
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 38, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

MULTIPLICITY OF GROUND STATE SOLUTIONS FOR
DISCRETE NONLINEAR SCHRÖDINGER EQUATIONS WITH
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Abstract. The discrete nonlinear Schrödinger equation is a nonlinear lat-

tice system that appears in many areas of physics such as nonlinear optics,
biomolecular chains and Bose-Einstein condensates. In this article, we con-

sider a class of discrete nonlinear Schrödinger equations with unbounded po-

tentials. We obtain some new sufficient conditions on the multiplicity results
of ground state solutions for the equations by using the symmetric mountain

pass lemma. Recent results in the literature are greatly improved.

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation is one of the most impor-
tant inherently discrete models. DNLS equations play a crucial role in the modeling
of a great variety of phenomena, ranging from solid state and condensed matter
physics to biology [6, 7, 8]. For example, they have been successfully applied to
the modeling of localized pulse propagation optical fibers and wave guides, to the
study of energy relaxation in solids, to the behavior of amorphous material, to the
modeling of self-trapping of vibrational energy in proteins or studies related to the
denaturation of the DNA double strand [15].

This article considers the DNLS equation

iψ̇n = −∆ψn + vnψn − γnf(ψn), n ∈ Z, (1.1)

where ∆ψn = ψn+1 +ψn−1−2ψn is discrete Laplacian operator, vn and γn are real
valued for each n ∈ Z, f ∈ C(R,R), f(0) = 0 and the nonlinearity f(u) is gauge
invariant; that is,

f(eiθu) = eiθf(u), θ ∈ R. (1.2)
Since solitons are spatially localized time-periodic solutions and decay to zero at

infinity, ψn has the form

ψn = une
−iωt,

lim
|n|→∞

ψn = 0,
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where ψn is real valued for each n ∈ Z and ω ∈ R is the temporal frequency. Then
(1.1) becomes

−∆un + vnun − ωun = γnf(un), n ∈ Z, (1.3)

lim
|n|→∞

un = 0 (1.4)

holds, where |n| is the length of index n. Naturally, if we look for solitons of (1.1),
we just need to get the solutions of (1.3) satisfying (1.4).

In the past decade, the existence of solitons of the DNLS equations has drawn a
great deal of interest [13, 14, 16, 17, 18, 19, 24, 25, 26, 27, 28]. The existence for the
periodic DNLS equations with superlinear nonlinearity [16, 17] and with saturable
nonlinearity [27, 28] has been studied. And the existence results of solitons of the
DNLS equations without periodicity assumptions were established in [13, 14, 26].
As for the existence of the homoclinic orbits of nonlinear Schrödinger equations,
we refer to [4, 21, 22, 23]. By using the generalized Nehari manifold approach,
Mai and Zhou [16] in 2013 proved the existence of a kind of special solitons of
(1.3), which called ground state solutions [14], that is, nontrivial solutions with
least possible energy in l2. In this paper, we employ the Symmetric Mountain Pass
Lemma instead of the generalized Nehari manifold approach to obtain the existence
of ground state solutions of (1.3).

Let F (u) =
∫ u
0
f(t)dt ≥ 0, t ∈ R. Our main results are as follows.

Theorem 1.1. Suppose that f(u) is odd in u and the following hypotheses are
satisfied:

(A1) for any n ∈ Z, we have v = infn∈Z vn > ω > 0, and lim|n|→∞ vn = +∞;
(A2) there exist two positive constants γ and γ̄ such that for any n ∈ Z, γ ≤

γn ≤ γ̄;
(A3) f(u) is continuous in u and f(u) = o(u) as u→ 0;
(A4) for any c > 0, there exist p = pc > 0, q = qc > 0 and µ < 2 such that(

2 +
1

p+ q|un|µ/2
)
F (un) ≤ f(un)un, ∀n ∈ Z, |un| ≥ c;

(A5) lims→+∞[
γmin|u|=1 F (su)

s2 ] = +∞.
Then (1.3) has an unbounded sequence solutions satisfying (1.4).

