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STABILITY OF BOUNDARY-VALUE PROBLEMS FOR
THIRD-ORDER PARTIAL DIFFERENTIAL EQUATIONS
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Communicated by Ludmila S. Pulkina

Abstract. We consider a boundary-value problem for the third-order partial

differential equation

d3u(t)

dt3
+Au(t) = f(t), 0 < t < 1,

u(0) = ϕ, u(1) = ψ, u′(1) = ξ

in a Hilbert space H with a self-adjoint positive definite operator A. Using
the operator approach, we establish stability estimates for the solution of the

boundary value problem. We study three types of boundary value problems

and obtain stability estimates for the solution of these problems.

1. Introduction

Boundary value problems for third order partial differential equation have been
considered in fields of sciences and engineering, such as modern physics, chemical
diffusion and mechanic fluids. The well-posedness of various boundary-value prob-
lems for partial differential and difference equations has been studied extensively
by many researchers [1, 2, 3, 16, 18, 19, 20, 22, 23, 25] and the references therein.

The following boundary-value problem for a third order partial differential equa-
tion with three points boundary condition is studied in [23],

∂3u(x, t)
∂t3

+
∂

∂x

(
a(x, t),

∂u(x, t)
∂x

)
= f(x, t),∫ 1

c

u(x, t)dx = 0, t ∈ [0, T ], 0 ≤ c < 1, T > 0,

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0,

∂2u

∂t2
(x, T ) = 0, x ∈ [0, 1],

where a(x, t) and its derivatives satisfy the condition 0 < a0 < a(x, t) < a1,
|(a(x, t))x| ≤ b, and f(x, t) is given smooth function in [0, 1] × [0, T ], It was ob-
tained the approximate solution of the considered problem, the authors established
a bounded linear operator and an orthogonal basis to use the reproducing kernel
space method, numerical results are also given.

2010 Mathematics Subject Classification. 35G15, 47A62.
Key words and phrases. Stability; boundary value problem; Hilbert space;

third order partial differential equation; self-adjoint positive definite operator.
c©2017 Texas State University.

Submitted December 14, 2016. Published February 21, 2017.

1



2 A. ASHYRALYEV, KH. BELAKROUM, A. GUEZANE-LAKOUD EJDE-2017/53

There are several methods for solving partial differential equations. For instance,
the method of operator as a tool for investigation of the stability of partial differ-
ential equation in Hilbert and Banach space has been systematically devoted by
several authors (see for example [4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 17, 21, 24] and the
references therein).

In this article we consider the boundary-value problem for third-order partial
differential equation

d3u(t)
dt3

+Au(t) = f(t), 0 < t < 1,

u(0) = ϕ, u(1) = ψ, u′(1) = ξ
(1.1)

in a Hilbert space H with a self-adjoint positive definite operator A ≥ δI, where
δ > 0. We are interested in the stability of the solution of problem (1.1).

A function u(t) is a solution of problem (1.1) if the following conditions are
satisfied:

(i) u(t) is thrice continuously differentiable on the interval (0, 1) and continu-
ously differentiable on the segment [0, 1]. The derivatives at the end points
of the segment are understood as the appropriate unilateral derivatives.

(ii) The element u(t) belongs to D(A) for all t ∈ [0, 1], and function Au(t) is
continuous on the segment [0, 1].

(iii) u(t) satisfies the equation and boundary conditions (1.1).

The outline of this article is as follows. In Section 2 the main theorem on
stability of problem (1.1) is established. Section 3 proves the stability estimates for
the solution of three problems for partial differential equations of third order in t.
Conclusion presents in Section 4.

2. Main theorem on stability

Let us prove some lemmas needed in the sequel.

Lemma 2.1 ([15]). For t ≥ 0 the following estimate holds

‖ exp{±itA1/3}‖H→H ≤ 1. (2.1)

Lemma 2.2 ([6]). The operator ∆ defined by the formula

∆ =
1
3
{I − (ae−(1+a)B + āe−(1+ā)B)}

has a bounded inverse T = ∆−1 and

‖T‖H→H ≤
3

1− 2e−(3/2)δ1/3 . (2.2)

Here a = 1
2 + i

√
3

2 , ā = 1
2 − i

√
3

2 , B = A1/3.

