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EXISTENCE OF MINIMIZERS OF MULTI-CONSTRAINED
VARIATIONAL PROBLEMS FOR PRODUCT FUNCTIONS
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Abstract. We prove the existence of minimizers of a class of multi-constrained

variational problems in which the non linearity involved is a product function
not satisfying compactness, monotonicity, neither symmetry properties. Our

result cannot be covered by previous studies that considered only a partic-
ular class of integrands. A key step is establishing the strict sub-additivity

condition in the vectorial setting. This inequality is also interesting in itself.

1. Introduction

For c1, . . . , cm > 0, we consider the minimization problem

inf{J(~u) : ~u ∈ Sc} =: Ic1,...,cm , (1.1)

J(~u) =
1
2

∫
|∇~u|2 −

∫
F (x, ~u) (1.2)

where ~u = (u1, . . . , um), ui ∈ H1 and F is a Carathéodory function and

Sc = {~u = (u1, . . . , um) ∈ H1 × · · · ×H1 :
∫
u2
i = c2i , 1 ≤ i ≤ m},

c2 =
m∑
i=1

c2i .
(1.3)

Under some additional regularity assumptions on F , solutions of (1.1) satisfy the
elliptic system

∆u1 + ∂1F (x, u1, . . . , um) + λ1u1 = 0
. . .

∆um + ∂mF (x, u1, . . . , um) + λmum = 0 ,
(1.4)

where λi are Lagrange multipliers.
When ∂iF (x, u1, . . . , um) = ∂iF (x, |u1|, . . . , |um|), the solutions of (1.1) can also

be viewed as standing waves of the non-linear Schrödinger system

i∂tΦ1(t, x) + ∂1F (x, |Φ1|, ..+ |Φm|) + ∆xxΦ1 = 0
. . .

2010 Mathematics Subject Classification. 74G65, 35J62, 35A15, 35B06, 58E05.

Key words and phrases. Multi-constrained; variational; elliptic systems; non-compact.
c©2018 Texas State University.

Submitted February 23, 2018. Published July 8, 2018.

1



2 H. AL SAUD, H. HAJAIEJ EJDE-2018/140

i∂tΦm(t, x) + ∂mF (x, |Φ1|, . . . ,+|Φm|) + ∆xxΦm = 0 ,

Φi(0, x) = Φ0
i (x) 1 ≤ i ≤ m.

To the best of our knowledge, there are no pubications about (1.1) when m ≥ 2 and
the non-linearity F does not satisfy the standard convexity, compactness, symmetry
or monotonicity properties. This happens despite the importance of such problem
in many domains such as mechanics, engineering and especially non-linear optics,
see [1] and references therein. Only very particular cases have been addressed.

The purpose of this paper is to establish the existence of minimizers of (1.1)
under following assumptions.

Suppose that the function F : RN × Rm → R is such that F ∈ D(RN × Rm):
(F0) for all x ∈ RN , ~s ∈ Rm, there exist A,B > 0 such that 0 ≤ F (x,~s) ≤

A(|~s|2 + |~s|`+2), and for all 1 ≤ i ≤ m, ∂iF (x,~s) ≤ B(|~s| + |~s|`+1) where
0 < ` < 4

N .
(F1) There exist ∆ > 0, S > 0, R > 0, α1, . . . , αm > 0, and t ∈ [0, 2) such

that F (x,~s) > ∆|x|−t|s1|α1 . . . |sm|αm for all |x| ≥ R and |~s| < S where
N + 2 > N

2 α+ t; and α =
∑m
i=1 αi.

(F2) F (x, θ1s1, θmsm) ≥ θ2maxF (x, s1, . . . , sm) for all x ∈ RN , si ∈ R, θi ≥ 1,
where θmax = max1≤i≤m θi.

Also we assume that there exists function F∞(x,~s) periodic in x; i.e. there exists
z ∈ ZN for which F∞(x + z,~s) = F∞(x,~s),∀x ∈ RN , ~s ∈ Rm satisfying (F1) and
the following properties:

(F3) There exists 0 < α < 4/N such that

lim
|x|→∞

F (x,~s)− F∞(x,~s)
|~s|2 + |~s|α+2

= 0

uniformly for any ~s.
(F4) There exist A′, B′ > 0 and 0 < β < ` < 4/N such that 0 ≤ F∞(x,~s) ≤

A′(|~s|β+2 + |~s|`+2) and for 1 ≤ i ≤ m,

∂iF
∞(x,~s) ≤ B′(|~s|β+1 + |~s|`+1) ∀x ∈ RN , ~s ∈ Rm.

(F5) There exists σ ∈ [0, 4/N) such that

F∞(x, θ1s1, . . . , θmsm) ≥ θσ+2
maxF

∞(x, s1, . . . , sm)

for any θi ≥ 1, x ∈ RN , ~s ∈ Rm, where θmax = max1≤i≤mθi.
(F6) F∞(x,~s) ≤ F (x,~s) for any x ∈ RN and s ∈ Rm, with strict inequality in a

measurable set having a positive Lebesgue measure.

Theorem 1.1. Under Assumptions (F0)–(F6) there exists ~uc ∈ Sc such that
J(~uc) = Ic1,...,cm .

