) ≥MC

∫ t−τ

T

f ′(x(u)) du, t ≥ T (ε) + τ, (5.6)

because

C =
∫ τ

0

M̃(v) dv.
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We now need a corresponding upper estimate for J . Since M̃ : [0, τ ] → R+, for
u ∈ [t− τ, t], we have ∫ t−u

0

M̃(v) dv ≤
∫ τ

0

M̃(v) dv = C.

Therefore,

J(t) = J∗ +MC

∫ t−τ

T (ε)

f ′(x(u)) du+M

∫ t

t−τ

∫ t−u

0

M̃(v) dvf ′(x(u)) du

≤ J∗ +MC

∫ t−τ

T (ε)

f ′(x(u)) du+M

∫ t

t−τ

∫ t−u

0

M̃(v) dvf ′(x(u)) du.

Thus

J(t) ≤ J∗ +MC

∫ t

T (ε)

f ′(x(u)) du, t ≥ T (ε) + τ. (5.7)

Next, we estimate the integrals on the righthand sides of (5.6), (5.7). For t ≥
T (ε) + τ we have∫ t−τ

T (ε)

Mf ′(x(u)) du =
∫ t−τ

T (ε)

f ′(x(u))
f(x(u))

x′(u)
Mf(x(u))
x′(u)

du

≥
∫ t−τ

T (ε)

f ′(x(u))
f(x(u))

x′(u) du

= log f(x(t− τ))− log f(x(T (ε)))

> log(1− ε) + log f(x(t))− log f(x(T (ε))).

Therefore, from (5.6), we have

lim inf
t→∞

J(t)
log f(x(t))

≥ C.

Similarly, for t ≥ T (ε) + τ we have∫ t

T (ε)

Mf ′(x(u)) du =
∫ t

T (ε)

f ′(x(u))
f(x(u))

x′(u)
Mf(x(u))
x′(u)

du

≤ 1
1− ε

∫ t

T (ε)

f ′(x(u))
f(x(u))

x′(u) du

=
1

1− ε
(log f(x(t))− log f(x(T (ε)))) .

Therefore, from (5.7), we have

lim sup
t→∞

J(t)
log f(x(t))

≤ C.

Combining this with the limit inferior, we obtain

lim
t→∞

J(t)
log f(x(t))

= C. (5.8)

Therefore, as we have assumed f(x) → ∞ as x → ∞, we see that J(t) → ∞ as
t→∞. Thus by (5.3), (5.8) and L’Hôpital’s rule, we obtain

lim
t→∞

J1(t)
log f(x(t))

= C.
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Putting this limit into (5.4) yields (4.1). The result now follows from Lemma 4.1.

6. Proof of Theorem 2.4 with finite first moment

Define ε1(t) =
∫
(t,∞)

µ(ds) for t ≥ 0 and

δ1(t) = ε1(t)f(x(t)), t ≥ 0.

Clearly δ1(t) > 0 for all t ≥ 0. Define also δ2 by

δ2(t) =
∫

[0,t]

µ(ds) (f(x(t))− f(x(t− s))) , t ≥ 0.

We have that x′(t) ≥ 0 for all t ≥ 0, and x(t) → ∞ as t → ∞. Therefore there
is T I1 > 0 such that x(t) > x1 for all t ≥ T I1 . Define f∗ = maxx∈[0,x1] f(x). Since
f(x) → ∞ as x → ∞, it follows that there is x2 > x1 such that f(x) > f∗ for all
x ≥ x2, and there is also T II1 > 0 such that x(t) > x2 for all t ≥ T II1 . Define T III1 =
max(T I1 , T

II
1 ), and let t ≥ T III1 . Then as f is increasing on [x2,∞) ⊃ [x1,∞), we

have
f(x(t)) > f(x2) ≥ f∗ = max

y∈[0,x1]
f(y).

Now, let u ∈ [0, t). If x(u) ≤ x1, then f(x(u)) ≤ f∗ < f(x(t)). If x(u) > x1, then
x(t) ≥ x(u) > x1 and f(x(t)) ≥ f(x(u)). Therefore

f(x(t)) > f(x(u)), 0 ≤ u < t, t ≥ T III1 .

Thus δ2(t) > 0 for all t ≥ T III1 . Notice for t ≥ 0 we have

x′(t) = Mf(x(t))− δ1(t)− δ2(t).

Since δ1 and δ2 are positive on [T III1 ,∞), it follows that

x′(t) ≤Mf(x(t)), t ≥ T III1 . (6.1)

Integration leads to

lim sup
t→∞

x(t)
F−1(Mt)

≤ 1. (6.2)

Define for 0 ≤ a ≤ b < +∞

M(a, b) =
∫

[a,b]

µ(ds).

By Fubini’s theorem

δ2(t) =
∫ t

0

M(t− u, t)f ′(x(u))x′(u) du.

It can be proven, as in the proof of Theorem 2.1, that x′(t)/f(x(t))→M as t→∞.
The details are given in [4, Theorem 1]. From this limit, we have for every ε ∈ (0, 1),
that there is T IV1 (ε) > 0 such that

x′(t) > M(1− ε)f(x(t)), t ≥ T IV1 (ε). (6.3)

Define T1(ε) = max(T IV1 (ε), T III1 ), and finally

δ3(t) =
∫ T1(ε)

0

M(t− u, t)f ′(x(u))x′(u) du, t ≥ T1(ε).
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Then for t ≥ T1(ε) we have

δ2(t) = δ3(t) +
∫ t

T1(ε)

M(t− u, t)f ′(x(u))x′(u) du. (6.4)

Also define

I1(t) =
1
M
ε1(t), Ĩ2(t) =

δ2(t)
Mf(x(t))

.

Define

K1(ε) :=
∫ T1(ε)

0

|f ′(x(u))|x′(u) du.

Then for t ≥ T1(ε), we have

|δ3(t)| ≤ K1(ε)
∫

[t−T1(ε),t]

µ(ds) =: δ4(t). (6.5)

Since t 7→ f(x(t)) is increasing on [T1,∞), we obtain from (6.1), (6.4), and (6.5)
the bound

δ2(t) ≤ δ4(t) +M

∫ t

T1(ε)

M(t− u, t)f ′(x(u)) du · f(x(t)).

Since

lim
t→∞

∫
[0,t]

sµ(ds) = C ∈ (0,∞),

it follows for every ε ∈ (0, 1) that there exists T2(ε) > 0 such that∫
[0,T2(ε)]

sµ(ds) ≥ C(1− ε).

We also have that

lim
t→∞

f(x(t− T2(ε)))
f(x(t))

= 1.

Therefore, for every η ∈ (0, 1) there is T ′3(η, ε) > 0 such that for all t ≥ T ′3(η, ε) we
have f(x(t− T2(ε))) > (1− η)f(x(t)). Fix η = ε and set T ′3(ε) = T ′3(ε, ε). Then for
t ≥ T ′3(ε) we have f(x(t−T2(ε))) > (1−ε)f(x(t)). Now, let t ≥ T1(ε)+T2(ε)+T ′3(ε).
Then from (6.3), (6.4) and (6.5) we have

δ2(t) ≥ −|δ3(t)|+
∫ t

t−T2(ε)

M(t− u, t)f ′(x(u))x′(u) du

> −δ4(t) +
∫ t

t−T2(ε)

M(t− u, t)f ′(x(u))M(1− ε)f(x(u)) du

> −δ4(t) +M(1− ε)
∫ t

t−T2(ε)

M(t− u, t)f ′(x(u)) du · f(x(t− T2(ε)))

> −δ4(t) +M(1− ε)2
∫ t

t−T2(ε)

M(t− u, t)f ′(x(u)) du · f(x(t))).