Lemma 2.3. Suppose that ϕ ∈ D(A), ψ ∈ D(A), ξ ∈ D(A) and f(t) is con-
tinuously differentiable on [0, 1]. Then there is unique solution of problem (1.1)
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and

u(t) = e−Btu(0) +
1

1 + a
B−1(e−(1−t)B − e−(a+t)B)(u′(1) +Bu(1))

+
1

a− ā
B−2{ 1

1 + a
(e−(1−t)aB − e−(a+t)B)

− 1
1 + a

(e−(1−t)āB − e−(ā+t)B)}(u′′(1) + āBu′(1)− aB2u(1))

− 1
a− ā

B−2

∫ t

0

[ 1
1 + a

(e−(t−s)B − e−(t+sa)B)

− 1
1 + a

(e−(t−s)B − e−(t+sa)B)
]
f(s)ds,

(2.3)

where

u′′(1) = T
{
B2e−Bu(0) +

1
1 + a

B(I − e−(a+1)B)(u′(1) +Bu(1))

+
1

a− ā
{ 1

1 + a
(a2I − e−(a+1)B)− 1

1 + a
(a2I − e−(ā+1)B)

}
× (āBu′(1)− aB2u(1))− 1

a− ā
B−1

[
e−(1+a)B − e−(1+a)B

− 1
1 + a

(e−(a+1)B − I) +
1

1 + a
(e−(a+1)B − I)

]
f(1)

− 1
a− ā

B−2
[ 1

1 + a
(I − e−(a+1)B)− 1

1 + a
(I − e−(a+1)aB)

]
f ′(1)

− 1
a− ā

∫ 1

0

[ 1
1 + a

(e−(1−s)B − e−(sa+1)B)

− 1
1 + a

(e−(1−s)B − e−(sa+1)B)
]
f(s)ds

}
.

(2.4)

Proof. Obviously, it can be written as the equivalent boundary-value problem for
the system of first order differential equations

du(t)
dt

+Bu(t) = v(t), u(0) = ϕ, u(1) = ψ,

dv(t)
dt
− aBv(t) = w(t), u′(1) = ξ,

dw(t)
dt
− āBw(t) = f(t), 0 < t < 1.

(2.5)

Integrating these equations, we can write

w(t) = e−(1−t)āBw(1)−
∫ 1

t

e−(s−t)āBf(s)ds,

v(t) = e−(1−t)aBv(1)−
∫ 1

t

e−(p−t)aBw(p)dp,

u(t) = e−Btu(0) +
∫ t

0

e−(t−p)Bv(p)dp.

(2.6)

Applying system of equations (2.5), we obtain

v(1) = u′(1) +Bu(1),

w(1) = v′(1)− aBv(1) = u′′(1) + āBu′(1)− aB2u(1).
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Then, we have

w(t) = e−(1−t)āB [u′′(1) + āBu′(1)− aB2u(1)]−
∫ 1

t

e−(s−t)āBf(s)ds. (2.7)

Using formulas (2.6), (2.7), we obtain

v(t) =
1

a− ā
B−1

(
e−(1−t)aB − e−(1−t)āB

)
(u′′(1) + āBu′(1)− aB2u(1))

+ e−(1−t)aB(u′(1) +Bu(1))

− 1
a− ā

B−1

∫ 1

t

(e−(s−t)aB − e−(s−t)āB)f(s)ds.