When n = 2, as an example of functions satisfying (F0)–(F6), we have

F (r, s) = q(r)
m∑
i 6=j

aij |si|ni |sj |nj

where aij > 0, 0 < ni + nj <
4
N and q ∈ L∞+ (0,∞). This class of functions arises

in nonlinear optics; see or example [2, 3, 6].
The following is our intermediate result, which is interesting in itself.
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Theorem 1.2. If (F1) holds for a function F∞, and (F4) and (F5) are satisfied,
then there exists ~u ∈ Sc such that J∞(~uc) = I∞c1,...,cm , where

J∞(~u) =
1
2

∫
|∇~u|2 −

∫
F∞(x, ~u),

I∞c1,...,cm = inf{J∞(~u) : ~u ∈ Sc}
(1.5)

Our proofs of Theorems 1.1 and 1.2 are based on the concentration-compactness
principle [4, 5]. In the one-constrained setting

mc = inf{j(u) :
∫
u2 = c2}, (1.6)

where j(u) = 1
2

∫
|∇u|2 −

∫
f(x, u(x)), the principle states that if (un) is a mini-

mizing sequence of problem (1.6), then only one of the three following phenomena
can occur.

(1) Vanishing: limn→∞ supy∈RN
∫
B(y,R)

u2
n(x)dx = 0.

(2) Dichotomy: There exists a ∈ (0, c) such that for all ε > 0, there exists
n0 ∈ N and two bounded sequences in H1, {un,1} and {un,2} (all depending
on ε) such that for every n ≥ n0.

|
∫
u2
n,1 − a2| < ε, |

∫
u2
n,2 − (c2 − a2)| < ε

with limn→∞ dist supp(un,1, un,2) =∞.
(3) Compactness: There exists a sequence {yn} ⊂ RN such that, for all ε > 0,

there exists R(ε) such that∫
B(yn,R(ε))

u2
n(x)dx ≥ c2 − ε ∀n ∈ N.

The seminal work by Lions states a general line of attack to exclude the two first
alternatives. When one knows that compactness in the only possible case, (1.6)
becomes much easier to handle.

Now, to rule out vanishing the main ingredient is to get a strict sign of the value
of mc (let us say mc < 0 without loss of generality). This can be obtained by
dilatations arguments or test function techniques .

The most difficult point is to prove that dichotomy cannot occur. To achieve this
objective, Lions suggested a heuristical approach based on the strict subadditivity
inequality

mc < ma +m∞c−a ∀a ∈ (0, c), (1.7)

where m∞c = inf{j∞(u) : u ∈ sc} and j∞(u) = 1
2

∫
|∇u|2 −

∫
f∞(x, u(x)) and f∞

is defined as in (F3).
On the other hand, we should establish suitable assumptions on f for which

j(un) ≥ j(un,1) + j∞(un,2) − g(δ) where g(δ) → 0 as δ → 0. The latter requires
a deep study of the functionals j and j∞. The continuity of mc and m∞c also
play a crucial role to show that dichotomy cannot occur. When one knows that
compactness is the only plausible alternative, the strict inequality

mc < m∞c (1.8)

is very helpful for proving that (1.6) admits a solution.
Equations (1.7) and (1.8) seem to be inescapable to rule out dichotomy in Lions

method. In the most interesting cases (m∞c 6= 0), in order to get (1.8), we need first
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to apply the concentration-compactness method to the problem at infinity. This
problem is less complicated than the original one since it has translation invariance
properties.

The key tool to prove that m∞c is achieved

∃u∞ ∈ sc such that j∞(u∞) = m∞c (1.9)

is to strict the subadditivity inequality:

m∞c < m∞a +m∞c−a . (1.10)

On the other hand, it is quite easy to establish assumptions on f such that

j(u) < j∞(u) ∀u ∈ H1 (1.11)

and therefore mc ≤ m∞c . Combining (1.9) and (1.11) leads to (1.8). Hence to
obtain (1.7), it suffices to prove that

mc ≤ ma +mc−a (1.12)

This inequality can be derived immediately from the following property,

f(x, θs) ≥ θ2f(x, s) ∀s ∈ R+, x ∈ RN and θ > 1.

To study the multi-constrained variational problem (1.1), we will follow the same
line of attack described in details above. Let us mention that to our knowledge,
there are no previous results dealing with (1.1) when m ≥ 2 and the non-linearity F
is a product function not satisfying the classical convexity, compactness, monotonic-
ity properties. Quite recently, in [1, 2, 3], the second author was able to generalize
and extend previous results addressed to (1.1) when F is radial and supermodular
(i.e ∂i∂jF ≥ 0 ∀1 ≤ i 6= j ≤ m when F is smooth).
In the vectorial context, the equivalent of (1.7) is

Ic1,...,cm < Ia1,...,am + I∞c1−a1,...,cm−am ∀0 < ai < ci ∀1 ≤ i ≤ m. (1.13)

We will first prove that Ic1,...,cm < 0 in lemma 3.2. This property together with
(F2) permit us to have

Ic1,...,cm ≤ Ia1,...,am + Ic1−a1,...,cm−am ∀0 < ai < ci, ∀1 ≤ i ≤ m. (1.14)

It turns out that (1.14) is a subtle combinatorial inequality (part (a) of Lemma
3.3).

Following the same approach detailed for the scalar case, we will then study (1.5)
and prove that this variational problem has a minimum: There exists ~u∞c ∈ Sc such
that

J∞(~u∞c ) = I∞c1,...,cm (1.15)

This equality is obtained thanks to the subadditivity condition

I∞c1,...,cm < I∞a1,...,am + I∞c1−a1...,cm−am ∀0 < ai < ci, ∀1 ≤ i ≤ m, (1.16)

which is proved in part (b) of Lemma 3.3.
On the other hand, (F6) tells us that

J(~u) < J∞(~u) ∀~u ∈ ~H1 . (1.17)

From (1.15) and (1.17) it follows that

Ic1,...,cm < I∞c1,...,cm . (1.18)
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Inequalities (1.14) and (1.18) lead to (1.13). Then using the properties of the
splitting sequences ~vn and ~wn (see appendix) and those of the functionals J and
J∞ (Lemma 3.1) we prove that any minimizing sequence of (1.1) is such that

J(~un) ≥ J(~vn) + J∞(~wn)− δ δ → 0

or
J(~un) ≥ J∞(~vn) + J(~wn)− δ

and we find a contradiction with (1.13). Therefore compactness occurs and we can
conclude that Theorem 1.1 holds using (1.18).

