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EXISTENCE OF GLOBAL SOLUTIONS AND DECAY
ESTIMATES FOR A VISCOELASTIC PETROVSKY EQUATION
WITH A DELAY TERM IN THE NON-LINEAR INTERNAL
FEEDBACK

NADIA MEZOUAR, MAMA ABDELLI, AMIRA RACHAH

ABSTRACT. In this article we consider a nonlinear viscoelastic Petrovsky equa-
tion in a bounded domain with a delay term in the weakly nonlinear internal
feedback:

t
\ut\lutt + A0 — Augy — / h(t — S)AQU(S) ds
0

+ p1g1 (ue(,t)) + poge(ut(z,t — 7)) = 0.

We prove the existence of global solutions in suitable Sobolev spaces by using
the energy method combined with Faedo-Galarkin method under condition
on the weight of the delay term in the feedback and the weight of the term
without delay. Furthermore, we study general stability estimates by using
some properties of convex functions.

1. INTRODUCTION

1.1. The model. In this article we consider the existence and decay properties
of global solutions for the initial boundary value problem of viscoelastic Petrovsky
equation

t
| gy + A% — Augy — | h(t — 5)A2u(s) ds
0

+ p1g1(ue(z, 1)) + pago(ug(z,t — 7)) =0 in 2x]0, +oo],
u(z,t) =0 on 9N x [0, +o0],
u(z,0) = up(x), wu(x,0) =wui(x) in Q,
ug(z,t —7) = folz,t —7) in Qx]0, 7],

(1.1)

where  is a bounded domain in R™, n € N* 99 is a smooth boundary, I > 0, py
and po are positive real numbers, h is a positive non-increasing function defined
on RT, g; and g, are two functions, 7 > 0 is a time delay and (ug,u1, fo) are the
initial data in a suitable function space. Cavalcanti et al. [10] studied the following
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nonlinear viscoelastic problem with strong damping
t
|| gy — Au— Auyy +/ h(t — s)Au(s)ds —yAu, =0, ze€Q,¢t>0. (1.2)
0

Under the assumptions 0 < | < % ifn>3o0orl>0if n=1,2and h decays
exponentially, they obtained the global existence of weak solutions for v > 0 and
the uniform exponential decay rates of the energy for v > 0. In the case of v =0
when a source term competes with the dissipation induced by the viscoelastic term,

Messaoudi and Tatar [22] studied the equation
t
g gy — Au— Ay + / h(t — s)Au(s)ds +blulP 2u=0, ze€Q, t>0.
0

They used the potential well method to show that the damping induced by the
viscoelastic term is enough to ensure global existence and uniform decay of solu-
tions provided that the initial data are in some stable set. Han and Wang [I5],
investigated a related problem with linear damping

¢
g | gy — Au— Ay — / h(t —s)Au(s)ds +ur =0, z€Q, ¢t>0.
0

Using the Faedo-Galerkin method, they showed the global existence of weak solu-
tions and obtained uniform exponential decay of solutions by introducing a per-
turbed energy functional. Recently, these results have been extended by Wu [32]
to a general case where a source term and a nonlinear damping term are present.

In the presence of the source term, problem has been discussed by many au-
thors, and related results concerning local or global existence, asymptotic behavior
and blow-up of solution have been recently established (see [4, 20, 23]).

Park and Kang [26] studied the following nonlinear viscoelastic problem with
damping

t
\ut\lutt+A2u—Autt—M(HVUH%)Au—i—/ h(t—s)Au(s)ds+us =0, z€Q,t>0.
0

Santos et al. [27] considered the existence and uniform decay for the following
nonlinear beam equation in a non-cylindrical domain:

t
ugt + A%u — M(||Vul|3)Au + / h(t — s)Au(s)ds + au; =0, in Q,
0

where Q = Uo<i<ooflt X {t}. Benaissa, Benguessoum and Messaoudi [6] proved the
existence of global solution, as well as, a general stability result for the equation

ug — Au + /0 h(t — s)Au(s) ds + prg1(ue(z,t)) + page(ur(z,t — 7)) =0, (1.3)

for x € Q and ¢t > 0, when h is decays at a certain rate.

In the absence of the viscoelastic term (i.e. if h = 0), problem has been
studied by many authors. It is well known that in the further absence of a damping
mechanism, the delay term causes instability of the system (see, for instance, Datko
et al. [I1]). On the contrary, in the absence of the delay term, the damping term
assures global existence for arbitrary initial data and energy decay is estimated
depending on the rate of growth of g; (see Alabau-Boussouira, [3], Benaissa and
Guesmia [8], Haraux [14], Komornik [I6], Lasiecka and Tataru [1g]).



EJDE-2017/58 VISCOELASTIC PETROVSKY EQUATION WITH A DELAY TERM 3

Time delay is the property of a physical system by which the response to an
applied force is delayed in its effect (see Shinskey [28]). Whenever material, infor-
mation or energy is physically transmitted from one place to another, there is a
delay associated with the transmission. Time delays so often arise in many physi-
cal, chemical, biological, and economical phenomena. In recent years, the control of
PDEs with time delay effects has become an active area of research (see Abdallah et
al [2], Suh and Bien [29] and Zhong [31]). To stabilise a hyperbolic system involving
delay terms, additional control terms are necessary (see Nicaise and Pignotti [24],
Nicaise and Pignotti [25], Xu et al. [I1]). In Nicaise and Pignotti [24], the authors
examined the problem (P) in the linear situation (i.e. if g1(s) = g2(s) = s for all
s € R) and determined suitable relations between py and ps, for which the stability
or alternatively instability takes place. More precisely, they showed that the energy
is exponentially stable if po < p; and they found a sequence of delays for which the
corresponding solution of will be instable if p5 > pq. The main approach used
in Nicaise and Pignotti [24] is an observability inequality obtained with a Carleman
estimate. The same results were obtained if both the damping and the delay were
acting in the boundary domain. We also recall the result by Xu et al. [30], where
the authors proved the same result as in Nicaise and Pignotti [24] for the one space
dimension by adopting the spectral analysis approach. Very recently, Benaissa and
Louhibi [7] extended the result of Nicaise and Pignotti [24] to the non-linear case.