(2.8)

Using formulas (2.6), (2.8), we obtain formula (2.3). Taking the second order
derivative and putting t = 1, we obtain the following operator equation with respect
to u′′(1).

u′′(1) = B2e−Bu(0) +
1

1 + a
B(I − e−(a+1)B)(u′(1) +Bu(1))

+
1

a− ā
{ 1

1 + a
(a2I − e−(a+1)B)− 1

1 + a
(a2I − e−(ā+1)B)

}
× (u′′(1) + āBu′(1)− aB2u(1))

− 1
a− ā

B−1
[
e−(1+a)B − e−(1+a)B − 1

1 + a
(e−(a+1)B − I)

+
1

1 + a
(e−(a+1)B − I)

]
f(1)

− 1
a− ā

B−2
[ 1

1 + a
(I − e−(a+1)B)− 1

1 + a
(I − e−(a+1)aB)

]
f ′(1)

− 1
a− ā

∫ 1

0

[ 1
1 + a

(e−(1−s)B − e−(sa+1)B)

− 1
1 + a

(e−(1−s)B − e−(sa+1)B)
]
f(s)ds.

(2.9)

Since

∆ = I
1

a− ā
{ 1

1 + a
(a2I − e−(a+1)B)− 1

1 + a
(a2I − e−(ā+1)B)

}
= −1

3
{I − (ae−(1+a)B + āe−(1+ā)B)}

has a bounded inverse T = ∆−1, using lemma 2.2, we obtain formula (2.4). The
proof is complete. �

Now, we formulate the main theorem.

Theorem 2.4. ϕ ∈ D(A), ψ ∈ D(A), ξ ∈ D(A2/3) and f(t) is continuously
differentiable on [0, 1]. Then there is a unique solution of problem (1.1) and the
following inequalities hold

max
0≤t≤1

‖u(t)‖H ≤M
{
‖ϕ‖H + ‖B−1ξ‖H + ‖B−4f ′(1)‖H + ‖ψ‖H

+ max
0≤t≤1

‖B−2f(t)‖H
}
,

(2.10)
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max
0≤t≤1

‖d
3u(t)
dt3

‖H + max
0≤t≤1

‖Au‖H

≤M
{
‖Aϕ‖H + ‖Aψ‖H + ‖A2/3ξ‖H + ‖f(0)‖H + max

0≤t≤1
‖f ′(t)‖H

}
,

(2.11)

where M does not depend on f(t), ϕ, ψ, ξ.

Proof. First, we estimate ‖u(t)‖H for t ∈ [0, 1]. Applying (2.3), (2.1) and triangle
inequality, we obtain

‖u(t)‖H

≤ ‖e−Bt‖H→H‖ϕ‖H +
1

|1 + a|
‖e−(1−t)B − e−(a+t)B‖H→H‖B−1ξ + ψ‖H

+
1

|a− ā|
1

|1 + a|

{
‖e−(1−t)aB − e−(a+t)B‖H→H + ‖e−(1−t)aB

− e−(a+t)B‖H→H
}

(‖B−2u′′(1)‖H + |ā|‖B−1ξ‖H + |a|‖ϕ‖H)

+
1

|a− ā|
1

|1 + a|

∫ t

0

[
‖e−(t−s)B − e−(sa+t)B‖H→H + ‖e−(t−s)B

− e−(sa+t)B‖H→H
]
‖B−2f(s)‖Hds

≤M{‖ϕ‖H + ‖B−1ξ‖H + ‖ψ‖H
+ max

0≤t≤1
‖B−2f(t)‖H + ‖B−2u′′(1)‖H}

(2.12)

for any t ∈ [0, 1]. Applying formula (2.4), estimate (2.2), and the triangle inequality,
we obtain

‖B−2u′′(1)‖H

≤ ‖T‖H→H
{
‖e−B‖H→H‖ϕ‖H +

1
|1 + a|

‖I − e−(a+1)B‖H→H‖B−1ξ + ψ‖H

+
1

|a− ā|
1

|1 + a|
{‖a2I − e−(a+1)B‖H→H + ‖a2I − e−(a+1)B‖H→H}

× (|ā|‖B−1ξ‖H + |a|‖ϕ‖H) +
1

|a− ā|
1

|1 + a|

∫ 1

0

[
‖e−(1−s)B

− e−(sa+1)B‖H→H + ‖e−(1−s)B − e−(sa+1)B‖H→H
]
‖B−2f(s)‖Hds

+
1

|a− ā|

[
‖e−(a+1)B − e−(1+a)B‖H→H +

1
|1 + a|

[
‖I − e−(a+1)B‖H→H

+ ‖I − e−(a+1)B‖H→H
]]
‖B−3f(1)‖H +

1
|a− ā|

1
|1 + a|

{
‖I − e−(a+1)B‖H→H

+ ‖I − e−(a+1)B‖H→H
}
‖B−4f ′(1)‖H

}
≤M{‖ϕ‖H + ‖B−1ξ‖H + ‖ψ‖H + ‖B−4f ′(1)‖H + max

0≤t≤1
‖B−2f(t)‖H}.

