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EXISTENCE OF STANDING WAVES FOR SCHRÖDINGER
EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN
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Communicated by Marco Squassina

Abstract. We study a class of fractional Schrödinger equations of the form

ε2α(−∆)αu+ V (x)u = f(x, u) in RN ,
where ε is a positive parameter, 0 < α < 1, 2α < N , (−∆)α is the fractional

Laplacian, V : RN → R is a potential which may be bounded or unbounded

and the nonlinearity f : RN × R → R is superlinear and behaves like |u|p−2u
at infinity for some 2 < p < 2∗α := 2N/(N − 2α). Here we use a variational

approach based on the Caffarelli and Silvestre’s extension developed in [3] to

obtain a nontrivial solution for ε sufficiently small.

1. Introduction

In this work we are concerned with the existence of standing waves for a nonlinear
differential equation directed by the fractional Laplacian. We focus on the so-called
fractional Schrödinger equation

iε
∂Ψ
∂t

= ε2α(−∆)αΨ + (V (x) + E)Ψ− f(x,Ψ), (x, t) ∈ RN × R, (1.1)

where ε > 0 is a fixed parameter, E is a real constant, V and f are continuous
functions, 0 < α < 1 and (−∆)α denotes the fractional Laplacian, defined for all
function belongs to the Schwartz space, by

̂(−∆)αu(ξ) = |ξ|2αû(ξ), (1.2)

where û denotes the Fourier transform of u. It is worth mentioning that (1.1) comes
from an expansion of the Feynman path integral from Brownian-like to Lévy-like
quantum mechanical paths (see [13] for details). When α = 1 the Lévy dynamics
becomes the Brownian dynamics, and (1.1) reduces to the classical Schrödinger
equation

iε
∂Ψ
∂t

= −ε2α∆Ψ + (V (x) + E)Ψ− f(x,Ψ), (x, t) ∈ RN × R.

This equation has been widely investigated by many authors in the last decades
(see, for instance [14, 17] and references therein). Standing waves solutions to
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(1.1) are solutions of the form Ψ(x, t) = u(x) exp(−iEt), where u solves the elliptic
equation

ε2α(−∆)αu+ V (x)u = f(x, u) in RN . (1.3)
Recently, several papers have been performed for classical elliptic equations involv-
ing the fractional Laplacian. In the sequel, we will list some of them related with
the existence of solutions to (1.3) that may be found in the literature. Using the
Nehari variational principle, Cheng [6] proved the existence of a nontrivial solution
for the fractional Schrödinger (1.3) if f(x, u) = |u|q−2u with 2 < q < 2∗α if N > 2α
or 2 < q <∞ if N ≤ 2α, where 2∗α := 2N/(N−2α) is the critical Sobolev exponent.
Ground states are found by imposing a coercivity assumption on V (x),

lim
|x|→+∞

V (x) = +∞. (1.4)

Applying the method of [12], Secchi [15] proved the existence of a ground state
under less restrictive assumptions on f(x, u). It is worthwhile to remark that in [6]
and [15] the hypothesis (1.4) is assumed on V (x) in order to overcome the problem
of lack of compactness, typical of elliptic problems defined in unbounded domains.
In [10], Dipierro et al. considered the existence of radially symmetric solutions of
(1.3) in the situation where V (x) does not depend explicitly on the space variable x.
For the first time, using rearrangement tools and following the ideas of Berestycki
and Lions [1], the authors proved the existence of a nontrivial, radially symmetric
solution to

(−∆)αu+ u = |u|q−2u in RN ,
where 2 < q < 2∗α if N > 2α or 2 < q <∞ if N ≤ 2α. We would also like to mention
that problems involving the existence and concentration of positive solution to (1.3)
have been investigated by [4, 5, 8, 9] when V is positive and ε is sufficient small.

