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EXISTENCE AND NON-EXISTENCE OF SOLUTIONS FOR A
SINGULAR PROBLEM WITH VARIABLE POTENTIALS
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ABSTRACT. The purpose of this article is to prove some existence and nonex-
istence theorems for the inhomogeneous singular Dirichlet problem
Ak ()
—Apu = " + h(z)ul.
For proving our results we use the sub and super solution method, and mono-
tonicity arguments.

1. INTRODUCTION

In this paper we are interested in the following quasilinear and singular problem
with variable potentials:

—Apu = Me(z)u™® + h(z)u? in Q,

. (L.1)
u|aQ=O, u >0 in Q,

where Q C RV, (N > 2) is a bounded domain with smooth boundary, X is a positive
parameter, ] <p<oo,p—1<g<p*—1l,and 0<§ < 1. Asusual,p*:NN—_ppif
1< p< N, p* € (p,00) is arbitrarily large if p = N, and p* = co if p > N, and the

variable weight functions h, k € L () satisfy
essinfyeq k(z) >0 and essinfgcq h(z) > 0. (1.2)

Associated with problem (T.1)) we have the singular functional Ey : Wy'?(Q) — R
defined by

1 1
E\(u) = . /Q |Vu|P dz — ﬁ ; k(z)ul=°dz + pra h(z)u?™dz  (1.3)

in the Sobolev space W, 7 (Q).

Definition 1.1. u € W, *() is called a weak solution (or solution, for short) of
problem (|1.1)), that is, for functions u € VVO1 P(Q) satisfying essinfgx u > 0 over
every compact set K C ) and

/ |Vu|P~2Vu - Ve dr = )\/ k(z)u=’pdx :I:/ h(z)ul¢ dx (1.4)
Q Q

Q
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for all ¢ € C°(€2). As usual, C2° () denotes the space of all C* functions ¢: 2 —
R with compact support.

Obviously, every critical point of F) is a weak solution of the problem .

Apu := div(|Vu[P~2Vu), where p > 1 is a real constant is called the p—Laplacian
or the p-Laplace operator. The p-Laplacian is an elliptic partial differential equa-
tion, which is degenerate if p > 2 and singular if p < 2. If p = 2, then the
p-Laplacian reduces to the simpler classical linear Laplace equation Au := V.Vu
and in the case of one spatial dimension, we have Ayu = (|u/[P~2u')’.

The class of problems appears in many nonlinear phenomena, for instance,
in the theory of quasi-regular and quasi-conformal mappings (for this see [I7}, 23]),
in the generalized reaction-diffusion theory [13], in the turbulent flow of a gas in a
porous medium and in the non-Newtonian fluid theory [7]. In the non-Newtonian
fluid theory, the quantity p is the characteristic of the medium. If p < 2, the fluids
are called pseudo-plastics, if p = 2, the fluids are called Newtonian, and if p > 2,
the fluids are called dilatants.

This kind of problems with convex and concave nonlinearities have been ex-
tensively studied by many authors. We refer the reader to the celebrate paper of
Ambrosetti-Brezis-Cerami [I], Saoudi [19], Santos [22] with their references therein.
For p = 2, we refer the reader to [I8| [3] and references therein. The basic work
in our direction is the paper [4] where Coclite-Palmieri have been considered the
nonlinear elliptic equation containing singular term

—Au=u" 4+ "7, in ),
u>0, inQ, (1.5)
u=0, on 9Jf,

where 2 C RN (N > 3) is a bounded domain with smooth boundary dQ and \ is
a positive parameter. The exponent p of the sublinear satisfies 0 < p < 1. The
exponent v of the singular term satisfies 0 < v < 1. In [4] has been shown that
problem possesses at least one solution for A > 0 small enough, and has no
solution when A is large. We mention that in the work [4] the authors have been
extended the results of Crandall-Rabinowitz-Tartar [5].

Problem have been also studied with different elliptic operators. We refer
the reader to [4] 5], 8, @ 10, 111 14, 5, 20, 21] and references therein.

The aim of this work is to extend the results obtained in [4] to the more general
problems . Precisely, the main goal of this paper is to prove some existence and
non-existence theorems for the non-linear singular elliptic problem . Firstly,
we state the following definitions.

Definition 1.2. A function u € W,"*() is called a weak sub-solution to (1), if
u € C?Q)NC(Q) and

—Apu < Me(z)u™° + h(z)u? in Q,
ulogo =0, w>0 inQ,

A function @ € WyP(Q) is called a weak super-solution to (1) if @ € C2(2) N
C(Q) and

—A,T < Me(z)a° + h(z)a? in Q,
Ulogo =0, w>0 inQ,
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Definition 1.3. A solution uy of problem (1.1) is called minimal if uy < v almost
everywhere in ) for any further solution v of problem (|1.1))4.