For the convenience of the reader, we summarize our approach (inspired by Lions
principle) into the following steps:

(1) Obtain useful properties about the functionals J and J∞ (Lemma 3.1);
(2) Prove that Ic1,...,cm < 0 and I∞c1,...,cm < 0 (Lemma 3.2);
(3) Ic1,...,cm ≤ Ia1,...,am + Ic1−a1,...,cm−am (Lemma 3.3);
(4) Prove that (1.5) is achieved thanks to the strict inequality

I∞c1,...,cm < I∞a1,...,am + I∞c1−a1,...,cm−am

(5) Ic1,...,cm < I∞c1,...,cm (Lemma 3.4)
(6) Ic1,...,cm < Ia1,...,am + I∞c1−a1,...,cm−am follows from step (3) and step (5);
(7) Only compactness can occur. In fact step (2) permits us to rule out van-

ishing. step 1 and step (6) will be crucial to eliminate dichotomy.

2. Notation

Let N,m be two integers ≥ 1.
• ~s = (s1, . . . , sm) ; where si ∈ R ; |~s| denotes its modulus.
• For ~u = (u1, . . . , um) ∈ Lp × · · · × Lp = ~Lp, let 2 ≤ p ≤ 2∗, where 2∗ is the

critical Sobolev component, and |~u|~Lp =
∑m
i=1|ui|p.

• For ~u ∈ H1 ×H1 = ~H1, let |~u| ~H1 =
∑m
i=1 |ui|H1 .

• In integrals where no domain is specified, it is understood that it extends
over RN .

• We will make frequent use of the inequality∫ ∣∣|~u|∣∣p ≤ cp m∑
i=1

|ui|p

• Sometimes we keep the same constants in different inequalities, even if they
change value form line to line.

• In the following, we fix c1, . . . , cm > 0, c2 =
∑m
i=1c

2
i .

3. Proof of our main result

Lemma 3.1. If F satisfies (F0), then

(i) (a) J ∈ C1( ~H1,R) and there exists a constant E > 0 such that

|J ′(~u)| ~H−1 ≤ E
(
|~u| ~H1 + |~u|1+

4
N

~H1

)
for any ~u ∈ ~H1.

(b) J∞ ∈ C1( ~H1,R) and there exists a constant E∞ > 0 such that

|J∞
′
(~u)| ~H−1 ≤ E∞

(
|~u| ~H1 + |~u|1+

4
N

~H1

)
for any ~u ∈ ~H1.
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(ii) There exist constants Ai, Bi > 0 such that for any ~u ∈ Sc, we have

J(~u) ≥ A1|∇~u|22 −A2c
2 −A3c

(1−σ)(`+2)q,

J∞(~u) ≥ B1|∇~u|22 −B2c
(1−σ1)(β+2)q1 −B3c

(1−σ)(`+2)q,

where σ, σ1 and q, q1 are defined in the proof below.
(iii) (a) Ic1,...,cm > −∞ and any minimzing sequence of (1.1) is bounded in

~H1;
(b) I∞c1,...,cm > −∞ and any minimizing sequence of (1.5) is bounded in

~H1.
(iv) (a) (c1, . . . , cm)→ Ic1,...,cm and

(b) (c1, . . . , cm)→ I∞c1,...,cm are continuous on (0,∞)m.

Proof. (i) (a) Let ϕ : Rm → R be the function defined by

ϕ(~s) = 1 if |~s| ≤ 1

ϕ(~s) = −|~s|+ 2 if 1 ≤ |~s| ≤ 2

ϕ(~s) = 0 if |~s| ≥ 2

Let 1 ≤ i ≤ m.

∂1
i F (x,~s) = ϕ(~s)∂iF (x,~s), |∂1

i F (x,~s)| ≤ B(1 + 2`+1)|~s|, (3.1)

∂2
i F (x,~s) = (1− ϕ(~s))∂iF (x,~s), |∂2

i F (x,~s)| ≤ 2B|~s|1+ 4
N . (3.2)

Let

p =

{
2N
N+2 for N ≥ 3
4
3 for N ≤ 2

and q = (1 +
4
N

)p .

Note that (3.1) and (3.2) imply ∂1
i F (x, ·) ∈ C(~L2, L2) and ∂2

i F (x, ·) ∈ C(~Lq, Lp)
and there exists a constant K > 0 such that

|∂1
i F (x, ~u)|2 ≤ K(|~u|2), ∀~u ∈ ~L2,

|∂2
i F (x, ~u)|p ≤ K(|~u|1+

4
N

q ); ∀~u ∈ ~Lq.

Noticing that ~H1 is continuously embedded in ~Lq since q ∈ [2, 2N
N−2 ] for N ≥ 3 and

q ∈ [2,∞) for N ≤ 2, and ~Lp is continuously embedded in ~H−1 since p′ ∈ [2, 2N
N−2 ]

for N ≥ 3 and p′ ∈ [2,∞) for N ≤ 2. We can assert that ∂iF (x, ·) + ∂2
i F (x, ·) ∈

C( ~H1, ~H−1) and there exists a constant C > 0 such that

|∂iF (x, ~u)| ~H−1 ≤ C{|~u| ~H1 + |~u|1+
4
N

~H1 } (3.3)

for all ~u ∈ ~H1. On the other hand∫
F (x, ~u) ≤ A(|~u|22 + |~u|`+2

`+2) ≤ C(|~u|2~H1 + |~u|`+2
~H1 )

which implies that J ∈ C1( ~H1,R) by standard arguments of differential calculus.
Thus

J ′(~u)~v =
∫ m∑

i=1

∇ui ∇vi − ∂iF (x, ~u)vi ∀~u,~v ∈ ~H1,

|J ′(~u)| ~H−1 ≤ C{|~u| ~H1 + |~u|1+
4
N

~H1 }∀~u ∈ ~H1.
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(i) (b) It is easy to deduce the estimates (3.1) and (3.2) for ∂iF∞ and (i) (b) follows
using the same approach.