(2.13)
From estimates (2.12) and (2.13) it follows estimate (2.10). Second, we estimate

‖Au(t)‖H for t ∈ [0, 1]. Since∫ t

0

[ 1
1 + a

(
e−(t−s)B − e−(t+sa)B

)
− 1

1 + a

(
e−(t−s)B − e−(t+sa)B

)]
f(s)ds,
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from formula (2.9) it follows that

u(t) = e−Btu(0) +
1

1 + a
B−1(e−(1−t)B − e−(a+t)B)(u′(1) +Bu(1))

+
1

a− ā
B−2

{ 1
1 + a

(e−(1−t)aB − e−(a+t)B)− 1
1 + a

(e−(1−t)āB

− e−(ā+t)B)
}

(u′′(1) + āBu′(1)− aB2u(1))

− 1
a− ā

B−3
[
[

1
1 + a

(I + ae−(1+a)tB)− 1
1 + a

(I + ae−(1+a)tB)]f(t)

− [
1 + a

1 + a
− 1 + a

1 + a
]e−tBf(0)−

∫ t

0

[ 1
1 + a

(e−(t−s)B + ae−(t+sa)B)

− 1
1 + a

(e−(t−s)B + ae−(t+sa)B)
]
f ′(s)ds

]
.

(2.14)

In the similarly manner, applying (2.14), (2.1) and the triangle inequality, we
obtain

‖Au(t)‖H ≤M{‖Aϕ‖H + ‖B2ξ‖H + ‖Aψ‖H
+ ‖f(0)‖H + max

0≤t≤1
‖f ′(t)‖H + ‖Bu′′(1)‖H}

(2.15)

for any t ∈ [0, 1]. Applying formula (2.9), estimate (2.2), and the triangle inequality,
we obtain

‖Bu′′(1)‖H ≤M{‖Aϕ‖H +‖B2ξ‖H +‖Aψ‖H +‖f(0)‖H + max
0≤t≤1

‖f ′(t)‖H}. (2.16)

Applying estimates (2.15) and (2.16), we obtain

max
0≤t≤1

‖Au(t)‖H ≤M
{
‖Aϕ‖H + ‖B2ξ‖H + ‖Aψ‖H + ‖f(0)‖H + max

0≤t≤1
‖f ′(t)‖H}.

From this, (1.1) and the triangle inequality it follows that

max
0≤t≤1

‖d
3u(t)
dt3

‖H ≤ max
0≤t≤1

‖Au(t)‖H + max
0≤t≤1

‖f(t)‖H

≤M1{‖Aϕ‖H + ‖B2ξ‖H + ‖Aψ‖H + ‖f(0)‖H + max
0≤t≤1

‖f ′(t)‖H}.

The proof is complete. �

3. Applications

In this section we consider three applications of Theorem 2.4. First application.
We consider the nonlocal boundary-value problem for a third-order partial dierential
equation,

∂3u(t, x)
∂t3

− (a(x)ux(t, x))x + δu(t, x) = f(t, x), 0 < t, x < 1,

u(0, x) = ϕ(x), u(1, x) = ψ(x), ut(1, x) = ξ(x), 0 ≤ x ≤ 1,

u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1), 0 ≤ t ≤ 1

. (3.1)

