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Abstract. In this article, we focus on the existence of infinitely many weak

solutions for the modified nonlinear Schrödinger equation

−∆u+ V (x)u− [∆(1 + u2)α/2]
αu

2(1 + u2)
2−α

2

= f(x, u), in RN ,

where 1 ≤ α < 2, f ∈ C(RN × R,R). By using a symmetric mountain pass
theorem and dual approach, we prove that the above equation has infinitely

many high energy solutions.

1. Introduction

The quasilinear Schrödinger equation

−∆u+ V (x)u− k∆(u2)u = f(x, u), x ∈ RN (1.1)

is referred as a modified form of the nonlinear Schrödinger equation

izt + ∆z − ω(x)z + κ∆(h(|z|2))h′(|z|2)z + g(x, z) = 0, x ∈ Rn, (1.2)

where ω is a given potential, h and g are real functions and κ is a real constant.
(1.1) is related to the existence of standing waves solutions of (1.2). In fact, let
z(t, x) = e−iβtu(x), by exploring the Lorentz invariance equation (1.2), we can get
a solitary traveling wave and a corresponding equation of elliptic type which has a
formal variational structure like (1.1) for suitable ω, h and g.

Many researchers focus on the nonlinear Schrödinger equation (1.2) because it
can model many important physical phenomena [16, 17, 32, 35]. If h(s) = s, it
describes the time evolution of the condensate wave function in superfluid film
for plasma physics in Kurihara [16], and if h(s) = (1 + s)1/2, the equation (1.2)
models the self-channeling of a high-power ultrashort laser in matter [14] and the
Heidelberg ferromagnetism [40].

Because of the strong physical background, (1.1) has attracted a lot of attention
from mathematics science field. In the case of k = 0, by using the mountain pass
theorem (for the impact of the mountain pass theory in nonlinear analysis, we refer
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reader to see Pucci and Radulescu [36], Ghergu and Radulescu [8]), Bahrouni et
al [1] established infinitely many solutions for the following nonlinear Schrödinger
equation

−∆u+ V (x)u = a(x)g(u), x ∈ RN (N ≥ 3),
where V and a are functions changing sign and the nonlinearity g has a sublinear
growth. Recently, a Schrödinger-Maxwell system involving sublinear terms was
studied in [15], and the existence of at least two non-trivial solutions as well as the
stability of system was established via to a recent Ricceri-type result. In addition,
for the radial case of Schrödinger equations and systems, many excellent works have
been reported, we refer the reader to [1, 6, 10, 13, 23, 45, 58, 68]. However, if the
Schrödinger equation contains a quasilinear and non-convex diffusion term ∆(u2)u,
some unpredictable difficulties will appear, such as no suitable space where the
energy functional is well defined or the functional is not C1-class except for N = 1
(see [34]). In order to overcome these difficulties, Liu, Wang and Wang [19] (see also
[5]) introduced a technique of changing variables, i.e., dual approach to rewrite the
energy functional with new variable and to find solutions of an auxiliary semilinear
equation. Following this technique, many good results on various modified forms
(1.1) of (1.2) have been reported, see [7, 31, 51, 52, 57, 59, 61, 63, 64, 65]. Recently,
Cheng and Yang [4] studied the model of self-channeling of a high-power ultrashort
laser in matter which has form of a nonlinear Schrödinger equation

−∆u+Ku− [∆(1 + u2)α/2]
αu

2(1 + u2)
2−α

2

= |u|q−1u+ |u|p−1u,

u ∈ H1(RN ), K > 0, N ≥ 3, α ≥ 1, 2 < q + 1 < p+ 1 < α2∗,
(1.3)

by using a change of variables and Mountain pass theorem, the nontrivial solution
of the equation (1.3) has been established. However, we notice that the potential
V (x) = K is bounded, and the infinitely many solutions with high energy have
not been studied for a more general nonlinear term. Thus motivated by the above
work, in this paper, we are concerned with the existence of infinitely many high
energy solutions for the quasilinear Schrödinger equation

−∆u+ V (x)u− [∆(1 + u2)α/2]
αu

2(1 + u2)
2−α

2

= f(x, u), in RN , (1.4)

where 1 ≤ α < 2, f ∈ C(RN × R,R) and V (x) satisfies
(A1) V ∈ C(RN ,R), V0 := inf V (x) > 0 and for every Λ > 0

meas({x ∈ RN : V (x) < Λ}) < +∞,
where meas denotes Lebesgue measure in RN .

Our research is also closely related to some work by Sun et al [44, 46, 47, 48, 49],
Mao et al [25, 26, 27, 28], Liu et al [18], Elisandra [9], Shao[42], Shi and Chen [43],
Zhang et al [11, 56, 62] and variational methods for ordinary differential equations
[20, 21, 22, 60, 66, 67] and partial differential equations [53, 12, 24, 29, 30, 37, 38, 39],
where the authors obtained some interesting theoretical results.