Here, motivated by the papers [4, 6, 5, 8, 9, 10, 15, 17], our main goal is to
study the existence of solutions for (1.3) when 0 < α < 1, N > 2α, V : RN → R
and f : RN × R → R are continuous functions, ε is a positive parameter, V (x) is
a nonnegative continuous function satisfying some conditions. More precisely we
assume that V and f satisfy the following assumptions:

(A1) the set Z = {x ∈ RN : V (x) = 0} is nonempty;
(A2) there exists A > 0 such that the level set

GA = {x ∈ RN : V (x) < A}
has finite Lesbegue measure;

(A3) f(x, s) = o(|s|), as s→ 0, uniformly in RN ;
(A4) there exists a constant C > 0 such that

|f(x, s)| ≤ C(1 + |s|p),
uniformly in RN , for all s ∈ R, for some 1 < p < 2∗α − 1, where 2∗α :=
2N/(N − 2α);

(A5) there exists a constant µ ∈ (2, p+ 1] such that

0 < µF (x, s) ≤ sf(x, s),

for all x ∈ RN and s ∈ R\{0}; here, as usual, F (x, s) :=
∫ s

0
f(x, s)ds.

A typical potentials satisfying (A1) and (A2) is

V (x) =
|x− x0|β

1 + λ|x− x0|
, β ≥ 1, λ ≥ 0.
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Our main result can be summarized as follows.

Theorem 1.1. Suppose that (A1)–(A6) hold. Then there exists ε0 > 0 such that
(1.3) has a nontrivial and nonnegative solution for all ε ∈ (0, ε0].

Remark 1.2. Our hypotheses on the potential V are inspired in [17] and the
variational approach in the proof of Theorem 1.1 is based on the Caffarelli and
Silvestre’s extension developed in [3]. We also point out that the results of this
work complement [4, 5, 6, 9, 10, 15] in the sense that the potential V (x) belongs to
a different class from those treated by them. To underline the role played by the
potential V (x), we suggest to the reader the papers [8, 9].

This work is organized as follows. In Section 2 we gather few notation and
definitions. In Section 3 we make the variational framework to study the geometric
properties and the Palais-Smale sequences of the associated functional. Finally, in
Section 4 we prove Theorem 1.1.

2. Notation and definitions

We recall that the homogeneous Sobolev Ḣα(RN ) is defined as the completion
of C∞0 (RN ) with respect to the norm

‖u‖2
Ḣα

:=
∫

RN
|2πξ|2α|û(ξ)|2dξ =

∫
RN
|(−∆)α/2u|2dx.

For our setting we also consider the space X2α(RN+1
+ ) defined as the completion of

C∞0 (RN+1
+ ) with respect to the norm

‖w‖2X2α :=
∫

RN+1
+

κα y
1−2α|∇w|2dxdy,

where κα = 21−2αΓ(1− α)/Γ(α) and RN+1
+ = {(x, y) ∈ RN × R : y > 0}.

In [2], it is proved that the extension operator E2α : Ḣα(RN ) → X2α(RN+1
+ ) is

well defined. Moreover, for any φ ∈ X2α(RN+1
+ ) if we denote its trace on RN×{y =

0} as φ(x, 0), there exist S1,S2 > 0 such that (see [2, Lemmas 2.2 and 2.3] for
details)

S1‖φ(·, 0)‖2∗α ≤ ‖φ(·, 0)‖Ḣα(RN ) ≤ S2‖φ‖X2α(RN+1
+ ). (2.1)

Given u ∈ Ḣα(RN ) we say that w = E2α(u) is the α-harmonic extension of u to
the upper half-space RN+1

+ , if w is a solution of the problem

−div(y1−2α∇w) = 0 in RN+1
+ ,

w = u in RN × {0}.
(2.2)

Furthermore, in [3] it is proved that

lim
y→0+

y1−2αwy(x, y) = − 1
κα

(−∆)αu(x). (2.3)

We would like to recall that using the change of variable v(x) = u(εx), Equation
(1.3) is equivalent to the problem

(−∆)αu+ V (εx)u = f(εx, u) in RN . (2.4)
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Thus it is sufficient to consider (2.4) instead (1.3). Furthermore, from (2.2) and
(2.3), we may consider the problem