Define

Ĩ3(t) =
δ4(t)

Mf(x(t))
> 0, t ≥ T1(ε) + T2(ε).
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Then for t ≥ T1(ε) + T2(ε) + T ′3(ε) =: T3(ε), we have

− Ĩ3(t) + (1− ε)2
∫ t

t−T2(ε)

M(t− u, t)f ′(x(u)) du

< Ĩ2(t) < Ĩ3(t) +
∫ t

T1(ε)

M(t− u, t)f ′(x(u)) du.
(6.6)

Since x′(t)/(Mf(x(t))) = 1− I1(t)− Ĩ2(t), by defining

J(t) =
∫ t

T3(ε)

MĨ2(s), t ≥ T3(ε)

integration yields

F (x(t))−Mt = F (x(T3(ε)))−MT3(ε)−
∫ t

T3(ε)

ε1(s) ds− J(t), t ≥ T3(ε). (6.7)

We can readily estimate the third term on the right–hand side: for t ≥ T3(ε) we
have by Fubini’s theorem∫ t

T3(ε)

ε1(s) ds =
∫

[T3(ε),∞)

∫
[T3(ε),t∧u]

ds µ(du)

=
∫

[T3(ε),∞)

(t ∧ u− T3(ε))µ(du)

≤
∫

[T3(ε),∞)

(u− T3(ε))µ(du) ≤ C.

We estimate for t ≥ T3(ε) the integral∫ t

T3(ε)

MĨ3(s) ds.

Since f and x are increasing, by (6.5) and Fubini’s theorem we obtain∫ t

T3(ε)

MĨ3(s) ds ≤ K1(ε)
f(x(T3(ε)))

∫ t

T3(ε)

∫
[s−T1(ε),s]

µ(du) ds

≤ K1(ε)
f(x(T3(ε)))

∫ ∞
T3(ε)

∫
[s−T1(ε),s]

µ(du) ds

=
K1(ε)

f(x(T3(ε)))

∫
[T3(ε)−T1(ε),∞)

(u+ T1(ε)− T3(ε))µ(du) =: C1(ε).

Therefore

0 ≤
∫ t

T3(ε)

ε1(s) ds ≤ C, 0 ≤
∫ t

T3(ε)

MĨ3(s) ds ≤ C1(ε), t ≥ T3(ε). (6.8)

From the definition of J , (6.6) and (6.8), for t ≥ T3(ε) we have

J(t) ≥ −C1(ε) +M(1− ε)2
∫ t

T3(ε)

∫ s

s−T2(ε)

M(s− u, s)f ′(x(u)) du ds, (6.9)

J(t) ≤ C1(ε) +M

∫ t

T3(ε)

∫ s

T1(ε)

M(s− u, s)f ′(x(u)) du ds. (6.10)
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Next, set T4(ε) = T2(ε)+T3(ε), and let t ≥ T4(ε). By reversing the order of integra-
tion in (4.17) and splitting the integral, and using the positivity of the integrands,
we obtain

J(t) ≥ −C1(ε) +M(1− ε)2
∫ T3(ε)

T3(ε)−T2(ε)

∫ t∧(u+T2)

T3(ε)∨u
M(s− u, s) dsf ′(x(u)) du

+M(1− ε)2
∫ t

T3(ε)

∫ t∧(u+T2(ε))

u

M(s− u, s) dsf ′(x(u)) du

> −C1(ε) +M(1− ε)2
∫ t−T2(ε)

T3(ε)

∫ t∧(u+T2(ε))

u

M(s− u, s) dsf ′(x(u)) du

+M(1− ε)2
∫ t

t−T2(ε)

∫ t

u

M(s− u, s) dsf ′(x(u)) du

> −C1(ε) +M(1− ε)2
∫ t−T2(ε)

T3(ε)

∫ u+T2(ε)

u

M(s− u, s) dsf ′(x(u)) du.

For u ∈ [T3, t− T2], by making the substitution v = s− u and reversing the order
of integration we obtain∫ u+T2(ε)

u

M(s− u, s) ds

=
∫ T2(ε)

0

M(v, v + u) dv =
∫ T2(ε)

0

∫
[v,v+u]

µ(dw) dv

=
∫

[0,T2(ε)+u]

(w ∧ T2(ε)− (w − u) ∨ 0)µ(dw)

=
∫

[0,T2(ε)]

wµ(dw) +
∫

(T2(ε),T2(ε)+u]

(T2(ε)− (w − u) ∨ 0)µ(dw).

Since the integrand in the second integral is non–negative, we have by the definition
of T2, ∫ u+T2(ε)

u

M(s− u, s) ds ≥
∫

[0,T2(ε)]

wµ(dw) ≥ C(1− ε).

Therefore for t ≥ T4(ε) we have

J(t) > −C1(ε) +MC(1− ε)3
∫ t−T2(ε)

T3(ε)

f ′(x(u)) du. (6.11)

For t ≥ T4(ε), because T3 > T1 we have from (6.10) and an interchange of integra-
tion order

J(t) ≤ C1(ε) +M

∫ t

T3(ε)

∫ s

T1(ε)

M(s− u, s)f ′(x(u)) du ds

≤ C1(ε) +M

∫ t

T1(ε)

∫ t

T3(ε)∨u
M(s− u, s) dsf ′(x(u)) du.
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Splitting the integral gives for t ≥ T4(ε)

J(t) ≤ C1(ε) +M

∫ T3(ε)

T1(ε)

∫ t

T3(ε)

M(s− u, s) dsf ′(x(u)) du

+M

∫ t

T3(ε)

∫ t

u

M(s− u, s) dsf ′(x(u)) du.

(6.12)

It can now be checked that∫ t

u

M(s− u, s) ds ≤
∫

[0,t]

wµ(dw), t ≥ 2u, t ≥ u ≥ T3(ε), (6.13)

and likewise that∫ t

u

M(s− u, s) ds ≤
∫

[0,t]

wµ(dw), t < 2u, t ≥ u ≥ T3(ε). (6.14)

We defer the proof of these estimates to the end. Putting (6.13) and (6.14) into
(6.12) yields for t ≥ T4(ε)

J(t) ≤ C1(ε) +MC

∫ t

T3(ε)

f ′(x(u)) du

+M

∫ T3(ε)

T1(ε)

∫ t

T3

M(s− u, s) dsf ′(x(u)) du.

(6.15)

Next for u ∈ [T1, T3] and t ≥ T4, we obtain, by making the substitution v = s− u,
and an exchange of order of integration∫ t

T3

M(s− u, s) ds =
∫ t−u

T3−u

∫
[v,v+u]

µ(dw) dv

≤
∫ t−u

0

∫
[v,v+u]

µ(dw) dv

=
∫

[0,u]

((t− u) ∧ w) µ(dw)

+
∫

(u,t]

((t− u) ∧ w − (w − u))µ(dw).