Datko et al. [II] showed that a small delay in a boundary control could turn
such well-behave hyperbolic system into a wild one and therefore, delay becomes a
source of instability. However, sometimes it can also improve the performance of
the systems (see Suh and Bien [29]).

The main purpose of this paper is to prove global solvability and energy decay
estimates of the solutions of problem when £ is of exponential decay rate and
g1, go are non-linear. We would like to see the influence of frictional and viscoelastic
damping on the rate of decay of solutions in the presence of non-linear degenerate
delay term. Of course, the most interesting case occurs when we have delay term
and simultaneous and complementary damping mechanisms.

To obtain global solutions of problem , we use the Galerkin approximation
scheme (see Lions [19]) together with the energy estimate method. The technique
based on the theory of non-linear semi-groups used in Nicaise and Pignotti [24] does
not seem to be applicable in the non-linear case.

To prove decay estimates, we use a perturbed energy method and some properties
of convex functions. These arguments of convexity were introduced and developed
by Cavalcanti et al. [9], Daoulatli et al. [12], Lasiecka and Doundykov [I7] and
Lasiecka and Tataru [I8], and used by Liu and Zuazua [2I], Eller et al. [I3] and
Alabau-Boussouira [3].

1.2. Statement of results. We use the Sobolev spaces H*(Q), HZ(Q) and the
Hilbert space LP(2) with their usual scalar products and norms. The prime ' and
the subscript ¢ will denote time differentiation and we denote by (-,-) the inner
product in L?(€2). The constant C' denotes a general positive constant, which may
be different in different estimates. Now we introduce, as in the work of in Nicaise
and Pignotti [24], the new variable

Z(xapat):ut(xatf’rp)a er? pe(071)7 t>0.
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Then, we have
Tz(x, p,t) + 2p(z, p,t) =0, in Q x (0,1) x (0,400). (1.4)
Therefore, problem (1.1]) is equivalent to

t
g | gy + A% — Augy — / h(t — s)A2u(s) ds
0

g (e (2, 8)) + paga(2(2,1,6) = 0 in ©x]0, +oc],
Tze(x, p,t) + 2p(z, p,t) =0,  in 2x]0, 1[x]0, +o0],
u(z,t) =0, on 9N x [0,00],
z(x,0,t) = us(x,t), on Q x [0,00],
u(z,0) =up(x), wu(x,0)=wui(x), in Q,
z(z, p,0) = folxz,—p7), in Qx]0,1].
To state and prove our result, we use the following assumptions:
(A1) Assume that [ satisfies

(1.5)

2 .
O0<Il<—— ifn>3
n—2
O<l<oo ifn=1,2;
(A2) g1 : R — R is non decreasing function of class C' and H : Ry — R, is
convex, increasing and of class C1(R;) N C?(]0, +oc[) satisfying
H(0) =0 and H is linear on [0,¢] or
H'(0) =0 and H” > 0 on ]0,¢] such that
g1(s)| < cals| if |s| > &
gi(s) < H '(sgi(s)) if |s| <e,

(1.6)

where H~! denotes the inverse function of H and e, cy are positive con-
stants. go : R — R is an odd no decreasing function of class C'*(R) such
that there exist c3, a1, as > 0,
|92(s)| < cs, (1.7)
a1592(s) < G(s) < azsg1(s), (1.8)
where G(s) = [ g2(r)dr;

(A3) agpa < aips;
(A4) For the relaxation function h : R, — Ry is a bounded C! function such

that -
/ h(s)ds = <1, (1.9)
0
and we assume that there exist a positive constant ( satisfying
R (t) < —Ch(t). (1.10)

We define the energy associated with the solution of system ((1.5)) by

1 1 ¢ 1
B0) = glhullt + 5 (1= [ bl ds)aulf + 317wl

) (1.11)
1
+§(hoAu)(t)+§/Q/0 G(z(z, p,t)) dpdz,
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where £ is a positive constant such that

1— _
TMQ( 041)<§<T,u1 062#27

(how)(t) :/o h(t = s)l|v(t) — v(s)|3 ds.

Now we have the existence of a global solution.

Theorem 1.1. Let ug € H*(Q) N HZ(Q), u1 € HZ(Q) and fo € H3(Q, H*(0,1))

satisfy the compatibility condition f(-,0) = uy. Assume that (Al)-(A4) hold.
(1.1) admits a weak solution

u e L2([0,00); HY(Q) N H3 (), u € L®([0,00); H3(2)),
Ut € LQ([O,oo); Hol(Q))

Also we have a uniform decay rates for the energy.

Then

Theorem 1.2. Assume that (A1)—(A4) hold. Then, there ezist a positive constants

w1, ws, w3 and ey such that the solution of (1.1) satisfies
E(t) < wsHy *(wit +wy) Yt >0,

where

Hi(t) = /t %(S) ds.

Hy(t) = t if H is linear on [0,¢]
2TV tH (eot)  if H'(0) =0 and H” > 0 on |0, €],

here, Hy is strictly decreasing and convex on (0,1] with lim,_.o Hy(t) = 4o0.

2. PRELIMINARIES

Let A1 be the first eigenvalue of the spectral Dirichlet problem

A%y = \u, inQ, u:%:() inT,
on
IVulls < ——|Au]
Ul S —F/— ul|2-.
VA1

Next we have a Sobolev-Poincaré inequality [I].
Lemma 2.1. Let g be a number with
2<g<+4oo(n=1,2)or2<qg<2n/(n—2)(n>3),
then there exists a constant Cs = C5(£2, q) such that
lully < ColVaulls  for u € HA(S).
Lemma 2.2. For h, ¥ € C*([0, +oo[,R) we have

[ v dn = =590+ (row) -5 [hon)O-( [ he)as)

(1.12)
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Remark 2.3. Let us denote by ®* the conjugate function of the differentiable
convex function P, i.e.,

D*(s) = sup (st — D(¢)).
teRT

Then ®* is the Legendre transform of ®, which is given by (see Arnold [3], p. 61-62])
O (s) = s(2) 7 (s) — @) (s)], i s € (0,9 (r)],

and ®* satisfies the generalized Young inequality
AB < ®*(A)+ ®(B), if Ae (0,9 (r)], B € (0,r]. (2.2)

Lemma 2.4. Let (u,z) be a solution of the problem (1.5)). Then, the energy func-
tional defined by (1.11) satisfies

E'@®t) < =81 | wgi(ug)dz — Ba | z(z,1,t)g2(2(z,1,t)) dx
Sl e
— 3h®NAu@®)]” + (W 0 Au)(t) <0,

5041

where B = 1 — =22 — ppg and By = 524 — M2(1 —ay).