−div(y1−2α∇w) = 0 in RN+1
+ ,

−κα
∂w

∂ν
= −V (εx)u+ f(εx, u) in RN × {0},

(2.5)

where ∂w
∂ν = lim

y→0+
y1−2αwy(x, y). To obtain a weak solution to (2.5), by using

variational methods, we will consider the following subspace of X2α(RN+1
+ ):

Xε :=
{
w ∈ X2α(RN+1

+ ) :
∫

RN
V (εx)w(x, 0)2dx <∞

}
,

endowed with the inner product

〈w, v〉ε =
∫

RN+1
+

κα y
1−2α∇w∇v dxdy +

∫
RN

V (εx)w(x, 0)v(x, 0) dx

and the induced norm ‖w‖ε = 〈w,w〉1/2 (see Lemma 3.1).
Throughout this work we say that w ∈ Xε is a weak solution to (2.5) if for any

ϕ ∈ Xε ∫
RN+1

+

κα y
1−2α∇w∇ϕdxdy +

∫
RN

V (εx)w(x, 0)ϕ(x, 0) dx

−
∫

RN
f(εx,w(x, 0))ϕ(x, 0)dx = 0,

and consequently u = w(x, 0) ∈ Hα(RN ) is a weak solution to (2.4) (see [3]). Here
Hα(RN ) stands to the fractional Sobolev space

Hα(RN ) := {u ∈ L2(RN ) : ‖(−∆)αu‖22 + ‖u‖22 <∞},

endowed with the norm ‖u‖Hα = (‖(−∆)αu‖22 + ‖u‖22)1/2. We also recall that the
imbedding Hα(RN ) ↪→ Lq(RN ) is continuous for any q ∈ [2, 2∗α] (see Proposition
3.6 in [11]).

Remark 2.1. We point out that if u = w(x, 0) ∈ Hα(RN ) is a weak solution to
(2.4), then it is possible to get the pointwise expression of the fractional Laplacian
as in (1.2). For details, the reader may see the paper [16], which addresses regularity
results of weak solutions and viscosity solutions of the fractional Laplace equation.

3. Variational Setting

Our first lemma enables us to settle the variational setting.

Lemma 3.1. Suppose condition (A2) holds. Then, for each 0 < ε < 1 there exists
C = C(ε) > 0 such that

‖w(x, 0)‖q ≤ C‖w‖ε, for all w ∈ Xε and 2 ≤ q ≤ 2∗α. (3.1)

Proof. First we show that there exists τ1 > 0 such that∫
RN+1

+

κα y
1−2α|∇w|2 dxdy +

∫
RN

V (x)|w(x, 0)|2 dx

≥ τ1
(∫

RN+1
+

κα y
1−2α|∇w|2 dxdy + ‖w(x, 0)‖22

)
,

(3.2)
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for every w for which the quantity in the left-hand side of (3.2) is finite. Indeed,
since GA has finite measure, there exists C2 = C2(|GA|, α,N) > 0 such that∫

RN+1
+

κα y
1−2α|∇w|2 dxdy +

∫
RN

V (x)|w(x, 0)|2 dx

≥ 1
2

∫
RN+1

+

καy
1−2α|∇w|2 dxdy + C2

∫
GA

|w(x, 0)|2dx+A

∫
RN\GA

|w(x, 0)|2 dx

≥ min{1/2, C2, A}
(∫

RN+1
+

καy
1−2α|∇w|2 dxdy + ‖w(x, 0)‖22

)
,

where we used the Hölder and Sobolev inequalities, which give∫
GA

|w(x, 0)|2dx ≤ |GA|2α/N‖w(x, 0)‖22∗α ≤ C3

∫
RN+1

+

κα y
1−2α|∇w|2 dxdy.

Take w ∈ Xε and put v(x, y) = w(x/ε, y). Then from (3.2),

‖w‖ε = ε−n
(∫

RN+1
+

ε2κα y
1−2α|∇v|2 dxdy +

∫
RN

V (x)|v(x, 0)|2 dx
)

≥ ε−n+2
(∫

RN+1
+

κα y
1−2α|∇v|2 dxdy +

∫
RN

V (x)|v(x, 0)|2 dx
)

≥ ε−n+2τ1

(∫
RN+1

+

κα y
1−2α|∇v|2 dxdy + ‖v(x, 0)‖22

)
= ε2τ1

(∫
RN+1

+

κα y
1−2α|∇w|2 dxdy + ‖w(x, 0)‖22

)
.