Again, considering the cases t ≥ 2u and t < 2u, we arrive at the estimates∫ t

T3

M(s− u, s) ds ≤
∫

[0,t]

wµ(dw), t ≥ 2u, t ≥ T4(ε), u ∈ [T1, T3], (6.16)∫ t

T3

M(s− u, s) ds ≤
∫

[0,t]

wµ(dw), t < 2u, t ≥ T4(ε), u ∈ [T1, T3]. (6.17)

We postpone the justification of these inequalities to the end. Using the fact that∫
[0,t]

wµ(dw) ≤ C for all t ≥ 0, and putting (6.16) and (6.17) into (6.15), yields

J(t) ≤ C1(ε) +MC

∫ t

T1(ε)

f ′(x(u)) du, t ≥ T4(ε) (6.18)
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Next for t ≥ T4 we estimate the integral in (6.11): using (6.1) and the fact that
for t ≥ T ′3(ε) we have f(x(t− T2(ε))) > (1− ε)f(x(t)), we obtain

M

∫ t−T2(ε)

T3(ε)

f ′(x(u)) du =
∫ t−T2(ε)

T3(ε)

f ′(x(u))
f(x(u))

Mf(x(u))
x′(u)

x′(u) du

≥
∫ t−T2(ε)

T3(ε)

f ′(x(u))
f(x(u))

x′(u) du

= log f(x(t− T2(ε)))− log f(x(T3(ε)))

> log f(x(t)) + log(1− ε)− log f(x(T3(ε))).

Therefore from (6.11), we obtain

lim inf
t→∞

J(t)
log f(x(t))

≥ C(1− ε)3.

Letting ε→ 0+ yields

lim inf
t→∞

J(t)
log f(x(t))

≥ C. (6.19)

For t ≥ T4(ε), we estimate the integral in (6.18). Using (6.3) we obtain

J(t) ≤ C1(ε) +MC

∫ t

T1(ε)

f ′(x(u)) du

= C1(ε) + C

∫ t

T1(ε)

f ′(x(u))
f(x(u))

· Mf(x(u))
x′(u)

x′(u) du

≤ C1(ε) +
C

1− ε

∫ t

T1(ε)

f ′(x(u))
f(x(u))

x′(u) du

= C1(ε) +
C

1− ε
(log f(x(t))− log f(x(T1(ε)))) .

Dividing across by log f(x(t)), taking the limsup as t→∞, and then letting ε→ 0+

yields

lim sup
t→∞

J(t)
log f(x(t))

≤ C.

Combining this with (6.19) gives

lim
t→∞

J(t)
log f(x(t))

= C. (6.20)

For t ≥ T3(ε), by (6.7), we have

F (x(t))−Mt

log f(x(t))
=
F (x(T3(ε)))−MT3(ε)−

∫ t
T3(ε)

ε1(s) ds

log f(x(t))
− J(t)

log f(x(t))
.

Since 0 ≤
∫ t
T3(ε)

ε1(s) ds ≤ C, log f(x(t)) → ∞ as t → ∞ and (6.20) holds, we
immediately get

lim
t→∞

F (x(t))−Mt

log f(x(t))
= −C. (6.21)

Recall that x obeys (6.2), and f obeys (1.8) with λ ∈ [0,∞]. Therefore, we may
apply Lemma 4.1 to x obeying (6.2) and (6.21), from which we conclude that

lim
t→∞

x(t)
F−1(Mt)

= e−λC ,
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as required. This completes the proof of Theorem 2.4 when C < +∞.
It remains to dispense with the estimates (6.13) and (6.14), as well as (6.16) and

(6.17). We start with (6.13) and (6.14). For t ≥ u ≥ T3(ε) we have∫ t

u

M(s− u, s) ds

=
∫ t−u

0

∫
[v,v+u]

µ(dw) dv

=
∫

[0,t]

{(t− u) ∧ w − (w − u) ∨ 0}µ(dw)

=
∫

[0,u)

{(t− u) ∧ w}µ(dw) +
∫

[u,t]

{(t− u) ∧ w − (w − u)}µ(dw).

(6.22)

We now use (6.22) to prove (6.13) and (6.14).
If t ≥ 2u, t− u ≥ u, so∫

[0,u)

{(t− u) ∧ w}µ(dw) =
∫

[0,u)

wµ(dw).

Similarly,∫
[u,t]

{(t− u) ∧ w − (w − u)}µ(dw)

=
∫

[u,t−u]

{(t− u) ∧ w − (w − u)}µ(dw) +
∫

(t−u,t]
{(t− u) ∧ w − (w − u)}µ(dw)

=
∫

[u,t−u]

uµ(dw) +
∫

(t−u,t]
(t− w)µ(dw).

Since w ≥ u in the first integral, and w ≥ t − u and w − u ≥ t − 2u ≥ 0 in the
second, we have∫

[u,t]

{(t− u) ∧ w − (w − u)}µ(dw) ≤
∫

[u,t]

wµ(dw).

Combining this with the expression we have for the integral on [0, u) in (6.22) now
gives the estimate in (6.13).

Now suppose that t < 2u so t− u < u. Then the first integral in (6.22) is∫
[0,u)

{(t− u) ∧ w}µ(dw) ≤
∫

[0,u)

u ∧ wµ(dw) =
∫

[0,u)

wµ(dw).

For w ∈ [u, t], t < 2u we have t− w ≤ t− u < u ≤ w, it follows that∫
[u,t]

{(t− u) ∧ w − (w − u)}µ(dw) ≤
∫

[u,t]

wµ(dw).

Combining this with the first identity in this paragraph gives (6.14).
Now we turn to the proof of (6.16) and (6.17): for u ∈ [T1, T3] and t ≥ T4, we

obtain∫ t

T3

M(s− u, s) ds =
∫ t−u

T3−u

∫
[v,v+u]

µ(dw) dv ≤
∫ t−u

0

∫
[v,v+u]

µ(dw) dv.

Hence ∫ t

T3

M(s− u, s) ds ≤
∫ t−u

0

∫
[w,w+u]

µ(dv) dw =: M1(u, t). (6.23)
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Now for t ≥ u we have

M1(u, t) =
∫

[0,t]

∫ v∧(t−u)

(v−u)∨0

dwµ(dv) =
∫

[0,t]

{v ∧ (t− u)− (v − u) ∨ 0}µ(dv).

If t > 2u we have

M1(u, t) =
∫

[0,u)

vµ(dv) +
∫

[u,t−u)

uµ(dv) +
∫

[t−u,t]
(t− v)µ(dv)

≤
∫

[0,u)

vµ(dv) +
∫

[u,t−u)

vµ(dv) +
∫

[t−u,t]
(t− v)µ(dv).

In the last integrand v ≥ t− u > u, so t− v ≤ u < v. Hence

M1(u, t) ≤
∫

[0,t]

vµ(dv), t > 2u.

If t ≤ 2u, we have

M1(u, t) =
∫

[0,t−u)

vµ(dv) +
∫

[t−u,u)

(t− u)µ(dv) +
∫

[u,t]

(t− v)µ(dv)

≤
∫

[0,t−u)

vµ(dv) +
∫

[t−u,u)

vµ(dv) +
∫

[u,t]

(t− v)µ(dv).

In the last integrand we have t ≥ v ≥ u, so t− v ≤ t− u ≤ u ≤ v. Therefore

M1(u, t) ≤
∫

[0,t]

vµ(dv), t ≤ 2u.

Combining the cases where t > 2u and t ≤ 2u we have the consolidated estimate

M1(u, t) ≤
∫

[0,t]

vµ(dv), t ≥ u. (6.24)

Thus ∫ t

T3

M(s− u, s) ds ≤
∫

[0,t]

vµ(dv), t ≥ u ≥ T3.

establishing both (6.16) and (6.17). This completes the proof.