(ii) Let ~u ∈ Sc; ~u = (u1, . . . , um). Using (F0), we have
∫
F (x, ~u) ≤ Ac2 +

A
∑m
i=1

∫
|ui(x)|`+2. For 1 ≤ i ≤ m, the Gagliardo-Nirenberg inequality tells us

that
|ui|`+2

`+2 ≤ A”|ui|(1−σ)(`+2)
2 |∇ui|σ(`+2)

2 (3.4)

where σ = N
2

`
`+2 .

Now let ε > 0, p = 4
N` , q is such that 1

p + 1
q = 1. Applying Young’s inequality,

we obtain

|ui|`+2
`+2 ≤

{A”
ε
|ui|(1−σ)(`+2)

2

}q 1
q

+
N`

4
{ε 4

N` |∇ui|22}.

Consequently,

J(~u) ≥
{1

2
− AN`

4
ε

4
N`

}
|∇~u|22 −A2c2 − AA”q

qεq
mc(1−σ)(`+2)q (3.5)

Taking ε such that 1
2 −

AN`
4 ε

4
N` ≥ 0, we prove that J is bounded from below in

~H1. To show that all minimizing sequence of (1.1) is bounded in ~H1, it suffices to
take the latter inequality with a strict sign.
remark (1) If we allow ` = 4/N in (F0), the minimization problem (1.1) makes
sense for sufficiently small values of c since in (3.4), we then have σ = 2

`+2 and
(1− σ)(`+ 2) = 4

N . Therefore,

|ui|`+2
`+2 ≤ A”c(1−σ)(`+2)|∇ui|22 ≤ A”c4/N |∇ui|22,

J(~u) ≥
{

1
2
−AA”c4/N

}
|∇~u|22 −Ac2

Thus if c < ( 1
2AA′′ )

N/4, the minimization problem (1.1) is still well-posed.
(2) If ` > 4/N , we can prove that Ic1,...,cm = −∞.
(b) (ii) Under slight modifications in the proof of (ii) (a) we can easily obtain

J∞(~u) ≥
{1

2
−A(3)ε

4
N`

}
|∇~u|22 −

A(4)m

q1εq1
c(1−σ1)(β+2)q1 − A(5)mc(1−σ)(`+2)q

qεq
,

where σ1 = N
2

β
β+2 , σ1 = N

2
`
`+2 , and q1 is also defined as in the previous proof.

Statement (iii) is a direct consequence of (ii).
(iv) Consider c = (c1, . . . , cm), ci > 0 and a sequence (cn1 , . . . , c

n
m) such that

cni → ci for 1 ≤ i ≤ m. For any n, there exist un,i ∈ Scni ,
∫
u2
n,i = (cni )2 and

Icn1 ,...,cnm ≤ J(un,1, . . . , un,m) ≤ Icn1 ,...,cmn +
1
n
.

Now by (ii) (a), we can easily see that there exists a constant K > 0 such that
|~un| ~H1 ≤ K for all n ∈ N.

Let wn,i = ci
cni
un,i, ~wn = (wn,1, . . . , wn,m), then ~wn ∈ Sc and

|~un − ~wn| ~H1 =
m∑
i=1

|un,i − wn,i|H1 ≤
m∑
i=1

| ci
cni
un,i − un,i|H1 ≤

m∑
i=1

| ci
cni
− 1||un,i|H1

In particular, there exists n1 such that

|~un − ~wn| ~H1 ≤ K + 1 for n ≥ n1.
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Now it follows from i) a) that

|J ′(~u)| ~H−1 ≤ L(K) for |~u| ~H1 ≤ 2K + 1. (3.6)

Therefore, for any n ≥ n1,

|J(~wn)− J(~un)| = |
∫ 1

0

d

dt
J(t~wn + (1− t)~un)dt|

≤ sup
|~u|~H1≤2K+1

|J ′(~u)| ~H−1 |~un − ~wn| ~H1

≤ L(K)K
m∑
i=1

|1− ci
cni
|

Finally, we have

Icn1 ,...,cnm ≥ J(~un)− 1
n
≥ J(~wn) +KL(K)

m∑
i=1

|1− ci
cni
| − 1

n

Thus lim inf Icn1 ,...,cnm ≥ Ic1,...m .
On the other hand, there exists a sequence ~un ∈ Sc such that J(~un)→ Ic1,...,cm

and by i) a) there exists K > 0 such that |~un| ~H1 ≤ K. Now set wn,i = cin
ci
un,i (cin

is such that cin → ci as n→∞). As done above, we certainly have

~wn = (wn,1,...,wn,m) ∈ Scn , cn = (c1n, . . . , c
m
n ),

|~un − ~wn| ~H1 ≤
m∑
i=1

K|1− cin
ci
||un,i|H1 .

As done previously, we obtain

|J(~wn)− J(~un)| ≤ KL(K)
m∑
i=1

|1− cin
ci
|,

which implies

Ic1n,...,cmn ≤ J(~wn) ≤ J(~un) + L(K)K
m∑
i=1

|1− cin
ci
|.