Thus, from (2.1)
‖w‖ε ≥ C1(ε)‖w(x, 0)‖2Hα .

This together with the Sobolev imbedding Hα(RN ) ↪→ Lq(RN ) imply the desired
result. �

It follows by Lemma 3.1, (A2)–(A4), that the functional

Iε(w) =
1
2
‖w‖2ε −

∫
RN

F (εx,w(x, 0))dx

is well defined in Xε and belongs to C1(Xε,R), with Gâteaux derivative given by

I ′ε(w) · ϕ =
∫

RN+1
+

κα y
1−2α∇w∇ϕdxdy +

∫
RN

V (εx)w(x, 0)ϕ(x, 0) dx

−
∫

RN
f(εx,w(x, 0))ϕ(x, 0)dx,

for any ϕ ∈ C∞0 (RN+1
+ ). Thus critical points of Iε are weak solutions to (2.5) and

reciprocally. The functional Iε satisfies the following geometric properties.

Lemma 3.2. Suppose that (A2)–(A5) hold. Then

(i) there exist δ, ρ > 0 such that Iε(w) ≥ δ if ‖w‖ε = ρ;
(ii) there exists e ∈ Xε such that ‖e‖ε > ρ and Iε(e) < 0.



6 E. DE MEDEIROS, J. A. CARDOSO, M. DE SOUZA EJDE-2017/76

Proof. By (A3) and (A4), given ε > 0, there exists Cε > 0 such that∫
RN
|F (εx,w(x, 0))|dx ≤ ε

2

∫
RN
|w(x, 0)|2dx+

Cε
p+ 1

∫
RN
|w(x, 0)|p+1dx, (3.3)

for all w ∈ Xε. This and the imbedding (3.1) imply that there exist positive
constants C1 and C2 such that

Iε(w) ≥
(1

2
− εC1

2

)
ρ2 − C2ρ

p+1 if |w‖ε = ρ.

Since p+1 > 2, we choose ε, ρ > 0 sufficiently small such that δ := inf‖w‖ε=ρ Iε(w) >
0, which proves (i). To prove (ii), we consider ϕ ∈ C∞0 (RN+1

+ ,R+) such that
ϕ(x, 0) 6≡ 0. Then by (A4) and (A5) there exists a positive function d(x) ∈ L∞(RN )
such that

F (x, s) ≥ d(x)|s|µ, for all (x, s) ∈ RN × R. (3.4)

Thus for t > 0, we get that Iε(tϕ)→ −∞, as t→ +∞. Setting e = tϕ with t large
enough, the condition (ii) is satisfied. �

From Lemma 3.2, for each ε > 0 the minimax level

cε := inf
γ∈Γ

max
t∈[0,1]

Iε(γ(t))

is positive, where Γ := {γ ∈ C([0, 1], Xε); γ(0) = 0 and γ(1) = e}.

Lemma 3.3. If 1 < p < 2∗α − 1, it holds limε→0+ cε = 0.

Proof. Without loss of generality we may assume that 0 ∈ Z. Note that by (3.4),
for all w ∈ Xε there exists C0 > 0 such that

cε ≤ max
t≥0

Iε(tw) ≤ C0

(∫
RN+1

+
y1−2α|∇w|2dxdy +

∫
RN V (εx)w(x, 0)2 dx

(
∫

RN d(εx)|w(x, 0)|µ dx)2/µ

)µ/(µ−2)

.

Defining Mε :=
{
w ∈ Xε :

∫
RN d(εx)|w(x, 0)|µ dx = 1

}
and

c̄ε := inf
w∈Mε

∫
RN+1

+

y1−2α|∇w|2dxdy +
∫

RN
V (εx)w(x, 0)2 dx.