7. Proof of Theorem 2.4 with infinite first moment

By the same considerations made in the case when C < +∞, we have

x′(t) ≤Mf(x(t)), t ≥ T III1 , x′(t) >
M

2
f(x(t)), t ≥ T IV (1/2),

and (6.2) holds. We take T1 = max(T III1 , T IV1 ) recalling the definition of T III1 in
the case when C < +∞. For t ≥ T1, we still have the estimate

|δ3(t)| ≤
∫

[t−T1,t]

µ(ds) ·K1 =: δ4(t)

where

K1 =
∫ T1

0

|f ′(x(u))|x′(u) du.

Next, as
∫
[0,t]

sµ(ds) → ∞ as t → ∞, for every N ∈ N there is T2 = T2(N) such
that ∫

[0,T2(N)]

sµ(ds) > N. (7.1)
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Since T2(N) is fixed, the limit

lim
t→∞

f(x(t− T2(N)))
f(x(t))

= 1

prevails. Therefore, for every η ∈ (0, 1) there is T̃3(η,N) > 0 such that t ≥ T̃3(η,N)
implies f(x(t − T2(N))) > (1 − η)f(x(t)). Set η = 1/2. Then, with T ′3(N) =
T̃3(1/2, N), we have

f(x(t− T2(N))) >
1
2
f(x(t)), t ≥ T ′3(N).

Hence, for t ≥ T1 + T2(N) + T ′3(N), we can argue as above to obtain

Ĩ2(t) ≥ −Ĩ3(t) +
M

4

∫ t

t−T2

M(t− u, t)f ′(x(u)) du,

where Ĩ2(t) = δ2(t)/(Mf(x(t))), Ĩ3(t) = δ4(t)/(Mf(x(t))). Define T3(N) = T1 +
T2(N) + T ′3(N). For t ≥ T3(N) we have

F (x(t))−Mt = F (x(T3))−MT3 −
∫ t

T3

ε1(s) ds−
∫ t

T3

MĨ2(s) ds

Hence for t ≥ T3(N) we have

F (x(t))−Mt ≤ F (x(T3))−MT3 +M

∫ t

T3

Ĩ3(s) ds

− M

4

∫ t

T3

∫ s

s−T2

M(s− u, s)f ′(x(u)) du.
(7.2)

Next, we estimate the third term on the righthand side of (7.2). By definition for
t ≥ T3, we obtain

M

∫ t

T3

Ĩ3(s) ds = K1

∫ t

T3

1
f(x(s))

∫
[s−T1,s]

µ(du) ds ≤ K1M

∫ t

T3

1
f(x(s))

ds.

Since t ≥ T3 > T IV1 we have

M

∫ t

T3

Ĩ3(s) ds ≤ K1

∫ t

T3

x′(s)
f2(x(s))

· Mf(x(s))
x′(s)

ds

≤ 2K1

∫ t

T3

x′(s)
f2(x(s))

ds = 2K1

∫ x(t)

x(T3)

1
f2(u)

du.

Now, as limx→∞ f(x)/(x/ log x) = λ ∈ (0,∞] and f(x)/x→ 0 as x→∞, it follows
that log f(x)/ log x→ 1 as x→∞. Hence

lim
x→∞

log(1/f2(x))
log x

= −2.

Therefore
∫∞
1
f−2(u) du < +∞, and so as x(T3) > x1 we have

M

∫ t

T3

Ĩ3(s) ds ≤ 2K1

∫ ∞
x1

1
f2(u)

du, t ≥ T3. (7.3)

Letting

K2(N) = F (x(T3(N)))−MT3(N) + 2K1

∫ ∞
x1

1
f2(u)

du,
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we have from (7.3) and (7.2) that

F (x(t))−Mt ≤ K2(N)− M

4

∫ t

T3

∫ s

s−T2

M(s− u, s)f ′(x(u)) du, t ≥ T3(N). (7.4)

Let T4(N) = T2(N) + T3(N) and t ≥ T4(N). We estimate the second term on the
righthand side of (7.4) as in the proof of the lower bound of J in Theorem 2.4 after
(6.9). Noting that f ′(x(u)) > 0 for all u ≥ T3 − T2, for t ≥ T4(N) we obtain

M

∫ t

T3

∫ s

s−T2

M(s− u, s)f ′(x(u)) du ds

= M

∫ T3

T3−T2

∫ t∧(u+T2)

T3∨u
M(s− u, s) dsf ′(x(u)) du

+M

∫ t−T2

T3

∫ u+T2

u

M(s− u, s) dsf ′(x(u)) du

+M

∫ t

t−T2

∫ u+T2

u

M(s− u, s) dsf ′(x(u)) du

> M

∫ t−T2

T3

∫ u+T2

u

M(s− u, s) dsf ′(x(u)) du.

For u ∈ [T3, t− T2] we have as before that∫ u+T2

u

M(s− u, s) ds ≥
∫

[0,T2]

wµ(dw) > N.

Therefore, from (7.4) for t ≥ T4(N) we have

F (x(t))−Mt ≤ K2(N)− MN

4

∫ t−T2

T3

f ′(x(u)) du. (7.5)

Finally, for t ≥ T4(N) we obtain

M

∫ t−T2

T3

f ′(x(u)) du =
∫ t−T2

T3

f ′(x(u))
f(x(u))

· Mf(x(u)))
x′(u)

x′(u) du

≥
∫ t−T2

T3

f ′(x(u))
f(x(u))

x′(u) du

= log f(x(t− T2))− log f(x(T3))

> log
(

1
2

)
+ log f(x(t))− log f(x(T3)).

Since f(x(t))→∞ as t→∞, taking this estimate together with (7.5) and letting
t→∞, we obtain

lim inf
t→∞

F (x(t))−Mt

log f(x(t))
≤ −N

4
.

Since N is arbitrary, we obtain

lim
t→∞

F (x(t))−Mt

log f(x(t))
= −∞,

and because log f(x)/ log x→ 1 as x→∞, we have

lim
t→∞

F (x(t))−Mt

log x(t)
= −∞.
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Notice that the estimate x′(t) ≤ Mf(x(t)) for t ≥ T III1 holds, so asymptotic
integration yields

lim sup
t→∞

x(t)
F−1(Mt)

≤ 1.

Therefore all the hypotheses of Lemma 4.2 hold, and therefore x(t)/F−1(Mt)→ 0
as t→∞, as claimed.

8. Proof of Theorems 2.2, 2.3, and 2.5

The proofs of these results rely upon some preliminary lemmas. The first several
results will be employed in the proof of Theorems 2.3 and 2.2, although Lemma 8.3
is also needed for the proof of Theorem 2.5.

Lemma 8.1. Suppose that f(x) > 0 for all x > 0, f ′(x) > 0 for all x > x1,
f ′(x) → 0 as x → ∞ and f(x) → ∞ as x → ∞. If f ′ is decreasing on [x2,∞),
then for every ε > 0 there is x0(ε) > 0 such that x > y ≥ x0(ε) implies

f(x)
x

< (1 + ε)
f(y)
y

. (8.1)

Proof. Let u > max(x2, x1) =: x3. Since f ′ is decreasing, we have

f(u)− f(x3) ≥ f ′(u)(u− x3).

Rearranging and integrating over the interval [y, x] (for x > x3) yields

f(x)− f(x3)
x− x3

≤ f(y)− f(x3)
y − x3

.

Define

α(x) :=
(f(x)− f(x3)

x− x3

)/(f(x)
x

)
, x > x3.

Then
f(x)
x
≤ α(y)
α(x)

· f(y)
y

, x > y > x3.

Since f(x) → ∞ as x → ∞, it follows that α(x) → 1 as x → ∞. Therefore, for
every ε > 0 there is x4(ε) > 0 such that

1√
1 + ε

< α(x) <
√

1 + ε, x > x4(ε).