Theorem 1.2. The unbounded sequence solutions u(k) (k ∈ N of (1.3) obtained in
Theorem 1.1 decay exponentially at infinity:

|u(k)
n | ≤ C(k)e−β

(k)|n|, n ∈ Z,

with some constants C(k) > 0 and β(k) > 0, k ∈ N.

Remark 1.3. Zhang et al. [21, 22] studied (1.3) under the assumption that

0 < (q1 − 1)f(u)u ≤ f ′(u)u2, ∀u 6= 0

holds for some constant q1 ∈ (2,+∞). This is a stronger condition than the classical
Ambrosetti- Rabinowitz superlinear condition; i.e., there exist constants q1 > 2 and
r1 > 0 such that

0 < q1

∫ u

0

f(s)ds ≤ uf(u), ∀|u| ≥ r1.

Thus, our results improve the corresponding results in [24, 25].
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As it is well known, critical point theory is a powerful tool to deal with the
homoclinic solutions of differential equations [9, 10, 11, 12] and is used to study
homoclinic solutions of discrete systems in recent years [1, 2, 3, 27]. Our aim in this
paper is to obtain the multiplicity results of ground state solutions for the discrete
nonlinear Schrödinger equations by using critical point theory. The main idea is
to transfer the problem of solutions in E (defined in Section 2) of (1.3) into that
of critical points of the corresponding functional. The motivation for the present
work stems from the recent papers [2, 4, 12].

2. Preliminaries

To apply the critical point theory, we establish the variational framework corre-
sponding to (1.3) and give some lemmas which will be of fundamental importance
in proving our main results. We start by some basic notation.

Let S be the vector space of all real sequences of the form

u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . . ) = {un}+∞n=−∞,

namely S = {{un} : un ∈ R, n ∈ Z}. Define

E =
{
u ∈ S :

+∞∑
n=−∞

(−∆un · un + vnu
2
n) < +∞

}
.

The space is a Hilbert space with the inner product

〈u, ν〉 =
+∞∑

n=−∞
(−∆un · νn + vnunνn),∀u, ν ∈ E, (2.1)

and the corresponding norm

‖u‖ =
[ +∞∑
n=−∞

(−∆un · un + vnu
2
n)
]1/2

, ∀u ∈ E. (2.2)

In what follows, l2 denotes the space of functions whose second powers are sum-
mable on Z equipped with

‖u‖2l2 =
∑
n∈Z

u2
n.

Let
l∞(Z,R) = {u ∈ S : sup

n∈Z
|un| < +∞}.

For any n1, n2 ∈ Z with n1 < n2, we let Z(n1, n2) = [n1, n2] ∩ Z and for function
f : Z→ R and a ∈ R, we set

Z(fn ≥ a) = {n ∈ Z : fn ≥ a},Z(fn ≤ a) = {n ∈ Z : fn ≤ a}.
For all u ∈ E, define the functional J on E as follows:

J(u) :=
1
2

+∞∑
n=−∞

(−∆un · un + vnu
2
n)− ω

2

+∞∑
n=−∞

u2
n −

+∞∑
n=−∞

γnF (un)

=
1
2
‖u‖2 − ω

2
‖u‖2l2 −

+∞∑
n=−∞

γnF (un).

(2.3)

Standard arguments show that the functional J is a well-defined C1 functional
on E and (1.3) is easily recognized as the corresponding Euler-Lagrange equation
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for J . Thus, to find nontrivial solutions to (1.3) satisfying (1.4), we need only to
look for nonzero critical points of J in E.

For the derivative of J we have the formula

〈J ′(u), ν〉 =
+∞∑

n=−∞
(−∆un · νn + vnunνn − ωunνn − γnf(un)νn), ∀u, ν ∈ E. (2.4)

Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-
differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
(P.S. condition for short) if any sequence {un} ⊂ E for which {J(un)} is bounded
and J ′(un)→ 0 (n→∞) possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its
boundary.