This problem has a unique smooth solution u(t, x) for smooth a(x) ≥ a > 0,
x ∈ (0, 1), δ > 0, a(1) = a(0), ϕ(x), ψ(x), ξ(x) (x ∈ [0, 1]) and f(t, x) (t ∈
(0, 1), x ∈ (0, 1)) functions. This allows us to reduce problem (1.1) in a Hilbert
space H = L2[0, 1] with a self-adjoint positive definite operator Ax defined by
(3.1). Let us give a number of results from the abstract Theorem 2.4.
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Theorem 3.1. For the solution of (3.1), the following two stability inequalities
hold:

max
0≤t≤1

‖u(t, ·)‖L2[0,1] ≤M
[

max
0≤t≤1

‖f(t, ·)‖L2[0,1] + ‖ft(1, ·)‖L2[0,1]

+ ‖ϕ‖L2[0,1] + ‖ψ‖L2[0,1] + ‖ξ‖L2[0,1]

]
,

(3.2)

max
0≤t≤1

‖u(t, ·)‖W 2
2 [0,1] + max

0≤t≤1
‖∂

3u

∂t3
(t, ·)‖L2[0,1]

≤M
[

max
0≤t≤1

‖ft(t, ·)‖L2[0,1] + ‖f(0, ·)‖L2[0,1] + ‖ϕ‖W 2
2 [0,1]

+ ‖ψ‖W 2
2 [0,1] + ‖ξ‖W 2

2 [0,1]

]
,

(3.3)

where M does not depend on f(t, x) and ϕ(x), ψ(x), ξ(x).

Proof. Problem (3.1) can be written in the abstract form

d3u(t)
dt3

+Au(t) = f(t), 0 ≤ t ≤ 1,

u(0) = ϕ, u(1) = ψ, u′(1) = ξ
(3.4)

in the Hilbert space L2[0, 1], for all square integrable functions defined on [0, 1].
Here the self-adjoint positive definite operator A = Ax defined by

Axu(x) = −(a(x)ux)x + δu(x) (3.5)

with domain

D(Ax) = {u(x) : u, ux, (a(x)ux)x ∈ L2[0, 1], u(0) = u(1), u′(0) = u′(1)}.

where f(t) = f(t, x) and u(t) = u(t, x) are respectively known and unknown ab-
stract functions defined on [0, 1] with H = L2[0, 1]. Therefore, estimates (3.2)-(3.3)
follow from estimates (2.10)-(2.11). The proof is complete. �

Second application. Let Ω ⊂ Rn be a bounded open domain with smooth bound-
ary S, Ω̄ = Ω ∪ S. In [0, 1] × Ω, we consider the boundary-value problem for a
third-order partial differential equation

∂3u(t, x)
∂t3

−
n∑
r=1

(ar(x)uxr (t, x))xr = f(t, x),

x = (x1, . . . , xn) ∈ Ω, 0 < t < 1,

u(0, x) = ϕ(x), u(1, x) = ψ(x), ut(1, x) = ξ(x), x ∈ Ω̄,

u(t, x) = 0, x ∈ S, 0 ≤ t ≤ 1,

(3.6)

where ar(x), x ∈ Ω, ϕ(x), ψ(x), ξ(x), x ∈ Ω̄ and f(t, x) (x ∈ [0, 1]), x ∈ Ω are given
smooth functions and ar(x) > 0. We introduce the Hilbert space L2(Ω̄), the space
of integrable functions defined on Ω̄ equipped with norm

‖f‖L2(Ω̄) =
(∫
· · ·
∫
x∈Ω̄

|f(x)|2dx1 . . . dxn

)1/2

.
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Theorem 3.2. For the solution of (3.6) the following two stability inequalities
hold:

max
0≤t≤1

‖u(t, ·)‖L2(Ω̄) ≤M2

[
max

0≤t≤1
‖f(t, ·)‖L2(Ω̄) + ‖ft(1, ·)‖L2(Ω̄)

+ ‖ϕ‖L2(Ω̄) + ‖ψ‖L2(Ω̄) + ‖ξ‖L2(Ω̄)

]
,

(3.7)

max
0≤t≤1

‖u(t, ·)‖W 2
2 [0,1] + max

0≤t≤1
‖∂

3u

∂t3
(t, ·)‖L2(Ω̄)

≤M2

[
max

0≤t≤1
‖ft(t, ·)‖L2(Ω̄) + ‖f(0, ·)‖L2(Ω̄) + ‖ϕ‖W 2

2 (Ω̄)

+ ‖ψ‖W 2
2 (Ω̄) + ‖ξ‖W 2

2 (Ω̄)

]
,

(3.8)

where M2 does not depend on f(t, x) and ϕ(x), ψ(x), ξ(x).