Proof. By multiplymg the first equation in ([1.5) by wu¢, integrating over € and using
integration by parts, we obtain

d 1

Gl + 5180 + 519 wlE] +n | (e ) da

+u2/ ug(x,t)ge(z(x, 1,t)) dz (2.4)
Q

_ /Q /0 Cht — 5)Au(s) Ay (1) ds do

By applying the Lemma[2.2] the term on the right-hand side of (2.4) can be rewrit-
ten as

/ / h(t—s)Au(s)Aut(t)dsdx—l—%h(t)HAu(t)H%
QJo

= 5 L] e sl au®IE = (o Au) O] + 500 Au)e)

Consequently, ﬂ ) becomes

gttt 3 (1= [ h)ds) I3l + vl + 3o duyco]
= —u /Qut(x,t)%(ut(m,t))dx—uz/ﬂut(a:,t)g2(z(x,1,t))dx (2.5)

— SHOIAu() + S o du)(h).

We multiply the second equation in (1.5) by £g2(z), we integrate the result over
Qx( , to obtain

5// 2(p g (=2, . ) dpdx——f// 2ol pr1)g2(2(, . ) dp da
Q Q

// 5p z(z, p, ))) dp dz
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--¢ [(Ge(0.1.0) = Gla(,0.0) do
Hence
gdt// (z,p, 1) dpd:cffé QG(z(x,l,t))dx+g/QG(ut(z,t))dz. (2.6)

By combining (2.5 and (| , we obtain
1 1
B(1) = fgh(t)llAu(t)H% 50 0 80)(0) — 1 [ (o, Oga (el ) da
Q
—M2/ ut(x,t)g2(2(z, 1,1)) .Z‘—*/ G(z(z,1,t))dx + §/G ug(x,t)) de,
Q

and by recalling (1.8]), we obtain

B(0) <~ — £2) [ wnla g (ualo, 0) do — Sh(e)| Au(e)3
Q
+ %(h’ o Au)(t) — pao /Q wug(z,t)g2(2(2,1,t)) da (2.7)
£

- = | G(z(z,1,t)) dx.
T Ja

From the definition of G and by using remark we obtain
G*(s) = 395 () — Glgz (s)), Vs >0.

Hence

G*(g2(2(x,1,1))) = z(x,1,t)g2(2(x, 1,1)) — G(z(x, 1,1))
< (1—aq)z(z,1,t)g2(2(z, 1,1)).

By using (1.8) and ([2.2) with A = go(2(x,1,t)) and B = uy(x,t), from we

obtain
B0 < (10— 22) [ e (u(a,0) do = ShOI SO + %(h' o Au) (1)
+M2/Q(G(ut(x,t))+G*(gg(z(aj,1,t x—f/ G(z(x,1,t))
< —(Ml - 5;2 - Nzaz) /Qut(xat)gl(ut(xvt)) dx
— @ — -« z(x 5 (z(x T
(2~ a1 =) [ st 1 )gn(el1.0)
— SO + 5 o Aw)(r) < 0.
This completes the proof. ([l

3. PROOFS OF MAIN RESUTLS

3.1. Proof of Theorem [1.1, Throughout this section we assume ug € H*(Q) N
HZ(Q), uy € HZ(Y) and fo € H3(Q,H?*(0,1)). We will use the Faedo-Galerkin
method to prove the existence of a global solution. Let T" > 0 be fixed and let
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{wk}, k € N be a basis of HZ(f2), Vj, the space generated by w',w?, ... w*. Now,
we define, for 1 < j < k, the sequence ¢’ (x, p) as follows:

¢ (x,0) = w.

Then, we may extend ¢/ (x,0) by ¢’ (x, p) over L?(€2 x (0,1)) such that (¢7); forms
a base of L?(Q2, H%(0,1)) and denote Zj, the space generated by {¢*}. We construct

approximate solutions (u*, 2%), k =1,2,3,..., in the form
k
Y i), ) = a0,
j=1 j=1
where ¢/* and d’*(j = 1,2, ...,k) are determined by the ordinary differential equa-
tions

(g ()| ugy (), w?) + (Agu® (8), Agw”) + (Vaugy, Vaw?)

‘/0 h(t — s)(AuP(s), Aw?) ds + p1 (g1 (uf), w?) + pz(g2 (2" (., 1)), w’) = 0, (3.1)

2P(x,0,t) = ul (1),

>~

Z (ug, ww? — ug, in H*(Q)N HZ(Q) as k — +o0, (3.2)

k
ub (0) = uf = Z(ul,wj)wj — up, in HZ(Q) as k — +oo, (3.3)
j=1
and
(rz) + 25, ¢') =0, 1<j<k, (3.4)
k
2 =25 = Z (fo,¢")¢? — fo in HZ(Q,H?(0,1)) as k — +o0. (3.5)

Since 0 <1 < ﬁ if n > 3, by the Sobolev embedding, we have
H2(Q) — L2HD(Q)

and the same occurs for n = 1,2 where [ > 0. Noting that ﬁ + 2(111) + % =1,

from the generalized Holder inequality, the nonlinear term (|uf(t)|'uf,(t),w;) in
(3.1) makes sense. The standard theory of ODE guarantees that the system (3.1)-
has an unique solution in [0, ), with 0 < t; < T, by Zorn lemma since the
nonlinear terms in are locally Lipschitz continuous. Note that u*(t) is of class
c2.