Now, set x0(ε) = max(x3 + 1, x4(ε)). Then for x > y ≥ x0(ε) we have (8.1) as
claimed. �

The following result, which was established in [4] for increasing, concave func-
tions, will also be used. Scrutiny of the proof in [4] shows that the monotonicity
restrictions can be relaxed to the ultimate monotonicity hypotheses imposed here.

Lemma 8.2. Suppose ϕ is such that ϕ(x) → ∞ as x → ∞, ϕ′(x) > 0 for x > x1

and ϕ′(x) is decreasing on [x2,∞) with ϕ′(x)→ 0 as x→∞. If b, c ∈ C(R+,R+)
obey limt→∞ b(t) = limt→∞ c(t) = ∞, and b(t) ∼ c(t) as t → ∞, then ϕ(b(t)) ∼
ϕ(c(t)) as t→∞.

Lemma 8.3. Let M > 0. Suppose that f(x) > 0 for all x > 0, f ′(x) > 0 for all
x > x1, f ′(x)→ 0 as x→∞. Define F as in (1.5). Suppose that a is a measurable
function such that a(t) > 0 for all t ≥ T ∗.
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(a) If

lim
x→∞

f(x)
x

a (F (x)/M) = 0, (8.2)

then

lim
t→∞

F−1(Mt− a(t))
F−1(Mt)

= 1. (8.3)

(b) If f ′ is decreasing on [x2,∞), and f(x)→∞ as x→∞, then (8.3) implies
(8.2).

Proof. We start by proving that (8.2) implies (8.3). Since f is increasing, for x ≥ x1

we have

F (x)− F (x1) =
∫ x

x1

1
f(u)

≥ x− x1

f(x)
.

Thus

lim inf
x→∞

F (x)f(x)
x

≥ 1.

Thus for every ε ∈ (0, 1) there is x0(ε) > 0 such that f(x)/x > (1 − ε)/F (x) for
x ≥ x0(ε). Now, since F (x) → ∞ as x → ∞, we have that F (x)/M > T ∗ for all
x > x2. Let x3(ε) = max(x0(ε), x2). Therefore for x ≥ x3(ε) we have

f(x)
x

a (F (x)/M) > (1− ε)a (F (x)/M)
F (x)

.

By (8.2) we therefore have

lim
x→∞

a (F (x)/M)
F (x)/M

= 0,

and so

lim
t→∞

a(t)
t

= 0.

Therefore there exists T2 > 0 such that a(t) > 0 and Mt− a(t) > 0 for all t ≥ T2.
Also, since Mt−a(t)→∞ as t→∞, there is T3 > 0 such that F−1(Mt−a(t)) > x1

for all t ≥ T3. Let T4 = max(T2, T3).
Let y be the solution of (1.7) with y(0) = 1. Then y(t) = F−1(Mt) for t ≥ 0.

Hence for t ≥ T4, by the mean value theorem there exists θt ∈ [0, 1] such that

F−1(Mt− a(t)) = y
(
t− a(t)

M

)
= y(t) + y′

(
t− θta(t)

M

)
· −a(t)

M

= F−1(Mt)− f
(
y
(
t− θta(t)

M

))
· a(t).

Next, since a(t) > 0 for t ≥ T4 and θt ∈ [0, 1], we have that t ≥ t − θta(t)/M ≥
t−a(t)/M > 0 for all t ≥ T4. Since y is increasing, we have y(t) ≥ y(t−θta(t)/M) ≥
y(t− a(t)/M) = F−1(Mt− a(t)) > x1 for t ≥ T4. Therefore we have

f
(
y
(
t− a(t)

M

))
≤ f

(
y
(
t− θta(t)

M

))
≤ f(y(t)) = f(F−1(Mt)).

Therefore

F−1(Mt) > F−1(Mt− a(t)) ≥ F−1(Mt)− f(F−1(Mt))a(t), t ≥ T4,

F−1(Mt− a(t)) ≤ F−1(Mt)− f(F−1(Mt− a(t)))a(t), t ≥ T4.

To finish the proof of part (a), we divide by F−1(Mt) across the first inequality,
let t→∞ and apply (8.2).
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To prove part (b), divide the second inequality by F−1(Mt−a(t)) and rearrange
to obtain

F−1(Mt)
F−1(Mt− a(t))

− 1 ≥ f(F−1(Mt− a(t)))
F−1(Mt− a(t))

a(t) > 0, t ≥ T4.

Letting t→∞ and using (8.3) we see that

lim
t→∞

f(F−1(Mt− a(t)))
F−1(Mt− a(t))

a(t) = 0.

By Lemma 8.1, we have that (8.1) holds. Since F−1(Mt) ∼ F−1(Mt − a(t))
and F−1(Mt) → ∞ as t → ∞, for every ε > 0 there is T1(ε) > 0 such that
F−1(Mt − a(t)) > x0(ε) for all t ≥ T1(ε). Since a(t) > 0 for all t > T ∗, for
t > max(T ∗, T1(ε)), we have

0 <
f(F−1(Mt))
F−1(Mt)

< (1 + ε)
f(F−1(Mt− a(t)))
F−1(Mt− a(t))

.

Hence

lim
t→∞

f(F−1(Mt))
F−1(Mt)

a(t) = 0.

Making the substitution u = F−1(Mt) gives (8.2), completing the proof of part
(b). �

We are now in a position to prove Theorem 2.3.

Proof of Theorem 2.3. The proof that (a) implies (b) is the subject of Theorem 2.1
when λ = 0. We now prove that (b) implies (a), with the additional hypothesis that
f ′ is decreasing on [x2,∞). Without assuming the rate of growth of f (i.e., absent
the hypothesis that f obeys (1.8)), we can proceed as in the proof of Theorem 2.1
to show that

lim
t→∞

F (x(t))−Mt

log f(x(t))
= −C.

Since x(t)→∞ as t→∞, there is T ′ > 0 such that the functions

C(t) := −F (x(t))−Mt

log f(x(t))
, a(t) := C(t) log f(x(t)), t > T ′,

are well-defined. Moreover, granted the usual tacit assumption that f(x) → ∞ as
x → ∞, we have that there is T ′′ > 0 such that a(t) > 0 and C(t) > 0 for all
t > T ′′, and C(t)→ C as t→∞. By the definition of C and a, we obtain

x(t) = F−1(Mt− a(t)), t > T ′.

Therefore, by part (b) of Lemma 8.3, since x(t) ∼ F−1(Mt) by hypothesis, we have
that

lim
x→∞

f(x)
x

a (F (x)/M) = 0.

Now, since x(t) ∼ F−1(Mt) as t → ∞, and f is ultimately increasing with ulti-
mately decreasing derivative, and f(x) → ∞ as x → ∞, we may put f in the role
of ϕ in Lemma 8.2, x in the role of b and t 7→ F−1(Mt) in the role of c to obtain

f(x(t)) ∼ f(F−1(Mt)) as t→∞.
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Therefore log f(x(t)) ∼ log f(F−1(Mt)) as t → ∞ (by elementary considerations,
or by identifying ϕ = log in Lemma 8.2, for example). Hence

a(t) ∼ C log f(F−1(Mt)) as t→∞.
Since F (x)/M →∞ as x→∞, we have

a(F (x)/M) ∼ C log f(x), as x→∞.
Therefore f(x)/x · log f(x)→ 0 as x→∞. Finally, by using the identity

f(x)
x

log x = −f(x)
x

log
(f(x)

x

)
+
f(x)
x

log f(x),

(which holds for all x sufficiently large) and noting that y log y → 0 as y → 0+, and
f(x)/x→ 0 as x→∞, we see that f(x)/x · log x→ 0 as x→∞, as required. �

We are also in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Define ϕ(x) = log f(F−1(x)). Since f is ultimately increas-
ing and F−1 is increasing, ϕ is ultimately increasing and ϕ(x) → ∞ as x → ∞.
Now ϕ′(x) = f ′(F−1(x)). Therefore, as f ′ is ultimately decreasing, ϕ′ is ultimately
decreasing with ϕ′(x) ↓ 0 as x → ∞. As part of the proof of Theorem 2.1 it was
shown that the solution x of (1.1) obeys F (x(t))/t→M as t→∞. Now we apply
Lemma 8.2 with b(t) = F (x(t)), c(t) = Mt and ϕ as defined to obtain

lim
t→∞

log f(x(t))
log f(F−1(Mt))

= 1.