Proof. Problem (3.6) can be written in abstract form (3.4) in Hilbert space L2(Ω̄)
with self-adjoint positive definite operator A = Ax defined by the formula

Axu(x) = −
n∑
r=1

(ar(x)uxr
)xr

(3.9)

with domain

D(Ax) =
{
u(x) : u(x), uxr

(x), (ar(x)uxr
)xr
∈ L2(Ω̄), 1 ≤ r ≤ n,

u(x) = 0, x ∈ S
}
.

Here f(t) = f(t, x) and u(t) = u(t, x) are known and unknown respectively abstract
functions defined on [0, 1] with the value in H = L2(Ω̄). So, estimates (3.7)-
(3.8) follow from estimates (2.10)-(2.11) and from the coercivity inequality for the
solution of the elliptic differential problem in L2(Ω̄). �

Theorem 3.3. For the solution of the elliptic differential problem

−
n∑
r=1

(ar(x)uxr
)xr

= w(x), x ∈ Ω, u(x) = 0, x ∈ S

the coercivity inequality
n∑
r=1

‖uxrxr
‖L2(Ω) ≤M‖w‖L2(Ω)

is valid [26]. Here M does not depend on w(x).

Third application. We consider the boundary-value problem for a third-order
partial differential equation

∂3u(t, x)
∂t3

−
n∑
r=1

(ar(x)uxr
(t, x))xr

+ δu(t, x) = f(t, x),

x = (x1, . . . , xn) ∈ Ω, 0 < t < 1,

u(0, x) = ϕ(x), u(1, x) = ψ(x), ut(1, x) = ξ(x), x ∈ Ω̄,
∂u

∂~n
(t, x) = 0, x ∈ S, 0 ≤ t ≤ 1,

(3.10)

where ar(x), x ∈ Ω, ϕ(x), ψ(x), ξ(x), x ∈ Ω̄ and f(t, x) (x ∈ [0, 1]), x ∈ Ω are given
smooth functions and ar(x) > 0, ~n is the normal vector to S.
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Theorem 3.4. For the solution of (3.10), the following two stability inequalities
hold:

max
0≤t≤1

‖u(t, ·)‖L2(Ω̄) ≤M3

[
max

0≤t≤1
‖f(t, ·)‖L2(Ω̄) + ‖ft(1, ·)‖L2(Ω̄)

+ ‖ϕ‖L2(Ω̄) + ‖ψ‖L2(Ω̄) + ‖ξ‖L2(Ω̄)

]
,

(3.11)

max
0≤t≤1

‖u(t, ·)‖W 2
2 [0,1] + max

0≤t≤1
‖∂

3u

∂t3
(t, ·)‖L2(Ω̄)

≤M3

[
max

0≤t≤1
‖ft(t, ·)‖L2(Ω̄) + ‖f(0, ·)‖L2(Ω̄) + ‖ϕ‖W 2

2 (Ω̄)

+ ‖ψ‖W 2
2 (Ω̄) + ‖ξ‖W 2

2 (Ω̄)

]
,

(3.12)

where M3 does not depend on f(t, x) and ϕ(x), ψ(x), ξ(x).

Proof. Problem (3.10) can be written in the abstract form (3.4) in the Hilbert space
L2(Ω̄) with a self-adjoint positive definite operator A = Ax defined by the formula

Axu(x) = −
m∑
r=1

(ar(x)uxr )xr + δu(x) (3.13)

with domain

D(Ax) =
{
u(x) : u(x), uxr

(x), (ar(x)uxr
)xr
∈ L2(Ω̄), 1 ≤ r ≤ m,

∂u

∂~n
= 0, x ∈ S

}
.