Lemma 2.1 (Symmetric Mountain Pass Lemma [20]). Let E be a real Banach
space and J ∈ C1(E,R) with J even. Suppose that J satisfies the P.S. condition,
J(0) = 0,

(A6) there exist constants ρ, α > 0 such that J |∂Bρ ≥ α, and
(A7) for each finite dimensional subspace Ẽ ⊂ E, there is r = r(Ẽ) > 0 such

that J(u) ≤ 0 for u ∈ Ẽ\Br, where Br is an open ball in E of radius r
centered at 0.

Then J possesses an unbounded sequence of critical values.

Lemma 2.2. For u ∈ E,

v‖u‖2∞ ≤ v‖u‖2l2 ≤ ‖u‖2, (2.5)

where ‖u‖∞ = supn∈Z |un|.

Proof. Since u ∈ E, it follows that lim|n|→∞ |un| = 0. Hence, there exists n∗ ∈ Z
such that

‖u‖∞ = |un∗ | = max
n∈Z
|un|.

By (A1) and (2.2), we have

‖u‖2 ≥
∑
n∈Z

vnu
2
n ≥ v

∑
n∈Z

u2
n ≥ v‖u‖2∞.

The proof is complete. �

Lemma 2.3. Suppose that (A1)–(A5) are satisfied. Then J satisfies condition (C)
[2, 20].

Proof. Let {u(k)}k∈N ⊂ E be such that {J(u(k))}k∈N is bounded and (1+‖u(k)‖)‖J ′(u(k))‖ →
0 as k →∞. Then there is a positive constant K such that |J(u(k))| ≤ K. By (2.3)
and (2.4), we have

2K ≥ 2J(u(k))− 〈J ′(u(k)), u(k)〉

=
+∞∑

n=−∞
γn
[
f(u(k)

n )u(k)
n − 2F (u(k)

n )
]
.

(2.6)

By (A3), there exists η ∈ (0, 1) such that

|F (un)| ≤ v − ω
4γ̄

u2
n, ∀n ∈ Z, |un| ≤ η. (2.7)



EJDE-2017/38 MULTIPLICITY OF GROUND STATE SOLUTIONS 5

Then it follows from (A4) that

f(u(k)
n )u(k)

n > 2F (u(k)
n ) ≥ 0, ∀n ∈ Z, (2.8)

F (u(k)
n ) ≤

[
p+ q|u(k)

n |µ/2
][
f(u(k)

n )u(k)
n − 2F (u(k)

n )
]
, ∀n ∈ Z, |u(k)

n | ≥ η. (2.9)

By Lemma 2.2, (2.3), (2.7), (2.8), (2.10)) and (2.11), we have
1
2
‖u(k)‖2

= J(u(k)) +
ω

2
‖u(k)‖2l2 +

∑
n∈Z(|u(k)

n |≤η)

γnF (u(k)
n ) +

∑
n∈Z(|u(k)

n |≥η)

γnF (u(k)
n )

≤ J(u(k)) +
ω

2v
‖u(k)‖2 +

v − ω
4

∑
n∈Z(|u(k)

n |≤η)

(u(k)
n )2

+ γ̄
∑

n∈Z(|u(k)
n |≥η)

[
p+ q|u(k)

n |µ/2
][
f(u(k)

n )u(k)
n − 2F (u(k)

n )
]

≤ K +
ω

2v
‖u(k)‖2 +

v − ω
4v
‖u(k)‖2 + 2Kγ̄

(
p+ qvµ/2‖u(k)‖µ

)
.

That is,
v − ω

4v
‖u(k)‖2 ≤ K + 2Kγ̄

(
p+ qvµ/2‖u(k)‖µ

)
.