In the next step, we obtain a priori estimates for the solution of the system
(3-1)-(3.5), so that it can be extended outside [0, ) to obtain one solution defined
for all ¢ > 0, using a standard compactness argument for the limiting procedure.

First estimate. Since the sequences uf, u¥ and z§ converge and from Lemma
we can find a positive constant C; independent of k such that

E*(t) — E*(0)

_ﬂl At/gzufgl(u?)dxds_ﬂQAtAZk($,17S)92(2k(x7173))d$d8
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_%/0 h(s)||Auk(s)||2ds+%/0 (R o AuF)(s) ds

t t
_61/0 /Qufgl(uf)da:ds—ﬁg/o /sz(x7175)92(zk($,1,3))dajds,

As h is a positive non increasing function, so we obtain

—l—ﬂl/ /utgl ub da:ds—&-ﬁg// (z,1,8)g2(2" (x,1, 5)) da ds (3.6)
< E*0) < ¢y,

where

24(0) = o b3+ 2 1—/ h(s) ds ) [ A

l—|—2
#3IvUIE + Jnoai) +¢ [ [ GGt ans

and C) is a positive constant depending only on [luol| gz and [lu1[|zz. Noting (1.9 (L9)
and (| ., we obtain the first estimate:

1
3 + 1A+ 9+ (o Aty + [ [ Gt an

¢ ¢
+/ /ufgl(uf)dxds+/ /zk(x,1,s)gg(zk(z,1,s))d:cds§Cg,
0o Jo 0o Jo

where C5 is a positive constant depending only on |[uo| gz, [[uillag, & B8, & 7, B

and ;. These estimates imply that the solution (u*, 2*) exists globally in [0, +00).

Estimate (3.7) yields that

(3.7)

u* is bounded in L{2.(0, 00, HZ(Q)), (3.8)

u¥ is bounded in L{2.(0, 0o, H} (), (3.9)

G(2*(z, p,t)) is bounded in L{2.(0, 00, L*(Q x (0,1))), (3.10)
uf (t)g1 (uf (1)) is bounded in L'(Q x (0,T)), (3.11)
2F(x,1,t)g2(2"(x,1,1)) is bounded in L'(Q x (0,T))). (3.12)

3.2. Second estimate. Replacing w’ by —A,w’ in (3.1, multiplying by ¢/* and
summing over j from 1 to k, it follows that

337 (190 B+ 180 18] — [ ok (08 do
t

f/ h(tfs)/ VAU (s)VAuL (s) da?d5+u1/ |V uf|?g) (uf) do (3.13)
0 Q Q

+ /Lg/ Vo ulbV, 2% (2, 1,4)gh (2" (x,1,1)) dz = 0.
Q

Using the Green’s formula, we have
/ [ul (t)|'uf, () Apuf da

(3.14)
dt/' ug ( HV uy |2d:1:— I14+1) /\uﬂ Vutt( W utda:
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Replacing ¢/ by —A, ¢’ in (3.4), multiplying by d’* and summing over j from 1 to
k, it follows that

7'/ szfvxzk dx + / szﬁvmzk dx = 0.
Q Q

Then, we obtain

1

d
v P+ 5 IIV 2|13 =

2 dt
We integrate over (0,1) to find that

th/ IVaz" (2,0, O3 dp + 5 IIV P, 1,13 - IIV uf ()3 =0.  (3.15)

Combining (3.13] -— and using Lemma we obtain

1d
2dt

1
1
7 [ 19 Dl o+ 2 [ a1Vt da] + 519510l

[(1—/0th( )ds)||VAuk||2+||A WF|2 4+ (ho VAU

=({+1) / [ul|'Vuk, (£)V pub dxfyl/ \Vub g, (uf) da (3.16)
i [ Va1, g5 L) o+ 3 |V
Q

1 1
- §h(t)HVAukH§ + §(h’ o VAu®).
From the first estimate (3.7)) and Young’s inequality, we obtain

(+1) /Q b 'Vl () V o i < (14 DCY T2 0

I+ 1)2021/ 1+2)+1 (3.17)

A e

n > 0.
By using (1.7, (3.7) and Young’s inequality, we obtain

o / VL ulV 2% (2, 1,t)gh (25 (z,1,1)) dx
Q

(u ¢ )
Va3 (3.18)
(/~L203) Cy
4n ’
Taking into account (3.17)), (3.18]) into (3.16|) yields
Ld
2dt

1
b7 / V22 (@, o, Ol dp + 2 / i ()| V gl 2 dx
0

< n||Ve2F (2, 1,83 + n > 0.

t
(1~ / h(s) ds) |V A0F]3 + | Ayuf 3 + (h o VAub)
0

(3.19)
1
o [ (Vo P () do+ G = IV L OB

1 1
<nllVuglls = ShOIVAUR]S + 5 (B 0 VAUY) + Ca(n).
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Multiplying (3.1]) by C'Zt and summing over j from 1 to k, it follows that

/ a2 o -+ |V

¢
/ AuFul, do +/ h(t — s)/ AuF(s)Auk(t) dz ds (3.20)
Q
— 11 / ub, g1 (uf) de — o / ubgo (25 (2,1,1)) da.
Q Q

Differentiating (3.4]) with respect to t, we obtain
(Tzft + Ztkp, #) =0,
Multiplying by d{k and summing over j from 1 to k, it follows that

1d
S+ g ek =

Integrating over (0,1) with respect to p, we obtain
1
e / Ik B dp+ 5lob e LB - b lE =0, (21)
Summing (3.20) and -, we obtain
/ AL o+ 9+ 5 [ 1+ Sk, 01
Q
t
/A2u Uy, dx+/ h(t—s)/ AuF(s)Auk () dx ds (3.22)
0 Q
+ gl —m [ bl de—po [ o 1.0)do.