We obtain that
cε ≤ C0c̄

µ/(µ−2)
ε . (3.5)

We claim that c̄ε → 0 as ε→ 0+. Suppose by contradiction that for some sequence
εn → 0+, c̄εn ≥ c0 > 0 for all n ∈ N. Since µ ≤ p + 1 < 2∗α, it is known that (see
[18, Theorem 4] and [3])

inf
w∈C∞0 (RN+1

+ )R
RN |w(x,0)|µ dx=1

∫
RN+1

+

y1−2α|∇w|2 dxdy = 0. (3.6)

Thus we can take a sequence (wn) ⊂ C∞0 (RN+1
+ ) such that

lim
n→∞

∫
RN+1

+

y1−2α|∇wn|2dxdy = 0 and
∫

RN
|wn(x, 0)|µ dx = 1. (3.7)

Defining

vn =
wn

(
∫

RN d(εx)|wn(x, 0)|µ dx)1/µ
,
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we have that vn ∈ Mε. For simplicity we suppose that d(0) = 1. By using (3.7)
we see that for each n ∈ N, we can find εn > 0 such that∫

RN
d(εx)|wn(x, 0)|µ dx >

1
2
, (3.8)

for ε < εn. Thus, for every n and every∫
RN+1

+

y1−2α|∇vn|2dxdy ≤ 22/µ

∫
RN+1

+

y1−2α|∇wn|2dxdy.

From (3.7), we can find n0 such that for every ε < εn0 ,∫
RN+1

+

y1−2α|∇vn0 |2dxdy <
c0
2
. (3.9)

On the other hand, for all n ∈ N and ε > 0 we have

c0 ≤
∫

RN+1
+

y1−2α|∇vn|2dxdy +
∫

RN
V (εx)vn(x, 0)2 dx. (3.10)

Hence for ε < εn0 , from (3.8), (3.9) and (3.10) we have∫
RN

V (εx)|wn0(x, 0)|2 dx ≥
∫

RN V (εx)|wn0(x, 0)|2 dx
22/µ(

∫
RN d(εx)|wn0(x, 0)|µ dx)2/µ

=
1

22/µ

∫
RN

V (εx)|vn0(x, 0)|2 dx ≥ c0

2
2
µ+1

,

which contradicts hypothesis (A1). Therefore, c̄ε → 0 as ε→ 0+, which combined
with (3.5) completes the proof. �

Combining Lemma 3.2 and the Ekeland’s variational principle, we obtain a se-
quence (wn) ⊂ Xε such that

Iε(wn)→ cε and ‖I ′ε(wn)‖∗ → 0 as n→ +∞. (3.11)

Lemma 3.4. If (wn) ⊂ Xε is a sequence satisfying (3.11), then there exists a
positive constant ν > 0 such that

lim sup
n→∞

‖wn‖2ε ≤ νcε for all ε > 0.

Proof. Because of (3.11) and (A5) we have(µ
2
− 1
)
‖wn‖2ε ≤ µIε(wn)− I ′ε(wn)(wn) ≤ µcε + on(1) + on(1)‖wn‖ε,

which implies that (wn) is bounded in Xε and the lemma follows easily. In the last
inequality we used on(1) to denotes a quantity that tends to zero as n→∞. �

By Lemma 3.1, we may assume that, up to a subsequence, wn ⇀ w0 weakly in
Xε, wn(x, 0) → w0(x, 0) in Lqloc(RN ) for all 2 ≤ q < 2∗α, and wn(x, 0) → w0(x, 0)
almost everywhere in RN . Taking the limit in (3.11) we obtain that w0 is a weak
solution of (2.5). To prove that w0 is not trivial we need the following result.

Lemma 3.5. Let ε > 0 and (wn) a sequence satisfying (3.11). Then there exist
positive constants η = η(A,S2, ν) > 0 and R = R(ε) > 0 such that

lim sup
n→∞

‖wn(x, 0)‖2Hα(RN\BR) ≤ η cε.
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Proof. From (2.1), we have

‖wn(·, 0)‖Ḣα(RN\BR) ≤ S2‖wn‖X2α(RN+1
+ ).