In the proof of Theorem 2.1 it was shown that the limit

lim
t→∞

F (x(t))−Mt

log f(x(t))
= −C

holds. Furthermore, as f(x)/(x/ log x) → ∞ and f(x)/x → 0 as x → ∞, we have
that log f(x)/ log x→ 1 as x→∞, so taking these limits together, we arrive at

lim
t→∞

−F (x(t))−Mt

logF−1(Mt)
= C.

Finally the function c : [1,∞)→ R given by

c(t) := −F (x(t))−Mt

logF−1(Mt)
, t ≥ 1

is well–defined, in C1, and obeys c(t)→ C as t→∞. Rearranging this identity in
terms of x yields the result. �

In addition to Lemma 8.3, we will need one more preparatory result in order to
prove Theorem 2.5: we state and prove it now.

Lemma 8.4. Let M > 0. Suppose that f(x) > 0 for all x > 0, f ′(x) > 0 for all
x > x1, f ′(x) → 0 as x → ∞. Define F as in (1.5). Suppose that ε is a positive,
non–decreasing and measurable function with ε(t)→ 0 as t→∞. Then

lim
x→∞

f(x)
x

∫ F (x)/M

0

ε(s) ds = +∞ (8.4)

implies

lim
t→∞

F−1(Mt−
∫ t
0
ε(s) ds)

F−1(Mt)
= 0.
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Proof. Let y be the solution of (1.7) with y(0) = 1. Then y(t) = F−1(Mt) for
t ≥ 0. Define

K(t) :=
1
M

∫ t

0

ε(s) ds, κ(t) = t−K(t).

Then K is non–decreasing. Also as ε(t) → 0 as t → ∞, we have K(t)/t → 0 as
t → ∞. Hence κ(t) → ∞ as t → ∞ and indeed κ(t)/t → 1 as t → ∞. Since
ε(t) → 0 as t → ∞, it follows that 0 ≤ ε(t) < M/8 for all t ≥ T1. Thus for
t > s ≥ T1, we have

κ(t)− κ(s) = t− s− 1
M

∫ t

s

ε(u) ds ≥ 7
8

(t− s).

Hence κ is increasing on [T1,∞), so κ−1 is well-defined and κ−1(t)/t→ 1 as t→∞.
Also, as κ(t) < t for all t sufficiently large we have κ−1(t) > t for all t sufficiently
large (say t ≥ T2). Thus for t ≥ T2, as ε is non–increasing, we have

0 ≤ K(κ−1(t))−K(t) =
∫ κ−1(t)

t

ε(s) ds ≤ ε(t)(κ−1(t)− t).

By the definition of κ, there is T3 > 0 such that t = κ−1(t)−K(κ−1(t)) for t ≥ T3.
Also, there is T4 > 0 such that ε(t) < 1 for all t ≥ T4. Thus for t ≥ T5 =
max(T2, T3, T4) we have

0 ≤ K(κ−1(t))−K(t) ≤ ε(t)K(κ−1(t)).

and indeed

1 ≤ K(κ−1(t))
K(t)

≤ 1
1− ε(t)

, t ≥ T5.

Therefore

lim
t→∞

K(κ−1(t))
K(t)

= 1. (8.5)

Since κ(t)→∞ as t→∞, and κ is increasing, we have

lim
t→∞

f(y(t−K(t)))
y(t−K(t))

K(t) = lim
t→∞

f(y(κ(t)))
y(κ(t))

K(t) = lim
z→∞

f(y(z))
y(z)

K(κ−1(z))

= lim
z→∞

f(y(z))
y(z)

K(z) · K(κ−1(z))
K(z)

= lim
z→∞

f(F−1(Mz))
F−1(Mz)

K(z) · K(κ−1(z))
K(z)

= +∞

where we have used (8.4) and (8.5) at the last step. Hence

lim
t→∞

f(y(t−K(t)))
y(t−K(t))

K(t) = +∞. (8.6)

By hypothesis, there is T6 > 0 such that t−K(t) > 0 for all t ≥ T6 and also that
F−1(t−K(t)) > x1 for all t ≥ T7. Let T8 = max(T6, T7). Then, for t ≥ T8 we have

F−1
(
Mt−

∫ t

0

ε(s) ds
)

= y(t−K(t)),

so by the mean value theorem, there is θt ∈ [0, 1] such that

y(t−K(t)) = y(t)− y′(t− θtK(t))K(t) = y(t)−Mf(y(t− θtK(t)))K(t).
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Since K(t) ≥ 0, t ≥ T8, and θt ∈ [0, 1], t − θtK(t) ≥ t − K(t) > 0. Since y
is increasing and t ≥ T8, y(t − θtK(t)) ≥ y(t − K(t)) = F−1(t − K(t)) > x1.
Therefore, as f is increasing on [x1,∞), we have

f(y(t− θtK(t))) ≥ f(y(t−K(t))).

Hence for t ≥ T8,

y(t−K(t)) = y(t)−Mf(y(t− θtK(t)))K(t) ≤ y(t)−Mf(y(t−K(t)))K(t).

Therefore
y(t−K(t)) +Mf(y(t−K(t)))K(t) ≤ y(t), t ≥ T8,

and so
y(t)

y(t−K(t))
≥ 1 +M

f(y(t−K(t)))
y(t−K(t))

·K(t), t ≥ T8.

Hence by (8.6) we see that

lim
t→∞

y(t)
y(t−K(t))

= +∞. (8.7)

Finally, since F−1
(
Mt−

∫ t
0
ε(s) ds

)
= y(t−K(t)), we see from (8.7) that

lim
t→∞

F−1
(
Mt−

∫ t
0
ε(s) ds

)
F−1(Mt)

= lim
t→∞

y(t−K(t))
y(t)

= 0,

completing the proof. �

We are now in a position to prove Theorem 2.5.

Proof of Theorem 2.5. As before we have defined ε1(t) =
∫
(t,∞)

µ(ds) for t ≥ 0 and

δ1(t) = ε1(t)f(x(t)), t ≥ 0.

Clearly δ1(t) > 0 for all t ≥ 0. Define also δ2 by

δ2(t) =
∫

[0,t]

µ(ds) (f(x(t))− f(x(t− s))) , t ≥ 0.

We get

δ2(t) =
∫ t

0

M(t− u, t)f ′(x(u))x′(u) du.