By using Young’s inequality, the right hand side of (3.22)) can be estimated as
follows:

| Aty de < nl Vb IE+ L IVACIE >0 (323)

/ot Wt =) /Q Auk(s)Aufy(t) dx ds

= /t h(tfs)/ VAU (s)Vul,(t) da ds
0 Q
gnllvuftl\%%/ﬂ (/0 h(t—s)\VAuk(s)|ds)2dx (3.24)

1 t
<oVl + 5 [ ([ b =s)vante)

— VAR + [VAUF (1)) ds)2 dz,

and

Then we use Young’s inequality to obtain, for any n > 0,

/Q (At h(t - s)(|VAuk(s) — VAuk(t)| + ‘VAuk(t)Dds)z du
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< /Q ( /0 h(t—s)\VAuk(s)—VAuk(t)|ds) dw
+/Q(/O h(t—s)\VAuk(tﬂds)zda:
+2/Q (/Ot h(t—s)|VAuk(s)—VAuk(t)|ds)</0t h(t—s)|VAu’“(t)|ds> dz
t 2
§(1+n)/ﬂ(/0 bt — ) VA1) ds)da

+(1+717)/Q(/0th(ts)|VAuk(s)VAuk(t)|ds)2d:c,

Using (1.9, we obtain

/Q (/Ot h(t — s)| VAU (s) — VAU (t)| + |[VAUF(t)| ds)de

EJDE-2017/58

(3.25)
1
< P A+nIVAF@OI; + B0+ (ko VAuL).
By Young’s inequality, we obtain
i [ b de < [ b+ 5 )P e
@ (3.26)

<nC2IVub I+ 5L [ a7

uz/Uftgz(z (x,1,1)) dz < nCZ||Vug|l5 + /\92 (z,1,0) P de. (3.27)
Q

Taking into account (3.23)—(3.27) in (3.22)) yields

o
[ b ? o+ (1= 21+ €2) = ) IV

2 [ et Mt 0

ﬂ2(1 +n) (3.28)

IV A2 + ﬂ( ><homu>

+f/|gl ut |2dx+u2/\g2 (z,1,¢) |2da:

Thus, from and (| , we obtain

1d k|2 k|2 k
m[(l— [ h(s)ds)nvm I3+ A3 + (h o VAUY)

1
b [ 19t 013 2 [ kOt e 7 [ 00
+u [ (Vb gt ) do + IV L0 + [ bl da

C? 1
+ (1= n(3+202) = 2 ) IVubli3 + 518 (2, 1,0)13
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1 1 B2(14n
g_§h(t)||mu’f||§+ (W o VAUF) + T)IIVM“II%

p

+%( n)(hOVAu /\91 (uf)|? dz
13 k 2

+ 22 [ Jgu(a (o, 1,) P o+ Calo).
nJa

By choosing 7 small enough such that 1 — n(3 + 2C?) —
(0,t) and using (|1.10)), we obtain

t
(1= [ 0oy as) V8018 + a3 + 00 V) 47 [ 19240, 0 Bl
1
w2 [NV [ 1B dp o [ [ (9t deds
Q 0 0 JQ
t t
e [ e 1,000+ | [t ao s
0
# (1w r20n = F) [Ivibizas+ L [ et szas

§M/ IV AGF |2 ds + ﬁ(l—kl)/(hoVAu)

71’//|91(Uf)|2dxds+ //\92 (z,1,t))|? dx ds + Cy(n)T
0o Ja

Using ((1.6)), Jensen’s inequality and the concavity of H !, we obtain

Llowbres [ gwhres [ awhrae
uf|>e

uk|<e
luf|<

< [ ddntdydes [ HO bl de
|uk|>e Q

S/ utgl(ut)dx—&—cH (/utgl(ut)dx)
|uk|>e Q

/Q 01 () 2 d < / bl e ) / gy (ul) da

Q

<J/H*(1) + c’/ ul gy (ulF) da (3.29)
0

<H*(1) +c¢(—E')

and
/ g2 (2% (2, 1,1))* do < c’/ 2P, 1,8)go (27 (2,1, ) da < ¢(—E')
Q Q
Using Gronwall’ Lemma, we obtain
1
IVAGH + A0k 13 + (b o V) + [ [z p. 03 dp
0

1 t (3.30)
+ / 12512 dp + / Ik (s)]2 ds < Cs
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We observe that the estimate (3.7]) and (3.30]) that there exists a subsequence {u™}
of {u*} and a function u such that

u™ — u weakly star in L>°(0,T, H*(Q) N H3(Q)), (3.31)

ul™ — u; weakly star in L°°(0, T, H2(Q2)), (3.32)

g1(uf™) — x weakly star in L?(92 x (0, 7)), (3.33)

ult — uy; weakly star in L2(0,T, Hj(Q2)), (3.34)

2™ — z weakly star in L>(0,T, Hy (22, L*(0,1))), (3.35)

2" — z, weakly star in L>(0,T, L*( x (0,1))), (3.36)
ga(2™(,1,t)) — ¢ weakly star in L*(Q x (0,T)). (3.37)

From the first estimate and Lemma we deduce
T T
[l b | 20,20 = /O luf 15013 dt < <3§)2<z+1> /O Ak 20D g

2(1+1
< (g) ( )C??(lJrl)T_
VA

On the other hand, from Aubin-Lions theorem, (see Lions [19]), we deduce that
there exists a subsequence {u™} of {u*} such that

u™ — uy strongly in L?(0,T, L*()) (3.38)
which implies
uy" — u; almost everywhere in A. (3.39)
Hence
[u'ul™ — |ug|'u; almost everywhere in A (3.40)
where A = Q x (0,7). Thus, using , and Lions Lemma, we derive
lul™|"ul™ — |ug|'uy weakly in L2(0, T, L*(Q)) (3.41)
and

2™ — z strongly in L?(0,T, L*(Q))

which implies 2" — z almost everywhere in A.

Lemma 3.1. For eachT > 0, g1(ut), g2(2(2,1,t)) € L' (A) and ||g1(u)|| 114y < K,
lg2(2(x, 1,8))[| 14y < K, where K is a constant independent of t.