Here f(t) = f(t, x) and u(t) = u(t, x) are respectively known and unknown abstract
functions defined on [0, 1] with the value in H = L2(Ω̄). So, estimates (3.11)-
(3.12) follow from estimates (2.10)-(2.11) and from the coercivity inequality for the
solution of the elliptic differential problem in L2(Ω̄). �

Theorem 3.5. For the solution of the elliptic differential problem

−
n∑
r=1

(ar(x)uxr )xr + δu(x) = w(x), x ∈ Ω,
∂

∂~n
u(x) = 0, x ∈ S

the coercivity inequality
n∑
r=1

‖uxrxr
‖L2(Ω) ≤M‖w‖L2(Ω)

is valid [26]. Here M does not depend on w(x)

Conclusions. This article is devoted to the stability of the boundary value problem
for a third order partial differential equation. Theorem on stability estimates for the
solution of this problem is established. Three applications of the main theorem to a
third order partial differential equations are given. Theorems on stability estimates
for solutions of these partial differential equations are obtained.

In papers [9], [6], three step difference schemes generated by Taylor’s decomposi-
tion on three points for the numerical solution of local and nonlocal boundary value
problems of the linear ordinary differential equation of third order were investigated.

Note that Taylor’s decomposition on four points is applicable for the construction
of difference schemes of problem (1.1). Operator method of [10] permits to establish
the stability of these difference problem for the approximation problem of (1.1).



10 A. ASHYRALYEV, KH. BELAKROUM, A. GUEZANE-LAKOUD EJDE-2017/53

Acknowledgements. The research was supported by the Ministry of Education
and Science of the Russian Federation (Agreement number 02.a03.21.0008).

References

[1] Yu. P. Apakov; On the solution of a boundary-value problem for a third-order equation with

multiple characteristics, Ukrainian Mathematical Journal, 64 (1) (2012), 1-12.

[2] Yu. P. Apakov, B. Yu. Irgashev; Boundary-value problem for a degenerate high-odd-order
equation, Ukrainian Mathematical Journal, 66 (10) (2015), 1475-1490.

[3] Yu. P. Apakov, S. Rutkauskas; On a boundary value problem to third order PDE with multiple

characteristics, Nonlinear Analysis: Modelling and Control, 16 (3) (2011), 255-269.
[4] M. Ashyraliyev; A note on the stability of the integral-differential equation of the hyperbolic

type in a Hilbert space, Numerical Functional Analysis and Optimization, 29 (7-8)(2008),

750–769.
[5] A. Ashyralyev, N. Aggez; A note on the difference schemes of the nonlocal boundary value

problems for hyperbolic equations, Numerical Functional Analysis and Optimization, 25 (5-6)
(2004), 439-462.

[6] A. Ashyralyev, N. Aggez, F. Hezenci; Boundary value problem for a third order partial

differential equation, AIP Conference Proceedings, 1470 (2012), 130-132.
[7] A. Ashyralyev, D. Arjmand; A note on the Taylor’s decomposition on four points for a

third-order differential equation, Applied Mathematics and Computation, 188 (2) (2007),

1483-1490.
[8] A. Ashyralyev, D. Arjmand, M. Koksal; Taylor’s decomposition on four points for solving

third-order linear time-varying systems, Journal of the Franklin Institute Engineering and

Applied Mathematics, 346 (2009), 651-662.
[9] A. Ashyralyev, S. N. Simsek; Nonlocal boundary value problems for a third order partial

differential equation, AIP Conference Proceedings, 1611 (1)(2014), 234-240.

[10] A. Ashyralyev, P. E. Sobolevskii; New Difference Schemes for Partial Differential Equations,
Birkhauser Verlag, Basel, Boston, Berlin, 2004.

[11] A. Ashyralyev, O. Yildirim; On multipoint nonlocal boundary value problems for hyperbolic
differential and difference equations, Taiwanese Journal of Mathematics, 14 (1) (2010), 165-

194.