Then as f is increasing on [0,∞), we have that δ2(t) > 0 for all t > 0 and hence

x′(t) = Mf(x(t))− δ1(t)− δ2(t), t ≥ 0. (8.8)

Next if we define

Ĩ2(t) =
δ2(t)

Mf(x(t))
, t ≥ 0,

integration of (8.8) yields

F (x(t))−Mt = F (x(0))−
∫ t

0

ε1(s) ds−
∫ t

0

MĨ2(s) ds, t ≥ 0. (8.9)

We now prove part (i) of the Theorem. To start with, we obtain an upper
estimate for x. Since x′(t) ≤Mf(x(t)) for all t ≥ 0, we have

Ĩ2(t) ≤
∫ t

0

M(t− u, t)f ′(x(u)) du.
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Hence ∫ t

0

MĨ2(s) ds ≤M
∫ t

0

∫ s

0

M(s− u, s)f ′(x(u)) du ds

=
∫ t

0

∫ t

u

M(s− u, s) dsf ′(x(u)) du.

Now for t ≥ u we have∫ t

u

M(s− u, s) ds =
∫ t

u

∫
[s−u,s]

µ(dv) ds =
∫ t−u

0

∫
[w,w+u]

µ(dv) dw = M1(u, t),

by the definition of M1 in (6.23). Now, from (6.24), we have

M1(u, t) ≤
∫

[0,t]

vµ(dv), t ≥ u.

Therefore ∫ t

u

M(s− u, s) ds ≤
∫

[0,t]

vµ(dv), t ≥ u.

Therefore ∫ t

0

MĨ2(s) ds ≤M
∫ t

0

∫ s

0

M(s− u, s)f ′(x(u)) du ds

=
∫

[0,t]

vµ(dv)
∫ t

0

Mf ′(x(u)) du.

Hence we have from (8.9) that

F (x(t))−Mt ≥ F (x(0))−
∫ t

0

ε1(s) ds−
∫

[0,t]

vµ(dv)
∫ t

0

Mf ′(x(u)) du, t ≥ 0.

Next, we have that x′(t) > M(1− ε)f(x(t)) for all t ≥ T1(ε). Define

K1(ε) :=
∫ T1(ε)

0

Mf ′(x(u)) du.

Therefore for t ≥ T1(ε) we have∫ t

0

Mf ′(x(u)) du = K1(ε) +
∫ t

T1

f ′(x(u))
f(x(u))

· Mf(x(u))
x′(u)

x′(u) du

≤ K1(ε) +
1

1− ε

∫ t

T1

f ′(x(u))
f(x(u))

x′(u) du

= K1(ε) +
1

1− ε
(log f(x(t))− log f(x(T1))) .

Since f(x)/x→ 0 as x→∞, for every ε > 0 there is T2(ε) > 0 and K2(ε) > 0 such
that ∫ t

0

Mf ′(x(u)) du ≤ K2(ε) +
1

1− ε
log x(t), t ≥ T2(ε).

Next, we have x(t) ≤ F−1(F (x(0)) +Mt) for t ≥ 0, so∫ t

0

Mf ′(x(u)) du ≤ K2(ε) +
1

1− ε
logF−1(F (x(0)) +Mt), t ≥ T2(ε).
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Finally, as F−1(c+Mt) ∼ F−1(Mt) as t→∞, we have

lim sup
t→∞

∫ t
0
Mf ′(x(u)) du

logF−1(Mt)
≤ 1,

and moreover

lim sup
t→∞

x(t)
F−1(Mt)

≤ 1. (8.10)

Hence for every ε ∈ (0, 1) there is T3(ε) > 0 such that t ≥ T3(ε) implies

F (x(t))−Mt ≥ F (x(0))−
∫ t

0

∫
[s,∞)

µ(du) ds−
∫

[0,t]

sµ(ds)(1 + ε) logF−1(Mt).

Define

a2(t) = −F (x(0)) +
∫ t

0

∫
[s,∞)

µ(du) ds+
∫

[0,t]

sµ(ds)(1 + ε) logF−1(Mt).

Then

lim inf
t→∞

x(t)
F−1(Mt)

≥ lim inf
t→∞

F−1(Mt− a2(t))
F−1(Mt)

.

Clearly a2(t) > 0 for all t sufficiently large. Finally

f(x)
x

a2(F (x)/M) =
f(x)
x

∫ F (x)/m

0

∫
[s,∞)

µ(du) ds

+
∫

[0,F (x)/M ]

sµ(ds)(1 + ε)
f(x)
x

log x− f(x)
x

F (x(0)),

so by (2.7) and (2.8), we have a2(F (x)/M)f(x)/x → 0 as x → ∞. Hence with a2

in the role of a in Lemma 8.3, we have

lim
t→∞

F−1(Mt− a2(t))
F−1(Mt)

= 1,

and so

lim inf
t→∞

x(t)
F−1(Mt)

≥ 1.

Combining this with (8.10) proves part (i).
We now prove part (ii). From (8.8), and the fact that δ2(t) > 0 we have

x′(t) ≤Mf(x(t))− δ1(t) = Mf(x(t))− ε1(t)f(x(t)), t ≥ 0.

Dividing by f(x(t)) and integrating gives

x(t) ≤ F−1
(
F (x(0)) +Mt−

∫ t

0

ε1(s) ds
)
, t ≥ 0. (8.11)

Since ε1(t) =
∫
[t,∞)

µ(ds), we see that ε1 is positive, non–increasing and obeys
ε1(t)→ 0 as t→∞. Therefore by (2.10),

lim
x→∞

f(x)
x

∫ F (x)/M

0

ε1(s) ds = lim
x→∞

f(x)
x

∫
[0,F (x)/M ]

∫
[s,∞)

µ(du) ds = +∞

so the condition (8.4) in Lemma 8.4 holds. Therefore as all conditions of Lemma 8.4
hold with ε1 in the role of ε, we obtain

lim
t→∞

F−1
(
Mt−

∫ t
0
ε1(s) ds

)
F−1(Mt)

= 0.
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Finally, as F−1(c+Mt) ∼ F−1(Mt) as t→∞ for any c ∈ R, it follows from (8.11)
that

lim sup
t→∞

x(t)
F−1(Mt)

≤ lim sup
t→∞

F−1
(
Mt−

∫ t
0
ε1(s) ds

)
F−1(Mt)

= 0,

and hence part (ii) of Theorem 2.5 has been proven.
To prove part (iii), we revisit (8.11), namely

x(t) ≤ F−1
(
F (x(0)) +Mt−

∫ t

0

ε1(s) ds
)
, t ≥ 0.

Since F−1(c+Mt) ∼ F−1(Mt) as t→∞ for any c ∈ R, and by hypothesis we have
x(t) ∼ F−1(Mt) as t→∞, we see that

lim inf
t→∞

F−1
(
Mt−

∫ t
0
ε1(s) ds

)
F−1(Mt)

≥ 1.

On the other hand, as ε1(t) > 0 for all t ≥ 0, we have the trivial limit

lim sup
t→∞

F−1
(
Mt−

∫ t
0
ε1(s) ds

)
F−1(Mt)

≤ 1,

and so

lim
t→∞

F−1
(
Mt−

∫ t
0
ε1(s) ds

)
F−1(Mt)

= 1.

Now set a(t) =
∫ t
0
ε1(s) ds. Since f ′ is decreasing on [x2,∞), by Lemma 8.3 part

(b) it follows that

lim
x→∞

f(x)
x

a (F (x)/M) = 0,

which is precisely (2.8). This completes the proof of part (iii). �

9. Proof of Theorem 2.6

We start with the proof of a preliminary result.