Proof. By (A2) and (3.39)), we have
g1(u*(z,t)) — g1(ue(z,t)) almost everywhere in A,
0 < ulf(x,t)g (U™ (x,t)) — ug(2,t)g1 (us(2,t))  almost everywhere in A.
Hence, by and Fatou’s Lemma, we have

T
/ / ug(z, t) g1 (ug(x, t))dedt < K;  for T >0 (3.42)
0 Q

Now, we can estimate fOT Jo 191 (ue (2, t))| dz dt. By Cauchy-Schwarz inequality and

using (B29), (B.22), we have
T Lo T 1/2
/ / lg1 (w2, t))] da dt < ¢| Al / (/ /ut(x7t)gl(ut(x,t))dxdt)
o Ja 0o Ja
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< C\A|1/2K11/2 =K.

Similarly, we have

T T 1/2
/ / lg2(2(z,1,¢)))| dz dt < C|.A|1/2(/ / z(x,l,t)gz(z(ﬁ,l,t))dxdt)
o Jao o Ja
< c|«4|1/2K11/2 =K.
O

Lemma 3.2. g;(uf) — g1(u) in LY(Q x (0,7)) and g2(2*) — g2(2) in L1(Q x
(0,17))

Proof. Let E C Q x [0,T] and set

By ={(z.t) € B: |gu(uf (0,0)| < =}, B> =E\E,

where |E| is the measure of E. If M (r) = inf{|s| : s € R and |g(s)| > r}
1

[t dear < e IBT+ (1 (=) [ ukon(ubl e

By applying (8.11) we deduce that supy [, |g1(uf)|dzdt — 0 as |E| — 0. From
Vitali’s convergence theorem we deduce that

gl(uf) — g1(ug) in LI(Q x (0,7)).

Similarly, we have
g2(2") = ga(2) in LY(Q x (0,T)).

This completes the proof. O
Hence

g1 (uF) = g1(u;) weak in L*(Q x (0,T)), (3.43)

g2(2") = ga2(2)  weak in L2(Q x (0,7)). (3.44)

By multiplying (3.1) by 6(¢) € D(0,T) and by integrating over (0,7, it follows
that
T

1 T kil k gt k j
/0 (Jug ()] 'ug (2), w? )0’ (2) dt+/ (Agu™(t), Agw”)O(t) dt

I+l

0
! k J — ! t — S ’U,kS wj S
+/0 (Vo Vow?)0(t) dt /O/Oh(t VAR (s), Aw)o(t) dsdt  (3.45)
T

T
i / (g1 (ub), w?)O(t) dt + o / (g2(+*(, 1)), w?)0(t) dt = 0

and multiplying (3.4) by 6(¢) € D(0,T') and integrating over (0,T) x (0, 1), it follows
that

T 1
/ / (2 + 25, ¢7)0(t) dt dp = 0. (3.46)
o Jo
The convergence of (3.31)—(3.37)), (3.41), (3.43)) and (3.44)) are sufficient to pass to
the limit in (3.45)) and (3.46]) to obtain

1 T T
——/ (g | 'y, w) 0’ (t) dt+/ (Azu, Ayw)O(t) dt
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T T
+ / (Vayug, V,w)0(t) dt — / / h(t — s)(Au(s), Aw)0(t) ds dt
0 o Jo
T T
[ (on(u) )00 di+ s [ (gale 1) )00 dt =0,
0

0

T 1
/ / (T2t + 25, 9)0(t) dt dp = 0,
o Jo
By integrating, we have

T ¢
/ (\ut|lutt + A%y — Auygy — / h(t — s)A%u(s) ds
0 0

191 () + paga (= 1)), w) (E) dt = O,
This completes the proof of Theorem [T.1]

and

3.3. Proof of Theorem [1.2] To prove our main result, we define the functionals

// e PG (2(x, p,t)) dp da, (3.47)
(1) l+1/|ut| UtUdIJr/VutVudx (3.48)

o) = [ (Dup— 2 puslrug) [t — $)(u(t) — u(s)) ds de (3.49)
0 1 ;

Set
F(t) = ME(t) + e1(t) + e20(t) + o(t), (3.50)
where M, £, and 5 are suitable positive constants to be determined later.

Lemma 3.3. There exist two positive constants kg and k1 depending on €1, €2 and
M such that for allt >0

koE(t) < F(t) < k1E(t). (3.51)
Proof. Using ([L.11]), we have
1
lp(B)] < EE(t)' (3.52)
From Young’s inequality and Lemma we deduce
|¢(t)]
t+1n)— 1)t 1 1
< mn w3+ S Tl + IVl + 5V
I+1)7t /Oy \!IF 1 1
< 42 4 ( s 42 2, 4 2
< glhlit + S () T 1Al + S lAul+ 51Vl (55
1 2 (L+1)71  Cy \HF2/2E(0)\1/2 1 9
YTy (X 2=\ — A
- l+2”“t”l+2 { 142 <\/)\1) (1-5) +2)\1}” ull2
+ 2V

Integrating by parts, we have

—/ Vut/ h(t — s)(Vu(t) — Vu(s)) ds dx
Q 0
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- [ gl [ (e — $)(ult) — u(s)) ds do.

we use Young’s inequality applied with the conjugate exponents ;ﬁ and [ + 2, the
second term in the right hand side can be estimated as

li/ﬂl_’l_ |Utlut/0th(t5)(u(t)u(s))dsdﬂ:’

§l+2” tl\iii (ll—:l)Q_/Q(/o h(t—s)|u(t)—u(s)|d8)l+2d:c

t

+2 (+n! / /t A I+ 1+2
—_— s)ds h(t — s)|u(t) — u(s dsdz
l+2|| s+ g [ (] rerds) | hte = )lu) — u(s)

(I+1)71 17 Cs \1+2 4E(0)\V/2
i+ =0 () (T=5) (oaw

| /\

I /\

l+ 2
(3.54)

and
’—/Vut/ h(t — s)(Vu(t) — Vu(s))dsdx‘
Q
1 2
< f||Vut||2 / (/ h(t — 8)|Vu(t) — Vu(s)|ds> dx (3.55)
o o
p
< §||Vut||§ + K(h o Au)(t).
By combining (3.54) and (3.55), we deduce that