Thus lim sup Ic1n,...,cmn ≤ Ic1,...,cm and we have the conclusion.
Statement (iv) b) follows in a similar manner. �

Lemma 3.2. If F satisfies (F0) and (F1), then

Ic1,...,cm < 0 for anyci > 0; 1 ≤ i ≤ m.

Proof. Let ϕ be a radial and radially decreasing function such that |ϕ|2 = 1. Set
ϕi = ciϕ. Let 0 < λ� 1 and

~Φλ(x) = λN/2~Φ(λx) = λN/2(ϕ1(λx)), . . . , ϕm(λx))

Then

J(~Φλ) = λ2|∇~Φ|22 −
∫
F (x, λN/2ϕ1(λx), . . . , λN/2ϕm(λx))dx

≤ λ2|∇~Φ|22 −
∫
|x|≥R

F (x, λN/2ϕ1(λx), . . . , λN/2ϕm(λx))dx



EJDE-2018/140 EXISTENCE OF MINIMIZERS 9

≤ λ2|∇~Φ|22 − λ
N
2 α∆

∫
|x|≥R

|x|−tϕα1
1 (λx) . . . ϕαmm (λx)dx

By the change of variable y = λx, it follows that

J(~Φλ) ≤ λ2|∇~Φ|22 − λ
N
2 αλ−N∆λt

∫
|y|≥λR

|y|−tϕα1
1 (y), . . . , ϕαmm (y)dy

Since 0 < λ� 1, we obtain

J(~Φλ) ≤ λ2|∇~Φ|22 − λ
N
2 α−N+t

∫
|y|≥R

|y|−tϕα1
1 (y) . . . ϕαmm (y)dy

≤ λ2{C1 − λ
N
2 α−N+t−2C2},

because λ� 1 and N
2 α−N + t− 2 > 0. �

The strict negativity of the infinimum is also discussed in [1] where the author
provides other type of assumptions ensuring this.

Lemma 3.3. (1) If F satisfies (F0)-(F2), then for any c1, . . . , cm > 0

Ic1,...,cm ≤ Ia1,...,am + Ic1−a1,...,cm−am (3.7)

for all ai ∈ (0, ci) where 1 ≤ i ≤ m.
(2) If F satisfies (F1), (F24), (F4) hold for F∞, then for any c1, . . . , cm > 0,

I∞c1,...,cm < I∞a1,...,am + I∞c1−a1,...,cm−am (3.8)

for all ai ∈ (0, ci) where 1 ≤ i ≤ m.

Proof. (1) By (F2), we certainly have

Iθ1c1,...,θmcm ≤ θ2maxIc1,...,cm ∀θi ≥ 1

which implies by Lemma3.1 that

Iθ1c1,...,θmcm ≤ θ2i Ic1,...,cm ∀θi ≥ 1 (3.9)

For the convenience of the reader, we will start by proving the result in a specific
case then we will explain the proof in the general setting. Suppose first that

am
cm − am

≤ 1 and
aj

cj − aj
≥ 1 ∀1 ≤ j ≤ m− 1 .

Then
I(c1,...,cm) = I( c1a1 a1,...,

cm
cm−am cm−am) (3.10)

Thus using (3.9), it follows that

I(c1,...,cm) ≤
c1
a1
I(a1,...,cm−am) =

c1 − a1

a1
I(a1,...,cm−am) + I(a1,...,cm−am) (3.11)

However,
I(a1,...,cm−am) = I( a1

c1−a1
c1−a1,...,

cm−am
am

am)

Again applying (3.9), we obtain

I(a1,..,cm−am) ≤
a1

c1 − a1
I(c1−a1,...,am) (3.12)

Combining (3.11) and (3.12), we have

I(c1,...,cm) ≤ I(a1,...,am) + I(c1−a1,...,cm−am) (3.13)

which concludes the proof in this case.
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Now in the general setting, we follow the same approach. If 1 ≤ i 6= j ≤ m such
that ai

ci−ai and aj
cj−aj > 1 and 1 ≤ k 6= ` ≤ m such that ak

ck−ak and a`
c`−a` < 1, then

these indices will appear in (3.7) in the following manner

Ic1,...,cm ≤ I...,ai,...,ck−ak,...,c`−a`,...,aj ,... + I...,ci−ai,...,ak,...,,a`,...,cj−aj ...

Now if F satisfies (F1), (F4) and (F5) hold for F∞ then by part (1), we have

I∞c1,...,cm ≤ I
∞
a1,...,am + I∞c1−a1,...,cm−am

for any ci > 0, 0 < ai < ci, 1 ≤ i ≤ m.
Following the same steps as in the previous part, we conclude that (2) is true if

I∞θ1c1,...,θmcm,...,θmcm < θ2maxI
∞
c1,...,cm .

For any c1, . . . , cm > 0 and θ1, . . . , θm > 1, we can choose ε > 0 such that
ε < −I∞c1,...,cm(1− θ−σmax) and there exists ~v such that

∫
v2
i = c2i verifying

I∞c1,...,cm ≤ J
∞(~v) < I∞c1,...,cm + ε.

Hence

I∞θ1c1,...,θmcm ≤ J
∞(θ1v1, . . . , θmvm) ≤ θσ+2

maxJ
∞(~v),

I∞θ1c1,...,θmcm ≤ θ
σ+2
max{I∞c1,...,cm + ε} < θ2maxI

∞
c1,...,cm by the choice of ε

�

Lemma 3.4. If F satisfies (F0)–(F2), and (F1), (F5) hold for for F∞, then

Ic1,...,cm < Ia1,...,am + I∞c1−a1,...,cm−am ∀0 < ai < ci ∀1 ≤ i ≤ m.