[12] Kh. Belakroum, A. Ashyralyev, A. Guezane-Lakoud; A note on the nonlocal boundary value
problem for a third order partial differential equation, AIP Conference Proceedings, 1759,

020021 (2016), http://dx.doi.org/10.1063/1.4959635.

[13] M. Denche, A. Memou; Boundary value problem with integral conditions for a linear third-
order equation, J. Appl. Math, 11 (2003), 533-567.

[14] Z. Direk, M. Ashyraliyev; FDM for the integral-differential equation of the hyperbolic type,

Advances in Difference Equations, 2014 (2014), DOI:10.1186/1687-1847-2014-132.
[15] H. O. Fattorini; Second Order Linear Differential Equations in Banach Spaces, Elsevier

Science Publishers B.V., Amsterdam, 1985.

[16] S. A. Gabov, A. G. Sveshnikov; Problems of the Dynamics of Stratified Fluids, Nauka,
Moscow, 1986. (in Russian).

[17] A. Guezane-Lakoud, N. Hamidane, R. Khaldi; On a third-order three-point boundary value
problem, International Journal of Mathematics and Mathematical Sciences, 2012 (2012),
Article ID 513189, 7 pages.

[18] T. S. Kalmenov, D. Suragan; Initial-boundary value problems for the wave equation, Elec-
tronic Journal of Differential Equations, 2014, no. 48 (2014): 1-6.

[19] A. I. Kozhanov; Mixed problem for one class of quasilinear equation of third order, Boundary
Value Problems for Nonlinear Equations, Novosibirsk, 1982, pp. 118-128. (in Russian).

[20] A. I. Kozhanov; Mixed boundary value problem for some classes of third order differential
equations, Mathematics of the USSR -Sbonik, 118 (4) (1982), 507-525. (in Russian).

[21] A. I. Kozhanov, L. S. Pulkina; On the solvability of boundary value problems with a nonlocal
boundary condition of integral form for multidimensional hyperbolic equations, Differential
Equations, 42 (9) (2006), 1233-1246. DOI: 10.1134/S0012266106090023.

[22] M. Kudu, I. Amirali; Method of lines for third order partial differential equations, Journal of
Applied Mathematics and Physics, 2 (2) (2014), 33-36.



EJDE-2017/53 STABILITY OF THIRD-ORDER PARTIAL DIERENTIAL EQUATIONS 11

[23] Jing Niu, Ping Li; Numerical algorithm for the third-order partial differential equation with

three-point boundary value problem, Abstract and Applied Analysis, 45 (2014),1-7. DOI:

10.1155/2014/630671.
[24] L. S. Pulkina; Initial-boundary value problem with a nonlocal boundary condition for a

multidimensional hyperbolic equation, Differential Equations, 44 (8) (2008), 1119-1125.

DOI: 10.1134/S0012266108080090.
[25] A. L. Skubachevskii; Boundary value problems for elliptic functional-differential equations

and their applications, Russian Mathematical Surveys, 71(5)(431) (2016), 3–112. DOI:

http://dx.doi.org/10.4213/rm9739 (in Russian).
[26] P.E. Sobolevskii; Difference Methods for the Approximate Solution of Differential Equations,

Voronezh State University Press, Voronezh, Russia, 1975. (in Russian).

Allaberen Ashyralyev
Department of Mathematics, Near East University, Nicosia, TRNC, Mersin 10, Turkey.

Institute of Mathematics and Mathematical Modeling, 050010, Almaty, Kazakhstan

E-mail address: allaberen.ashyralyev@neu.edu.tr

Kheireddine Belakroum

Department of Mathematics, Frères Mentouri University, Constantine, Algeria
E-mail address: belakroumkheireddine@yahoo.com

Assia Guezane-Lakoud

Laboratory of Advanced Materials, Mathematics Department, Faculty of Sciences,
Badji Mokhtar Annaba University, P.O. Box 12, Annaba, 23000, Algeria

E-mail address: a guezane@yahoo.fr


	1. Introduction
	2. Main theorem on stability
	3. Applications
	Conclusions
	Acknowledgements

	References