1
o) < mn 3+ 5 IVl -
(I+1)7t 141 ( Cs 2 4E(0)\ /2 I] ’
o v2 P (\/AT) (1_,3> +2A1}(hOA“)()
By combining (3.52)), (3.53]) and (3.56)), we have
€1 e2+1 I+2
F(t) < (M + g)E( )+ 112 e 115

vl = (S2) " GED)  +  aug
P v+ {5 G (o) () g Jore dw

I+2 \Vn 1-3 2N
SHlE( )
Similarly,
1
F(t) 2 (M = B - 5 el 73
(I+1)71 ) Cy 2 2B(0\1/2 1 52+1
o (m) (523) " + 3 Al - 2521Vl
oy (L4 1)7Lf Cy N2 AB(ONV2 3
T () TS +2A1}<h°m><>

> H%(M* {g +ext 1})Hutllii§ ;(M — {%1 +est+ 1})||vut||g



18 N. MEZOUAR, M. ABDELLI, A. RACHAH EJDE-2017/58

+(Mf—61)/9/010(z(x,p,t))dpdm+( (M—z> (1—/0th(s)ds)

-1 2 2 1
A (Y (%)
_ {6z+1 ( ;_1)271 (5%>I+2 (ﬁE_(Oﬁ))l/Q + %}) (h o Au)(t)

> K/OE(t)a
for M large enough. O

Lemma 3.4. Let (u,z) be the solution to (1.5). Then

a1672‘r

W(t) < —29(t) —

- /92(17,1715)92(Z($,1,t))dx
+ %/Qut(x7t)gl(ut(l',t)) dzx.

Proof. By differentiating (3 with respect to ¢t and using and ., we

(3.57)

obtain
:——// *QT’J (z,p,t)) dp dx
=<—;:/;)€ a e—%wcxzcu;uw))dw-+2fe‘%?<“2<xw%t”}dpdx
_ _l/ [ TG (2(x,1,t) — Guy(x, t))] dx
_ —27p
2// G(z(z,p,t)) dpdx
:_,/ e T G(z(z, 1, t) dx + — /Gut x,t)) da
. —27
2/ / °G(x(w,p, 1)) dp do
= —20(t) z(x,1,t)) dx
< =29(t) + TAUt(xat)gl(ut(xat))dx
B aje 27 / 2(x,1,8) g2 (2(, 1, 1)) da.
T Q
The proof is complete. -

Lemma 3.5. Let (u, z) be a solution of (L.5). Then, for anyn > 0,

CQ
9(1) < gl + 1Vl = (1= 8 =0 = 50 (m 4 o) ) 3

—6( h o Au)( )+%/|gl(ut)|2d9:+ /|92 x,1,1))* dz.
nJa

(3.58)
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Proof. Differentiating (3.48)) with respect to t and using the first equation of (|1.5)),
we obtain

1 1
lt _ - ! / d - l+2d \v4 d
@' (t) T Q(|ut|ut)u x+l+1 Q|ut\ T+ A ug Vudr
+/VutVutdx
Q

:/ g | g dae + ——[Jug || T2 — /Auttudx—l-HVutHQ
Q

l+1

1
_ / (el — A Y+ = 153 + V3
Q +1

1
= g+ IVl = [ (8% () + e (L. 1.0)

- /0 h(t — 5)A%u(s) ds)udx

1 t
= Il IVl (8wl + [ (o) [ A - 5)Au(s) dsdo
Q 0

ful/ngl(ut(:c,t))da:fug/ﬂugg(z(x,l,t)) dx

By using Young’s inequality and Sobolev embedding, we can estimate the fourth
term in the right side as follows:

/ Au(t) t h(t — s)Au(s) ds dx
Q 0

! 2 ' — S u uls) — u S ar
s/o h(s)dsHAu(t)ller/Q/o Wt — 5)| Au(t)] | Aus) — Vu(t) dsd

t
B
< /0 h(s) ds||Au(t) |3 + nll Au(t)]|3 + %(h o Au)(t)
g
< (B+n)llAu®)]l + E(h o Au)(t)
Since
C? 1
/ ugr (uy) de < 77)\ s HAuug + Z/ |gl(ut)|2dx, (3.59)
Q 1 1 Ja
770s2 2 1 2
uga(z(z, 1,t)) de < ——=[|Aulls + — [ [g2(2(z,1,¢))[" dx. (3.60)
Q A1 an Ja
This completes the proof. (Il

Lemma 3.6. Let (u, z) be a solution of (L.5| E Then, for any § > 0,

P10 <520+ DS+ (5 22— [ h(s) ds) Vo

pC? M202
2 -
+5( 5+25+ o 0N

O 14 G s+ et 1)

) (h o Au)(t) + p16|lg1 (us(x, t))||2
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1 [ !
- ) P sl

Proof. By using the Liebnitz formula, and the first equation of (T.5), we have
o0 = [ ([ 13061 a5) ([ nta = )@t - du(s) as)
+ [ auo( | bt - 9)(Ault) - Au(s) ds) de
i [ o) [ At~ s)(u(t) — uls)) ds o
o [ aa(e(o 1.0 / bt — $)(u(t) — u(s) ds d
/ Vut/ (t — 8)(Vu(t) — Vu(s)) ds de (3.61)

l—|—1 Q|ut|ut/ R (t — s)(u(t) — u(s)) dsdx

1

t
- / (s) sl (0152

—/0 h(s) ds|| Vs (£) 3 —
t

:I1+I2+I3+I4+I5+16—/ h(s)ds||Vu(t)|3
0

1/t .
NESY) h(S)dSHUt(t)”zig,

In what follows we will estimate I, ..., Is. So for § > 0, we have

|Il|<(5/ /ht—s|Au |ds) dx

‘e (/h(t—snAu() u(s)] ds)’ de
<5/ /ht—s (1Au(s) — Au(t)| + |Au(t)])ds) da

(3.62)
([ )(hoAu)()
gza(/o h(t)ds) | Au(t)[3 + /Oh s)ds(ho Au)(®)
§2552||Au()\\2+ﬂ(26+ )(hoAu)(t)
Similarly,
1] < A} + o (h o Au)() (3.63)
151 < Sp o e )13 + P20 0 ), (364
p23C?2