We state below the results that we will prove.

Theorem 1.4. Assume 0 <d <1, p—1<q<p*—1. Then there ezists a positive
number A* such that the following properties hold:

(1) For all X € (0,A*) problem (L.1)+ has a minimal solution uy.

(2) Problem + has a solution if A = A*;

(3) Problem (L.1)+ does not have any solution if A > A*.

Theorem 1.5. Assume 0 <d <1,p—1<qg<p*—1. Then there exists a positive
number A, such that the following properties hold:

(1) If A > A, then problem (1.1))_ has at least one solution;
(2) If A < A, then problem (1.1))— does not have any solution.

A comparison between our main result (Theorems and and some of those
the previously cited ones, is now in order: in the present paper, we extended the
main result of Giacomoni-Schindler-Taka¢ [I1, Theorem 2.1] to a class of perturbed
singular functionals, this feature gains a remarkable importance in the applications.
Moreover, it is worth noticing that, since parameter k(z) and h(x) in problem
i, is variable, causes that the quasilinear singular problem is investigate in a
complete form. On the other hand, the main difference between Theorems [1.4] and
above and the main result of Radulescu-Repovs [I8, Theorems 1.1 and 1.2] in
applications consists in different from two directions: one is the operator considered
in this work is more general than in [I8], the other is with considering singular term
instead of Radulescu and Repovs in [18].

2. PROOF OF THEOREM [L.4]

The proof is organized in several steps.
Step 1: Existence of minimal solution for 0 < A < A*. Let us define

A* = sup{A > 0: (LI), has a weak solution} (2.1)

and let A1 (€2, m) = A1 be the first (principal) eigenvalue of —A, and let ®,,, denote
an eigenfunction of —A, associated to A; i.e., &, solves
—Ap®,, = \ym(x)|®,, [P, in Q
®,>0 inQ
®,, =0 indN.
It is well-known that ®,, belongs to C*(Q), that ®,, may be chosen positive in
and that |V®| is positive on a neighborhood of 9.
To show the existence of a solution to the problem (1.1)1, we construct a well

ordered pair of sub-solution u,, and a super-solution @y, such that u, <u,.
To find a sub-solution, we assume that m(z) = min{k(z),h(x)} and A; < A

o
Define . = c®%, '*°. By a straightforward calculation, we have

V¢C=c( i

1-6
—— ) ®5 TV,
p—1+ 5)

and

- AP(¢C>
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= —div(|Vee P2 Vibe)

p—1 — -1 —ép 1 —&p
— (pc) ((S 1)<p )|v¢m|p®%—l+5 + )\1< pc >P m(x)¢ﬁz(bml”7_l+5

(p—144)P p—1+6
Thus,
— Ap(¢e)
P15 — 1 -1 %517 C p—1 %f”
_ (po) (p< : +25()]:’ )|V<I>m|p<1>£{ R )qm(m)(z#“) G P
p PG —1)(p—1) -5
< Vo,,P
_m(a:)(((p_1+5)p> » | P1b,
—1 p(p—1)
p PG —1)(p—1) -5
< Vo,,P
*m($)<((p—1—|—5)1’> » | P1b,
—1 pq
p PP - 1)(p - 1) -5
< Vo,
7m(x)<((p_1+5)p> » | P,
I N L S Ey
+)\1(p71+5) c ’l/)c)

Therefore, for ¢ > 0 small enough, we have
~Ap(We) < mlx) (M® +9E) < M) ® + h(x)yd

This shows that 9. is a sub-solution of the problem (1.1}, .
Let us now show that problem (1.1)); has a super-solution. Now, we put m(z) =

max{k(z),h(z)} and \; > A\. Define ¢py = M®5 '*° for M > c large enough.
Using similar arguments as above we have

1—6
Vibas = M(L)w;”“ Vo,

p—1+9
and
—Ap(Yum)
= —div(|VYa [P Vahar)
(pM)P'0-1D(p—1) ok pM Pl o _=dn
— (pm p(p,’% 1446 V4 @ﬁz 1446
e T Fm@) () o
Thus,
_AP<'(/)1\/[)
_ pM p=l p:iff»é (5_1)(])_1) P D
o pM el = (6—1)(p— 1) p , Aim(z)
N (pf1+5) ®n [ p—1+4+6 VOm[” + 2 %}

Arm(x) pM )P—l _=dp_
(p”% 1+6 /D
3 <p —144 O
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_ ( D )p_lMp71+5 [(5 —1)(p— 1)|V(I)m‘p n )\1(7’L)”"L(35)¢)gI wi?