Thus, by Lemma 3.4, it is sufficient to show that for each ε > 0 there exist positive
constants C = C(A) and R = R(ε) such that∫

|x|>R
|wn(x, 0)|2dx ≤ C‖wn‖2ε. (3.12)

We denote by BR = {x ∈ RN : |x| ≤ R} the closed ball of radius R centered
at the origin, BcR the complement of BR, GA,ε = {x ∈ RN : V (εx) < A} and
vn(x, y) = wn(x/ε, y). Since GA has finite measure, by using the Hölder and
Sobolev inequalities, we obtain C1 = C(S1,S2) > 0 such that∫

BcR∩GA,ε
|wn(x, 0)|2dx = ε−N

∫
BcεR∩GA

|vn(x, 0)|2dx

≤ ε−N |BcεR ∩GA|2α/N
(∫

RN
|vn(x, 0)|2

∗
αdx

)2/2∗α

≤ C1ε
−N |BcεR ∩GA|2α/N

∫
RN+1

+

y1−2α|∇vn|2dxdy

= C1ε
−2|BcεR ∩GA|2α/N

∫
RN+1

+

y1−2α|∇wn|2dxdy,

and we have that, for each ε > 0, we can find a radius R = R(ε) > 0 such that

|BcεR ∩GA|2α/N < ε2C−1
1 A−1.

Thus ∫
BcR∩GA,ε

|wn(x, 0)|2dx ≤ 1
A
‖wn‖2ε. (3.13)

Moreover,∫
BcR\GA,ε

|wn(x, 0)|2dx ≤ 1
A

∫
BcR\GA,ε

V (εx)w2
n(x, 0)dx ≤ 1

A
‖wn‖2ε. (3.14)

Combining (3.13) and (3.14), we obtain that (3.12) holds. �

4. Proof of Theorem 1.1

To obtain a nonnegative solution of (2.4), we replace f(x, s) by f+(x, s) where
f+(x, s) = f(x, s) if s ≥ 0 and 0 if s < 0. Let η > 0 given in Lemma 3.5. From
(A3) and (A4) there exists C > 0 such that

|f(x, s)| ≤ 1
η
|s|+ C|s|p for all (x, s) ∈ RN × R.

Since F (x, s) ≥ 0, from (3.11)

cε = lim
n→∞

[
Iε(wn)− 1

2
I ′ε(wn)(wn)

]
= lim
n→∞

∫
RN

[1
2
f(εx,wn(x, 0))wn(x, 0)− F (εx,wn(x, 0))

]
dx

≤ lim inf
n→∞

∫
RN

[ 1
2η
|wn(x, 0)|2 + C|wn(x, 0)|p+1

]
dx.
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Thus

cε ≤
1
2η
‖w0(x, 0)‖2L2(BR) + C‖w0(x, 0)‖p+1

Lp+1(BR)

+
1
2η

lim sup
n→+∞

‖wn(x, 0)‖2L2(RN\BR) + C lim sup
n→+∞

‖wn(x, 0)‖p+1
Lp+1(RN\BR)

.

Invoking Lemma 3.5 we get

cε ≤
1
2η
‖w0(x, 0)‖2L2(BR) + C‖w0(x, 0)‖p+1

Lp+1(BR) +
cε
2

+ Cη
p+1
2 c

p+1
2

ε .

Therefore,
1
2η
‖w0(x, 0)‖2L2(BR) + C‖w0(x, 0)‖p+1

Lp+1(BR) ≥ cε
(1

2
− Cη

p+1
2 c

p−1
2

ε

)
. (4.1)

From Lemma 3.3, we can find ε0 > 0 such that

cε <
( 1

4Cη
p+1
2

) 2
p−1

for all ε ∈ (0, ε0].

The last inequality and (4.1) imply that
1
2η
‖w0(x, 0)‖2L2(BR) + C‖w0(x, 0)‖p+1

Lp+1(BR) ≥
cε
4
> 0.

Consequently, w0 6≡ 0 for all ε ∈ (0, ε0]. This completes the proof of Theorem 1.1.
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