Since v > ω and µ < 2, it is not difficult to know that {u(k)}k∈N is a bounded
sequence in E, i.e., there exists a constant K1 > 0 such that

‖u(k)‖ ≤ K1, k ∈ N. (2.10)

So passing to a subsequence if necessary, it can be assumed that u(k) ⇀ u(0) in E.
For any given number ε > 0, by (A3), we can choose ζ > 0 such that

|f(u)| ≤ ε|u|, ∀ u ∈ R, (2.11)

where |u| ≤ ζ.
By (A1), we can also choose a positive integer D ∈ R such that

vn ≥
K2

1

ζ2
, |n| ≥ D. (2.12)

By (2.10) and (2.12), we obtain

(u(k)
n )2 =

1
vn
vn(u(k)

n )2 ≤ ζ2

K2
1

‖u(k)‖2 ≤ ζ2, |n| ≥ D. (2.13)

Since u(k) ⇀ u(0) in E, it is easy to verify that u(k)
n converges to u(0)

n pointwise for
all n ∈ Z, that is

lim
k→∞

u(k)
n = u(0)

n , ∀n ∈ Z. (2.14)

Combining this with (2.13), we have

(u(0)
n )2 ≤ ζ2, |n| ≥ D. (2.15)

It follows from (2.14) and the continuity of f(u) on u that there exists k0 ∈ N such
that

D∑
n=−D

γn|f(u(k)
n )− f(u(0)

n )| < ε, k ≥ k0. (2.16)



6 X. LIU, T. ZHOU, H. SHI EJDE-2017/38

On the other hand, from (A3), (2.5), (2.10), (2.11), (2.13), (2.15) and Hölder in-
equality it follows that∑

|n|≥D

γn|f(u(k)
n )− f(u(0)

n )||u(k)
n − u(0)

n |

≤
∑
|n|≥D

γ̄
(
|f(u(k)

n )|+ |f(u(0)
n )|

)
(|u(k)

n |+ |u(0)
n |)

≤ γ̄ε
∑
|n|≥D

[
|u(k)
n |+ |u(0)

n |
](
|u(k)
n |+ |u(0)

n |
)

≤ 2γ̄ε
+∞∑

n=−∞

(
|u(k)
n |2 + |u(0)

n |2
)

≤ 2γ̄ε
v

(
K2

1 + ‖u(0)‖2
)
.

(2.17)

Since ε is arbitrary, we obtain

+∞∑
n=−∞

γn
∣∣f(u(k)

n )− f(u(0)
n )
∣∣→ 0, k →∞. (2.18)

It follows from (2.2), (2.4) and (2.5) that

〈J ′(u(k))− J ′(u(0)), u(k) − u(0)〉

= ‖u(k) − u(0)‖2 − ω‖u(k) − u(0)‖2l2 −
+∞∑

n=−∞
γn(f(u(k)

n )− f(u(0)
n ))(u(k) − u(0))

≥ v − ω
v
‖u(k) − u(0)‖2 −

+∞∑
n=−∞

γn

(
f(u(k)

n )− f(u(0)
n )
)

(u(k) − u(0)).

Therefore,

v − ω
v
‖u(k) − u(0)‖2 ≤ 〈J ′(u(k))− J ′(u(0)), u(k) − u(0)〉

+
+∞∑

n=−∞
γn

(
f(u(k)

n )− f(u(0)
n )
)

(u(k) − u(0)).

Since v > ω > 0 and 〈J ′(u(k))−J ′(u(0)), u(k)−u(0)〉 → 0, k →∞. Thus, u(k) → u(0)

in E and the proof is complete. �

3. Proofs of theorems

In this section, we shall prove our main results by using the critical point method.

Proof of Theorem 1.1. It is clear that J is even and J(0) = 0. We have already
known that J ∈ C1(E,R) and J satisfies condition (C). Hence, it suffices to prove
that J satisfies the conditions (J1) and (A7) of Lemma 2.1.
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If ‖u‖ =
√
vη := ρ, then by Lemma 2.2, |un| ≤ η for n ∈ Z. Set α = v−ω

4v η
2.