p—1+94¢ p—1+96 2
)\177L(I’)< p )p—l 1 T—'(P:l—Q)
MP qq)mp 1+6 q
Tt p—1496 Yar

Therefore, for M > 0 may be chosen arbitrarily large, we have
—Ap(tar) = m(x) (M7 +9,) = Me(@)os] + h(z)v,

This shows that v is a super-solution of the problem (1.1]),. It remains to show
that ¢, = uy, < ¥ = uy. Therefore, for ¢ > 0 small enough and M > 0 large
enough, we obtain

= Ap(uy)
B pc Pl _=er(6—1)(p—1) » p
N (p—1+5) O [ p—1494§ IV &m| +)\1m(33)¢m}

M p=1 v r(§—1)(p—1
< (ﬁ) op 0 [%w@m\ﬂ +A1m(x)¢1;n] = — A, (@y).
Consequently, we may apply the weak comparison principle (see in [11, Theorem
2.3]) in order to conclude that u, < wy. Thus, By the classical iteration method
+ has a solution between the sub-solution and the super-solution.

Let us now prove that u, is a minimal weak solution of (L.1));. We use here the
weak comparison principle (see Proposition 2.3 in Cuesta and Taka¢ [6]) and the
following monotone iterative scheme:

— Ay — Me(z)u,® = h(z)ul_, inQ;

(2.2)
Unlog =0,

where ug = u,, according to Giacomoni, Schindler and Tak4¢ [I1], is the unique
solution to the following purely singular problem

—Apu=Me(z)u™® inQ,
ulgo =0, u©>0 in Q.

Note that ug is a weak subsolution to + and ug < U where U is any weak
solution to (L.I)4. Then, from the weak comparison principle, we obtain easily
that up < uy and {u,}22, is a nondecreasing sequence. Furthermore, u, < U and
{un 2, is uniformly bounded in Wy*(€). Hence, it is easy to prove that {u,}
converges weakly in VVO1 "P(Q) and pointwise to uy, a weak solution to the problem
+. Let us show that uy is the minimal solution to + for any 0 < A < A*.
Let vy a weak solution to + for any 0 < A < A*. Then, up = uy < vx. From
the weak comparison principle, u, < vy for any n > 0. Letting n — oo, we obtain
u) < vy. This completes the proof of the Step 1.

Step 2: + has no positive solution for A > A*. Firstly, from Step 1 we have
that A* > 0. Now, let us show that A* < co. We argue by contradiction: suppose
there exists a sequence \,, — oo such that + admits a solution u,,. Denote

m = min{essinf,cq k(z), essinf cq inf h(z)} > 0.
There exists A* > 0 such that
m (A0 + 1) > (A +e)tP™! forallt >0, e€ (0,1), A > \*
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where A; is the first Dirichlet eigenvalue of —A,, is positive and is given by
(2.3)

(see Lindqvist [I6]). Choose A, > A*. Clearly w,, is a supersolution of the problem
—Apu= (A +e)uP~ in O

(2.4)
u >0, u|ag = 0.

for all € € (0,1). We now use the [1I, Lemma 3.1] to choose y < A1 4 € small enough
so that 1 (z) < un () and p¢; is a subsolution to problem (2.4). By a monotone
interation procedure we obtain a solution to for any € € (0,1), contradicting
the fact that \; is an isolated point in the spectrum of —A, in Wy (Q) (see Anane
[2]). This proves the claim and completes the proof of the step 2.

Step 3: Existence of at least one positive weak solution for A = A* to +.
Let {Ag}ren such that Ay T A* as k — oo. Then, from Step 1, there exists
up = uy, = u,, toa weak positive solution to + for A = Ag. Therefore,
for any ¢ € C°(Q2), we have:

/|Vuk\p_2VukV¢dx:)\k/ k(a:)u,;‘sqbdx—l—/ h(z)ul¢da. (2.5)
Q Q Q
Since uy € Wy*(Q) and uy > uy, it is easy to see that (2.5)) holds also for ¢ €

WP (€2). Moreover, from above

>\k
-9
Thus, by Sobolev imbedding and using the fact that k:, h € L*>*(Q) it follows that

Ey, (ug) < Ex, (uy,) / |Vuy, [P de — u,\kl_‘S dz <0, (2.6)

SI;p llukllp, < oo. (2.7)

Hence, there exists up~ > u,, such that up — up~ in Wol’p(Q) as k — oo and

up — upx in LY(Q) since p — 1 < ¢ < p* — 1, and pointwise a.e. as k — co. (2.8)
From (2.5), (2.7) and (2.8)), for any ¢ € Wol’p(Q) we obtain
/ |Vup« P 2Vup-Vodr = A*/ k(z)uy’¢de +/ h(z)ul.¢dx (2.9)
Q Q

which completes the proof of the Step 3 and gives the proof of Theorem [1.4]