[l < Opalga(a(r, 1 )3 + E255 (h o A1), (3.65)
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2
|I5|<6/|Vut|2d:r+ / W (t — )| |Vu(t) — u(s)|ds) dz
<(5||Vut||2+ / W (s ds/ “H(t — 5)|Vult) — Vu(s)2dsdz (3.66)

W0
< 0|Vl = T (0 o Au)()

2
I < —— z+1 /||ut|ut|2daj+ /h’t—s ~u(s)) ds)da]
2

0)C?
Bl w3 = 2= (0 ) 0) .
3.67
(I+1) 2
sa+1)  R(O)CT
5&0 h(O)Csz ’
STr1 Baar oA,

where ag = C’SQ(ZH)(QE(O))I. O

Lemma 3.7. Let (u,z) be a solution of (L.5) and assume that (A1)—(A4) hold.
Then F(t) satisfies the following estimate, along the solution and for some positive
constants m,ag > 0,

< —

*l+1
sCX

- I+1

V|3 —

F'(t) < —mE(t) + ag||g1 (ws (, 1))[[3- (3.68)
Proof. From ({2.3)), (3.50)), (3.57) and (3.58]), we conclude that for any ¢ > ¢y > 0,
F'(t) = ME'(t) 4+ 19/ (t) + e2¢'(t) + ¢/ (1)
a
(M8~ 51%2) [ e on (o 1) do
Q

0416_27—

~ (M8, — espals + 2 )/Qz(x,l,t)gg(z(m,lj))dac

(ho = e2)lfurl3 — (ko — 22 = (1 -+ 1527) ) IVl
O+ )~ 0(267 1) ) sl

}) (' o Au)(t)

) (h o Au)(t)

—2e19(t) —
B (Mh1

[+1

+ 52{1 —

(% ~ R(0) {1 C?
2 45\ l+1
(662 B

46 26 25)\

+ 1 (8 + )||91(Ut($ t)|l5

where hg = fo s)ds > 0 and hy = min{h(t)| for all t > to}. We take g3 < hy
and § >0 suﬁi(:lently small such that

1 ao
ho — 0, = hg — —5( ) 0.
l+1(0 €2) > ag 0~ €2 11 >
We choose M large enough such that

Mhy 5C?

+sz{1—ﬂ—5—Tj(u1+u2)}—5(252+1) >0,

[

as =
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o= (L0 L Gy (s B O ) 0

2 "I U T IEd I 2 T 26N
Mp, — 51% >0, Mpy—c3pa{d+ %} - €1a1€_QT > 0.
Then
F'(t) < —anfluellifs — as||Vue||3 — asl|Aull3 — as(h o Au)(t)
o [ | G po 1)) dp + LB + agllos (. 1)
where a5 = 2e1 and ag = p1(6 + 32). O

Proof of Theorem[I-4 As in Komornik [I6], we consider the following partition of
Q

)

D ={zeQ:|ul>e}, Q={zeQ:|ul<e}
By using (|1.6)), we have

/ |gl(ut)\2dz < 02/ uzg1(ug) doz < —cE'(t). (3.69)
Ql Q1

Case 1. H is linear on [0,¢]. In this case, one can easily check that there exists
¢1 > 0, such that |g1(s)] < ¢1s for all s < e, and thus,

/ 191 (ue)|? dz < ¢ / urgr (ug) dov < —cE'(t), (3.70)
Q2 QQ

(F(t) +cE(t)) < —mH(E(t)). (3.71)

Case 2. H'(0) and H"” > 0 on ]0,¢] we define

1
10=10,1 .,

and use Jensen’s inequality and the concavity of H~! to obtain

utg(ut) d.’E,

H‘l(I(t)) >c o H_l(utg(ut))dxv

by using (1.6)), we obtain

/Q Antfdr < e | () dr -

< cH YI(t)) < cH Y (—cE'(t)).
A combination of (3.68]), (3.69) and (3.72)) yields
(F(t) + cE(t)) < —mE(t) + cH Y (—cE'(t)), t>to. (3.73)
By recalling that E/ < 0, H' > 0, and H” > 0 on (0, ¢| and using (3.73)), we obtain
!
(H'(coBUDIF() + cE(®)} + cE()

= eoF' () H' (0 E(t))(F(t) + cE(t)) + H'(e0 E(t))(F(t) + cE(t)) + cE'(t) (3.74)
< —mH'(eoE(1))E(t) + cH' (2o E(t))H*(—cE'(t)) + cE'(t),

— —
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by using Remark 23] with H*, the convex conjugate of H in the sense of Young,
we obtain

H’(sOE(t)){F(t) T eE(D) + eB ()

< —mH (5 B(£) E(t) + cH"* (H' (50 E(1)))
< —mH'(e0E(t)) E(t) + ceoH'(e0 E(t)) E(t)
< - (ﬁoE( DE(t) = —cHa(E(1)).

N

(3.75)

Let
F(t) + cE(t) if His linear on [0, €],
F(t) = { H'(eE)){F(t) + cE(t))} + cE(t) (3.76)
it H(0) > 0 and H” > 0 on 0, ¢],
From and , it follows that

%ﬁ(t) < —cHy(E(1)), Vt=>to.

On the other hand, after choosing M > 0 larger if needed, we can observe from

Lemma [3.3| that F(t) is equivalent to E(t). So, F(t) is also equivalent to E(t), for
some positive constants €; and €3

GE(t) < F(t) < &E(t). (3.77)

By setting L(t) = eF(t) for e < 1/é, we easily see that, by (3.77), we have L(t) ~
E(t) and

Then
S (3.78)
) = —1/H{(t), hence

L'(t)H{(L(t)) > ec, Vt>ty.

~—

A simple integration over (to,t) yields
Hi(L(t)) > Hi(L(to)) + ec(t — to)-

By choosing € > 0 sufficiently small such that Hy(L(ty)) — ecty > 0, and exploiting
the fact that H; ' is decreasing, we infer that

L(t)) < Hy Mect + Hy(L(to)) — ectp). (3.79)
Consequently, the equivalence of F, F , L and F yields the estimate
E(t) < wzHy H(wit 4+ wy).
This completes the proof. O
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