Lemma 9.1. Suppose that M is defined by

M(t− u, t) =
∫

[t−u,t]
µ(ds), t ≥ u ≥ 0,

where µ ∈ M([0,∞); R+). Suppose that b and c are continuous functions with
b(t) ∼ c(t) as t→∞ with 0 < c(t)→∞ as t→∞. Then∫ t

0

M(t− u, t)c(u) du→∞ as t→∞,∫ t

0

M(t− u, t)b(u) du ∼
∫ t

0

M(t− u, t)c(u) du as t→∞.

Proof. Define

δ(t) =
∫ t

0

M(t− u, t)b(u) du, δ̃(t) =
∫ t

0

M(t− u, t)c(u) du, t ≥ 0.

Now for t ≥ 1 we have

δ̃(t) =
∫ t

0

M(t− u, t)c(u) du ≥
∫ t

t−1

M(t− u, t) du · inf
u∈[t−1,t]

c(u).
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Since∫ t

t−1

M(t− u, t) du =
∫ t

t−1

∫
[t−u,t]

µ(ds) du =
∫ 1

0

∫
[v,t]

µ(ds) dv =
∫

[0,t]

{1∧ s}µ(ds),

the positivity of µ implies that δ̃(t)→∞ as t→∞.
Since b(t) ∼ c(t) it follows for every ε ∈ (0, 1) there is T1(ε) > 0 such that

(1− ε)c(t) < b(t) < (1 + ε)c(t) for all t ≥ T1(ε). Hence for t ≥ T1(ε) we have by the
positivity of b and c on [T1,∞) and M on its domain that

(1−ε)
∫ t

T1

M(t−u, t)c(u) du ≤
∫ t

T1

M(t−u, t)b(u) du ≤ (1+ε)
∫ t

T1

M(t−u, t)c(u) du

Now ∫ t

T1

M(t− u, t)c(u) du = δ̃(t)−
∫ T1

0

M(t− u, t)c(u) du

Thus, as M(t − u, t) ≤ M and c is non–negative, we have for t ≥ T1 with C(ε) :=
M
∫ T1

0
c(u) du,∫ t

T1

M(t− u, t)c(u) du ≤ δ̃(t),
∫ t

T1

M(t− u, t)c(u) du ≥ δ̃(t)− C(ε).

Hence for t ≥ T1 we have

(1− ε)
(
δ̃(t)− C(ε)

)
≤
∫ t

T1

M(t− u, t)b(u) du ≤ (1 + ε)δ̃(t).

Thus by the definition of δ we have for t ≥ T1(ε)

(1− ε)
(
δ̃(t)− C(ε)

)
≤ δ(t)−

∫ T1

0

M(t− u, t)b(u) du ≤ (1 + ε)δ̃(t).

Define

B(ε) := M

∫ T1

0

|b(u)| du < +∞.

Then ∣∣ ∫ T1

0

M(t− u, t)b(u) du
∣∣ ≤ B(ε),

and so for t ≥ T1(ε),

(1− ε)
(
δ̃(t)− C(ε)

)
−B(ε) ≤ δ(t) ≤ (1 + ε)δ̃(t) +B(ε).

Dividing by δ̃(t), letting t → ∞ and remembering that δ̃(t) → ∞ as t → ∞ we
obtain

1− ε ≤ lim inf
t→∞

δ(t)
δ̃(t)

≤ lim sup
t→∞

δ(t)
δ̃(t)

≤ 1 + ε.

Letting ε→ 0+ completes the proof. �

Proof of Theorem 2.6. We note that δ2 is given by

δ2(t) =
∫ t

0

M(t− u, t)f ′(x(u))x′(u) du, t ≥ 0.

Define also
ε2(t) =

1
f(x(t))

δ2(t), t ≥ 0.
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Then as f is increasing on [0,∞), we have that ε2(t) > 0 for all t > 0 and we have
from (8.8) that

x′(t) = Mf(x(t))− ε1(t)f(x(t))− ε2(t)f(x(t)), t ≥ 0.

Dividing by f(x(t)) and integrating yields

x(t) = F−1 (F (x(0)) +Mt− a(t)) , t ≥ 0,

where

a(t) := a1(t) + a2(t) =
∫ t

0

ε1(s) ds+
∫ t

0

ε2(s) ds, t ≥ 0.

Since x(t) ∼ F−1(Mt) as t→∞ and f ′ is decreasing, we can replicate the proof of
part (iii) of Theorem 2.5 to obtain

lim
x→∞

f(x)
x

a
(F (x)
M

)
= 0.

Since both a1 and a2 are positive, this implies

lim
x→∞

f(x)
x

a1

(F (x)
M

)
= 0, lim

x→∞

f(x)
x

a2

(F (x)
M

)
= 0.

The first condition is nothing but (2.8).
We now determine the asymptotic behaviour of a2(t) as t → ∞, and show that

the second limit implies (2.13). First, because x′(t) ∼ Mf(x(t)) as t → ∞ and
f ′(x) ∼ f(x)/x as x→∞ we have that

b(t) := f ′(x(t))x′(t) ∼ f ′(x(t))Mf(x(t)) ∼M f2(x(t))
x(t)

=: c1(t) as t→∞.

Set g(x) := f2(x)/x: then g ∈ RV∞(1). Therefore as x(t) ∼ F−1(Mt) as t → ∞,
we have that g(x(t)) ∼ g(F−1(Mt)) as t→∞. Hence

b(t) ∼ c1(t) = Mg(x(t)) = M
f2(F−1(Mt))
F−1(Mt)

=: c(t) as t→∞.

Moreover, c(t)→∞ as t→∞. Thus by Lemma 9.1, we have that

δ2(t) =
∫ t

0

M(t− u, t)b(u) du ∼
∫ t

0

M(t− u, t)c(u) du =: δ̃(t) as t→∞.

Since x(t) ∼ F−1(Mt) as t → ∞, we have f(x(t)) ∼ f(F−1(Mt)) as t → ∞.
Therefore, by the definition of ε2, δ̃ and c we have

ε2(t) ∼ M

f(F−1(Mt))

∫ t

0

M(t− u, t)f
2(F−1(Mu))
F−1(Mu)

du =: ε̃2(t), as t→∞.

By making the substitution v = F−1(Mt) and w = F−1(Mu) in the iterated
integral, for any T > 0 we have from (2.12) that∫ T

0

ε̃2(t) dt = M

∫ T

0

∫ t

0

M

f(F−1(Mt))

∫ t

0

M(t− u, t)f
2(F−1(Mu))
F−1(Mu)

du dt

= M

∫ F−1(MT )

1

K(v)
1

f2(v)
dv.

If x 7→
∫ x
1
K(v) 1

f2(v) dv tends to a finite limit, then we have

lim
x→∞

f(x)
x

∫ x

1

K(v)
1

f2(v)
dv = 0,
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which gives (2.13) directly.
On the other hand, if x 7→

∫ x
1
K(v) 1

f2(v) dv tends to +∞ as x→∞, because

M

∫ x

1

K(v)
1

f2(v)
dv =

∫ F (x)/M

0

ε̃2(t) dt

we have that ε̃2(t)→∞ as t→∞. Since ε2(t) ∼ ε̃2(t), we have that

a2(t) =
∫ t

0

ε2(s) ds ∼
∫ t

0

ε̃2(s) ds→∞ as t→∞.

Thus

a2(F (x)/M) ∼
∫ F (x)/M

0

ε̃2(s) ds = M

∫ x

1

K(v)
1

f2(v)
dv as x→∞.

Therefore, as

lim
x→∞

f(x)
x

a2(F (x)/M) = 0,

we have

lim
x→∞

f(x)
x

∫ x

1

K(v)
1

f2(v)
dv = 0,

which is (2.13), as required. �
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