Proof of Theorem 1.2. Let (~un) be a minimzing sequence of the problem (1.5).
Vanishing does not occur. If it occurs, from [5, Lemma I.1] it follows that∣∣∣|~un|∣∣∣

p
→ 0 as n→ +∞ for p ∈ (2, 2∗). By (F4),∫

F∞(x, ~un(x)) ≤
{∣∣|~un|∣∣β+2

β+2
+
∣∣|~un|∣∣`+2

`+2

}
.

Thus limn→+∞
∫
F∞(x, ~un(x) = 0, which implies that liminf J∞(~un) ≥ 0, contra-

dicting the fac that I∞c1,...,cm < 0.
Dichotomy does not occur. The notation used here, is stated in the appendix.
For n ≥ n0 and since supp~vn ∩ supp ~wn = ∅,

J∞(~un)− J∞(~vn)− J∞(~wn)

=
1
2

∫
|∇~un|2 − |∇~vn|2 − |∇~wn|2 −

∫
F∞(x, ~un)− F∞(x,~vn)− F∞(x, ~wn)

=
1
2

∫
|∇~un|2 − |∇~vn|2 − |∇~wn|2 −

∫
F∞(x, ~un)− F∞(x,~vn + ~wn)

≥ −ε−
∫
F∞(x, ~un)− F∞(x,~vn + ~wn)

Now since {~wn}, {~vn} and {~wn} are bounded in ~H1, it follows from the proof of
Lemma 3.1 that there exist C,K > 0 such that∣∣∫ F∞(x, ~un)− F∞(x,~vn + ~wn)

∣∣
≤ sup
|~u|~H1≤K

m∑
i=1

|∂iF∞(x, ~u)| ~H−1 |~un − (~vn + ~wn)| ~H1
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≤ sup
|~u|~H1≤K

m∑
i=1

|∂1
i F
∞(x, ~u)|~L2 |~un − (~vn + ~wn)|~L2

+ sup
|~u|~H1≤K

m∑
i=1

|∂2
i F
∞(x, ~u)|~Lp |~un − (~vn + ~wn)~p′

≤ C sup
|~u|~H1≤K

|~u|~L2 |~un − (~vn + ~wn)|~L2 + C sup
|~u|~H1≤K

|~u|1+
4
N

Lq |~un − (~vn + ~wn)|~Lp′

≤ C1K|~un − (~vn + ~wn)|~L2 + C2K
1+ 4

N |~un − (~vn + ~wn)|~Lp′ ;

therefore,

J∞(~vn)− J∞(~vn)− J∞(~wn)

≥ −ε− C1K|~un − (~vn + ~wn)|~L2 − C2K
1+ 4

N |~un − (~vn + ~wn)|~Lp′

Given any δ > 0, we can find εδ ∈ (0, δ) such that J∞(~un)−J∞(~vn)−J∞(~wn) ≥ −δ.
Now let

a2
n,i(δ) =

∫
v2
n,i i = 1, . . . ,m;

b2n,i(δ) =
∫
w2
n,i i = 1, . . . ,m.

Passing to a subsequence, we may suppose that

a2
n,i(δ)→ a2

i (δ) and b2n,i(δ)→ b2i (δ)

where |a2
i (δ)−a2

i | ≤ εδ < δ and |b2i (δ)− (c2i −a2
i )| ≤ εδ < δ. Recalling that I∞c1,...,cm

is continuous, we find that

I∞c1,...,cm ≥ lim
n→+∞

J∞(~un) ≥ lim inf{J∞(~vn) + J∞(~wn)} − δ

≥ lim inf{I∞an,1(δ),...,an,m(δ)
+ I∞bn,1(δ),...,bn,m(δ)} − δ

≥ I∞a1(δ),...,am(δ) + I∞b1(δ),...,bm(δ) − δ

Letting δ approach zero and using again the continuity of I∞c1,...,cm , we obtain

I∞c1,...,cm ≥ I
∞
a1,...,am + I∞√

c21−a2
1,...,
√
c2m−a2

m

contracting Lemma 3.3 part (2). Hence compactness occurs; so there exists {yn} ⊂
RN such that for all ε > 0 such that∫

B(yn,R(ε))

u2
n,1 + · · ·+ u2

n,m ≥ c21 + · · ·+ c2m − ε.

For each n ∈ N, we can choose zn ∈ ZN such that zn ∈ ZN such that yn − zn ∈
[0, 1]N .

Now set ~vn(x) = ~un(x+ zn), we certainly have that |~vn| ~H1 = |~un| ~H1 is bounded
and so passing to a subsequence, we may assume that ~vn ⇀ ~v in ~H1, in particular
~vn ⇀ ~v weakly in ~L2 and

|vn,i|22 = c2i ∀1 ≤ i ≤ m.

However, ∫
|~v|2 ≥

∫
B(0,R(ε)+

√
N)

|~v|2
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= lim
n→+∞

∫
B(0,R(ε)+

√
N)

|~vn|2 = lim
∫
B(zn,R(ε)+

√
N)

|~vn|2

and ∫
B(zn,R(ε)+

√
N)

|~un|2 ≥
∫
B(yn,R(ε))

|~un|2 ≥ c21 + · · ·+ c2m − ε

since |yn − zn| ≤
√
N . Hence |~v|2~L2 ≥ c21 + · · ·+ c2m − ε for all ε > 0 which implies

|~v|22 ≥ c21 + · · ·+ c2m (3.14)

On the other hand |vi|2 ≤ lim inf |vn,i|2 implies

|vi|2 ≤ ci ∀1 ≤ i ≤ m (3.15)

Thus combining (3.14) and (3.15), we have that |vi|22 = c2i for all 1 ≤ i ≤ m implies

|~v − ~vn|~L2 → 0 as n→∞.