3. PROOF OF THEOREM [L.5]

The study of existence of solutions to problem (1.1))_ is done by looking for
critical points of the functional JA: W,y P(€2) — R defined by

1
= 7/ \Vu|pdx— / o) ult™ 5dx+7/ o)|ulfT dr (3.1)
pJa

in the Sobolev space VVO1 (). In the next we adopt the following notations. The
norm in Wy?(€2) will be denoted by

Jull = ( [ 1vu as)”
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The norm in L47(Q) will be denoted by
1/q+1
fullgss = ([ 7+ az)
Q

The proof of the theorem is organized in several steps.

Step 1: The energy functional Jy has a global minimizer. We first prove that Jy
is coercive. In order to verify this claim, we first observe that by using Holder’s
and Sobolev’s inequalities, we have for any u € W, (Q) and all A > 0

1 _
D) = el = Cullul'=* + Coflullgi) (3.2)

- D+E(1-6) g°5 llklloe s _ g+ p_pi—g-l ~
where Cy = \|QPHPU=0975" FRlEs with D = L5, B = Erd=s and S > 0 is the

best Sobolev constant and Cy = (¢ + 1) ! essinf,cq h(z) are positive constants. It
follows from (3.2)) that

1 _
Ian(u) = };HUII”—ClIIqu °. (3-3)

and hence Jy(u) — +oo as ||u|]| — oco. This completes the proof of our Claim.
Now, let n +— u, be a minimizing sequence of Jy in Wy(Q). The coercivity
of Jy implies the boundedness of u, in Wy* (). Since Jy(u) = Jx(|u|), without
loss of generality, we may assume that (u,), is non-negative, converges weakly
to some u in I/VO1 "P(Q) and converges also pointwise. Moreover, by the weak lower
semicontinuity of the norm |- || and the boundedness of (u,),, in Wy (Q) we obtain

Ja(u) < lim inf Jy(uy,).

Hence u is a global minimizer of .Jy in WO1 P(2). Which completes the proof of the
Step 1.

Step 2: The weak limit u is a non-negative weak solution of problem _ if
A > 0 is sufficiently large. Firstly, observe that Jx(0) = 0. So, to prove that the
non-negative solution is non-trivial, it suffices to prove that there exists A, > 0
such that

inf  Jx(u) <0 forall A>0. (3.4)
uEW, P (Q)

For this purpose, take any positive u and consider eu. Then, for a fixed A > 0,
Jxa(eu) < 0 if € > 0 is small enough. Therefore the minimum is negative for all
A > 0.

Now, we consider the variational problem with constraints,

1 1
Ay = inf {5/ [Vw|P dz + q—i—il/ h(z)|w|T dz - w € Wy P() and
Q Q

(3.5)
1 1-6 3. _
T3 ) F@lul 0 de = 1}.
and define
A, =inf{A > 0: (L.I) _ admits a nontrivial weak solution}. (3.6)

From above, we have
Ja(u) =A —A <0 for any A > A,.

Therefore, the above remarks show that A\, > A, and that problem (1.1))_ has a
solution for all A > A,.
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We now argue that problem ((1.1)_ has a solution for all A > A.. Fixed A > A,,
by the definition of A,, we can take 1 € (A,, A) such that that J, has a non-trivial

critical point u, € Wol’p(Q). Since u < A, u, is a sub-solution of the problem
(1.1)—. In order to find a super-solution of the problem (1.1))_ which dominates
u,,. For this purpose we consider the constrained minimization problem

inf{Jy(w) : we Wy P(Q) and w > u,.} (3.7

Arguments similar to those used to treat show that the above minimization
problem has a solution uy > w,. Moreover, uy is also a weak solution of problem
(1.1)— for all A > A,. With the arguments developed in [I1] we deduce that problem
(1.1)— has a solution if A = A,.

Thus, one applies [2l Theorem A.1], based on the Moser iteration, shows that
u € LS. Next, again by a bootstrap regularity due to Giacomoni-Schindler-Taka¢
[1, Theorem B.1] shows that the weak solution u € C%*(Q) where o € (0,1).
Finally, the non-negative follows immediately by the strong maximum principle
(see [T, Theorem 2.3]) since u is a C'* non-negative weak solution of the differential
inequality

~V(|VulP~2Vu) + h(z)u? >0 in Q.

We deduce that u is positive everywhere in ). The proof of the step 2 is now
complete.

Step 3: Non-existence for A > 0 small. The same monotonicity arguments as in
Step 2 show that (1.1)_ does not have any solution if A < A,. Which completes
the proof of the Theorem
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