Hence, from (2.3), (2.5), (2.7), (A1) and (A3), we have

J(u) ≥ 1
2
‖u‖2 − ω

2v
‖u‖2 −

+∞∑
n=−∞

γnF (un)

≥ v − ω
2v
‖u‖2 − v − ω

4v

+∞∑
n=−∞

vnu
2
n

≥ v − ω
2v
‖u‖2 − v − ω

4v
‖u‖2

=
v − ω

4v
‖u‖2 = α.

(3.1)

Equation (3.3) shows that ‖u‖ = ρ implies that J(u) ≥ α, i.e., J satisfies assumption
(A6).

In the following, we shall verify condition (A7). Let Ẽ ⊂ E be a finite dimen-
sional subspace. Consider u ∈ Ẽ with u 6= 0. Since all norms of a finite dimensional
normed space are equivalent, there is a constant c1 > 0 such that

‖u‖2 ≤ c1‖u‖2∞, ∀u ∈ Ẽ. (3.2)

Assume that dim Ẽ = m and u1, u2, . . . , um are the basis of Ẽ such that for i, j =
1, 2, . . . ,m, we have

〈ui, uj〉 =

{
c21, i = j,

0, i 6= j.
(3.3)

Since ui ∈ E, we can choose a positive integer D1 > 0 such that

|u(i)
n | <

1
m
, |n| > D1, i = 1, 2, . . . ,m. (3.4)

Set Θ = {u ∈ Ẽ : ‖u‖ = c1}. Then for u ∈ Θ, there exist λi ∈ R, i = 1, 2, . . . ,m
such that

un =
m∑
i=1

λiu
(i)
n , ∀n ∈ Z. (3.5)

It follows that

c21 = ‖u‖2 = 〈u, u〉 =
m∑
i=1

λ2
i 〈u(i), u(i)〉 = c21

m∑
i=1

λ2
i ,

which implies that |λi| ≤ 1 for i = 1, 2, . . . ,m. Hence, for u ∈ Θ, let |un0 | = ‖u‖∞,
then by (3.2) and (3.4) we have

1 ≤ ‖u‖∞ = |un0 | ≤
m∑
i=1

|λi||u(i)
n0
| ≤

m∑
i=1

|u(i)
n0
|, θ ∈ Θ. (3.6)

By (A5), there exists σ0 = σ0(c1, D1) > 1 such that

γmin|u|=1 F (n, sun)
s2

≥ c21, ∀s ≥ σ0, n ∈ Z(D1, D1). (3.7)

By (3.4) and (3.6), there exists n0 = n0(u) ∈ Z(D1, D1) such that

1 ≤ |un0 | = ‖u‖∞, ∀u ∈ Θ. (3.8)
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By (2.3), (3.7) and (3.8), we have

J(σu) =
1
2
‖σu‖2 − ω

2
‖σu‖2l2 −

+∞∑
n=−∞

γnF (σun)

≤ σ2

2
‖u‖2 − ω

2
‖σu‖2l2 − γF (σun0)

≤ σ2

2
‖u‖2 − ω

2
‖σu‖2l2 − γ min

|x|=1
F (σ|un0 |x)

≤ (c1σ)2

2
− (c1σ)2|un0 |2

≤ (c1σ)2

2
− (c1σ)2

= − (c1σ)2

2
, u ∈ Θ, σ ≥ σ0.

(3.9)

This implies J(u) < 0 for u ∈ Ẽ and ‖u‖ ≥ c1σ0. The condition (A7) holds. By
Lemma 2.1, J possesses an unbounded sequence {d(k)}k∈N of critical values with
d(k) = J(u(k)), where u(k) is such that J ′(u(k)) = 0 for k = 1, 2, . . . . By (2.3), we
have

1
2
‖u(k)‖2 = d(k) +

ω

2
‖u(k)‖2l2 +

+∞∑
n=−∞

γnF (u(k)
n ) ≥ d(k), k ∈ N.

Since {d(k)}k∈N is unbounded, it follows that {‖u(k)‖}k∈N is unbounded. �

Remark 3.1. Similar to [18], we can prove that the homoclinic solutions u(k) decay
exponentially fast at infinity. For simplicity, we omit its proof.
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