Furthermore by the periodicity of F∞,

J∞(~un) = J∞(~vn)→ I∞c1,...,cm

and ~vn → ~v in ~Lp, p ∈ [2, 2∗). If follows that ~vn → ~v in ~H1 and consequently∫
F∞(x,~vn)→

∫
F∞(x,~v)

which implies that J∞(~v) = I∞c1,...,cm . �

Proof of Theorem 1.1. In the following (~un) is a minimizing sequence of (1.1) and
we will use the notation introduced in the appendix.
Vanishing does not occur. If it occurs, it follows from [5, Lemma I.1] that∣∣|~un|∣∣p → 0 for p ∈ (2, 2∗). Combining (F0) and (F3) we have: For each δ > 0 there
exists Rδ > 0 such that

F (x,~s) ≤ δ(|~s|2 + |~s|α+2) +A′(|~s|β+2 + |~s|`+2) ∀|x| ≥ Rδ.

Hence ∫
|x|≥Rδ

F (x, ~un) ≤ δ(|~un|22 + |~un|α+2
α+2) +A′(|~un|β+2

β+2 + |~un|`+2
`+2),

lim sup
n→+∞

∫
|x|≥Rδ

F (x, ~un) ≤ δc2.

On the other hand,∫
|x|≤Rδ

F (x, ~un)dx ≤ A
∫
|x|≤Rδ

|~un|2 + |~un|`+2

≤ A{|~un|`+2
`+2|Rδ|

`
`+2 + |~un|`+2

`+2} → as n→ +∞ .

Hence for any δ > 0 we have

lim sup
n→∞

∫
F (x, ~un) < δc2

and so

lim
∫

F (x, ~un) = 0.

Thus J(~un)→ Ic1,...,cm < 0 leads to a contradiction.
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Dichotomy does not occur. Suppose first that the sequence {yn} is bounded
and let us consider

J(~un)− J(~vn)− J∞(~wn)

=
1
2

∫
|∇~wn|2 − |∇~vn|2 −∇~wn|2 −

∫
F (x, ~un)− F (x,~vn)− F (x, ~wn)

+
∫
F∞(x, ~wn)− F (x, ~wn)

≥ −ε−
∫
F (x, ~un)− F (x,~vn + ~wn) +

∫
F∞(x, ~wn)− F (x, ~wn)

(since supp~vn ∩ supp ~wn = ∅)

≥ −ε−
∫
F (x, ~u1)− F (x,~vn + ~wn) +

∫
|x−yn|≥Rn

F∞(x, ~wn)− F (x, ~wn)

Now using the same argument as before, it follows hat given δ > 0, we can choose
ε = εδ ∈ (0, δ) such that

−ε−
∫
F (x, ~un)− F (x,~vn + ~wn) ≥ −δ

and hence

J(~un)− J(~vn)− J∞(~wn) ≥ −δ +
∫
|x−yn|≥Rn

F∞(x, ~wn)− F (x, ~wn)

Given any η > 0, we can find R > 0 such that for all ~s and |x| ≥ R

|F∞(x,~s)− F (x,~s)| ≤ η(|~s|2 + |~s|α+2).

Now since Rn →∞ and we are supposing that {yn} is bounded. We have that

{x : |x− yn| ≥ Rn} ⊂ {x : |x| ≥ R}

for n large enough. From this and the boundedness of ~wn in ~H1, it follows that

lim
n→+∞

∫
|x−yn|≥Rn

F∞(x, ~wn)− F (x, ~wn) = 0 .

Now let

a2
n,i(δ) =

∫
v2
n,i 1 ≤ i ≤ m,

b2n,i(δ) =
∫
w2
n,i 1 ≤ i ≤ m.

Passing to a subsequence, we suppose that

a2
n,i(δ)→ a2

i (δ), b2n,i(δ)→ b2i (δ)

where |a2
i (δ)−a2

i | ≤ εδ < δ and |b2i (δ)− (c2i −a2
i )| ≤ εδ < δ. Recalling that Ic1,...,cm

and I∞c1,...,cm are continuous we find that

Ic1,...,cm = lim
n→+∞

J(~un) ≥ lim inf
n→+∞

{J(~vn) + J∞(~wn)} − δ

≥ lim inf
n→+∞

{Ian,1(δ),...,an,m(δ) + Ibn,1(δ),...,bn,m(δ)} − δ

Therefore,
Ic1,...,cm ≥ Ia1(δ),...,am(δ) + Ib1(δ),...,bm(δ) − δ
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Letting δ → 0 we obtain

Ic1,...,cm ≥ Ia1,...,am + I√
c21−a2

1,...,
√
c2m−a2

m

Thus the sequence {yn} cannot be bounded and, passing to a subsequence, we may
suppose that |yn| → ∞. Now we obtain a contradiction with Lemma 3.4 by using
similar arguments applied to J(~un)− J∞(~vn)− J(~wn) to show that

Ic1,...,cm ≥ I∞a1,...,am + I√
c21−a2

1,...,
√
c2m−a2

m

Thus dichotomy cannot occur and we have compactness. According to the appen-
dix, there exists {yn} ⊂ RN such that∫

B(yn,R(ε))

u2
n,1 + · · ·+ u2

n,m ≥ c21 + · · ·+ c2m − ε ∀ε > 0.

Let us first prove that the sequence {yn} is bounded. If it is not the case, we may
assume that |yn| → ∞ by passing to a subsquence.

Now we can choose zn ∈ ZN such that yn − zn ∈ [0, 1]N . Setting ~vn(x) =
~un(x+ zn), we can suppose that

~vn ⇀ ~v weakly in ~H1

and

|~vn − ~v|~L2 → 0 as n→∞ for 2 ≤ p ≤ 2∗,

J∞(~vn) = J∞(~un);

on the other hand,

J(~un)− J∞(~un) =
∫
F∞(x, ~un)− F (x, ~un)

=
∫
F∞(x,~vn)− F (x− zn, ~vn)

Now given ε > 0, it follows from (F3) that there exists R > 0 such that∣∣ ∫
|x−zn|≥R

F∞(x,~vn)− F (x− zn, ~vn)
∣∣

=
∣∣ ∫
|x−zn|≥R

F∞(x− zn, ~vn)− F (x− zn, ~vn)
∣∣

≤ ε
∫
|x−zn|≥R

|~vn|2 + |~vn|α+2

≤ εC{|~vn|2~H1 + |~vn|α+2
~H1 }

≤ εD

since ~vn is bounded in ~H1. On the other hand, since |zn| → ∞, there exists nR > 0
such that for all n ≥ nR,∣∣ ∫

|x−zn|≤R
F∞(x,~vn)− F (x− zn, ~vn)

∣∣
≤
∣∣ ∫
|x|≥ 1

2 |zn|
F∞(x,~vn)− F (x− zn, ~vn)

∣∣
≤ K

∫
|x|≥ 1

2 |zn|
|~vn|2 + |~vn|`+2
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≤ K
∫
|x|≥ 1

2 |zn|
|~v|2 + |~v|`+2 +K

∫
|x|≥ 1

2 |zn|
|~v − ~vn|2 + |~v − ~vn|`+2

≤ K
∫
|x|≥ 1

2 |zn|
|~v|2 + |~v|`+2 +K

∫
RN
|~v − ~vn|2 + |~v − ~vn|`+2

and hence
lim |

∫
|x−zn|≥Rn

F∞(x,~vn)− F (x− zn, ~vn) = 0.

Thus lim inf{J(~un)− J∞(~un)} ≥ −εD for all ε > 0. So that

Ic1,...,cm = lim J(~un) ≥ lim inf J∞(~un) ≥ I∞c1,...,cm
which contradicts that Ic1,...,cm < I∞c1,...,cm . Hence {yn} is bounded. Setting ρ =
supn∈N |yn|, it follows that∫

B(0,R(ε)+ρ)

u2
n,1 + · · ·+ u2

n,m ≥
∫
B(yn,R(ε))

u2
n,1 + · · ·+ u2

n,m

≥ c2 − ε. ∀ε > 0.

Thus ∫
|~u|2 ≥

∫
B(0,R(ε)+ρ)

|~u|2 = lim
n→+∞

∫
B(0,R(ε)+ρ)

|~un|2 ≥ c2 − ε ∀ε > 0.

Hence
∫
u2

1 + ..+ u2
m ≥ c2.

On the other hand,
∫
u2
i ≤ c2i for 1 ≤ i ≤ m. Thus ~u ∈ Sc and |~un−~u|~L2 → 0. By

the boundedness of ~un in ~H1, it follows that ~un → ~u in ~Lp for p ∈ [2, 2∗], therefore

lim
n→∞

∫
F (x, ~un) =

∫
F (x, ~u)

which implies J(~u) = Ic1,...,cm . �

4. Appendix

The concentration-compactness lemma in the multi-constrained setting states
that: If {~un} is a minimizing sequence of the problem (1.1), we associate to it the
concentration function

Qn(R) = sup
y∈RN

∫
BR+y

ρ2
n(ξ)dξ

where ρ2
n(ξ) = |~un|2 =

∑m
i=1u

2
n,i(ξ). And applying the concentration compactness

method, see [4, page 136-137] and [5, page 272-273]), one of the following alterna-
tives occurs:

(1) Vanishing. lim supy∈RN
∫
y+BR

|~un|2 = 0.
(2) Dichotomy. For all 1 ≤ i ≤ m, there exists ai ∈ (0, ci) such that for all ε > 0,

there exists n0 ∈ N and two bounded sequences in ~H1 denoted by ~vn and ~wn (all
depending on ε) such that for every n ≥ n0, we have∣∣ ∫ v2

n,i − a2
i

∣∣ < ε and
∣∣ ∫ w2

n,i − (c2i − a2
i )
∣∣ < ε ∀1 ≤ i ≤ m,∫

|∇~un|2 − |∇~vn|2 − |∇~wn|2 ≥ −2ε,

|un,i − (vn,i + wn,i)|p ≤ 4ε ∀p ∈ (2, 2∗].
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Furthermore, there exists {yn} ⊂ RN and {Rn} ⊂ (0,∞) such that limn→+∞Rn =
+∞,

vn,i = un,i if |x− yn| ≤ R0,

|vn,i| ≤ |un,i| if R0 ≤ |x− yn| ≤ 2R0,

vn,i = 0 if |x− yn| ≥ 2R0;

wn,i = 0 if |x− yn| ≤ Rn,
|wn,i| ≤ |un,i| if Rn ≤ |x− yn| ≤< 2Rn,

wn,i = un,i if |x− yn| ≥ 2Rn;

and dist supp |vn,i|, supp |wn,i|)→∞ as n→∞.
(3) Compactness. There exists a sequence {yn} ⊂ RN such that for all ε > 0,

there exists R(ε) > 0 such that∫
B(yn,R(ε))

|~un|2 ≥
m∑
i=1

c2i − ε.

As suggested and stated by Lions in [5, pages 137-138], to get the above properties,
it suffices to apply his method to ρn. Decomposing ρn in the classical setting and
thus similtaneously un,i, leads to the properties of the splitting sequences ~vn and
~wn, mentioned above.
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