At the end of this section, we state a version of symmetric mountain pass theorem
due to Rabinowize [41], the proof of our main result will depend on it.

Lemma 1.1. Let E be an infinite dimensional Banach space and let I ∈ C1(E,R)
be even, satisfy (PS)-condition, and I(0) = 0. If E = V ⊕ X, where V is finite
dimensional and I satisfies
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(i) there are constants ρ, δ > 0 such that I|∂Bρ∩X ≥ δ, and
(ii) for each finite-dimensional subspace E′ ⊂ E, there is an R = R(E′) such

that I|E′\BR ≤ 0.
Then I possesses an unbounded sequence of critical values.

2. Variational setting and main results

The following notation will be adopted in this article. Ls(RN ) denotes the usual
Lebesgue space with norm

‖u‖s =
(∫

RN
|u|sdx

)1/s

, 1 ≤ s <∞.

Let
H1(RN ) = {u ∈ L2(RN ) : ∇u ∈ L2(RN )}

with the norm and inner product, respectively,

‖u‖H1 =
[ ∫

RN
|∇u|2 + u2dx

]1/2
, 〈u, v〉H1 =

∫
RN

(∇u · ∇v + uv)dx.

Now under the assumption (A1), we define our work space

E =
{
u ∈ H1(RN ) :

∫
RN

(|∇u|2 + V (x)u2)dx < +∞
}

with the norm and inner product, respectively,

‖u‖ =
[ ∫

RN
|∇u|2 + V (x)u2dx

]1/2
, 〈u, v〉 =

∫
RN

(∇u · ∇v + v(x)uv)dx.

It is well known that if the assumption (A1) holds, then the embedding E ↪→
Ls(RN ) is continuous for s ∈ [2, 2∗] and there exists a constant cs > 0, 2 ≤ s ≤ 2∗

such that
‖u‖s ≤ cs‖u‖, ∀u ∈ E.

In addition, from [2, 3], we have the following compactness lemma.

Lemma 2.1. Under assumption (A1), the embedding E ↪→ Ls(RN ) is compact for
s ∈ [2, 2∗).

Normally, the solutions of (1.4) are the critical points of the functional

J(u) =
1
2

∫
RN

[
1 +

α2u2

2(1 + u2)2−α

]
|∇u|2dx+

1
2

∫
RN

V (x)u2dx−
∫

RN
F (x, u)dx,

where F (x, s) =
∫ s

0
f(x, ξ)dξ. But the natural associated functional J(u) may not

be well defined and is not Gâteaux differentiable functional in the corresponding
Sobolev space E. To avoid these obstacles, we introduce a new function so that the
dual approach can be used for establishing our results. Let

g(t) =

√
1 +

α2t2

2(1 + t2)2−α

and make a change of variable

v = G(u) =
∫ u

0

g(t)dt.
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Clearly, g(t) is monotonous on |t|, which implies that the inverse function G−1(t)
of G(t) exists, thus similar to [4], we have an equivalent functional for the natural
associated functional J(u)

I(v) =
1
2

∫
RN
|∇v|2dx+

1
2

∫
RN

V (x)|G−1(v)|2dx−
∫

RN
F (x,G−1(v))dx. (2.1)

Based on the properties of G−1(v) (see Lemma 2.3 below), I(·) is well defined on
E and I(v) ∈ C1(E,R) if and only if

∫
RN F (x,G−1(·))dx has the same property as

the functional I, i.e., if
∫

RN F (x,G−1(·))dx is continuously differential on E, then
I(v) ∈ C1(E,R), and for any w ∈ C∞0 (R), we have

〈I ′(v), w〉 =
∫

RN
∇v∇wdx+

∫
RN

V (x)
G−1(v)

g (G−1(v))
wdx−

∫
RN

f
(
x,G−1(v)

)
g (G−1(v))

wdx.

The critical points of I are then weak solutions of the semilinear Schrödinger equa-
tion

−∆v = −V (x)
G−1(v)

g
(
G−1(v)

) +
f
(
x,G−1(v)

)
g
(
G−1(v)

) , x ∈ RN . (2.2)

Thus to obtain the existence of the weak solutions for the quasilinear Schrödinger
equation (1.4), it is sufficient to study the existence of the weak solutions for the
equivalent form (2.2) of (1.4).

In this article, we assume that the nonlinearity f in problem (1.4) satisfies the
following assumptions:

(A2) f(x,−t) = −f(x, t) for all (x, t) ∈ RN × R.
(A3) there exists c > 0 such that |f(x, t)| ≤ c(1 + |t|r−1) for some 2α < r < 2∗α,

where 2∗ = 2N
N−2 if N ≥ 3 and 2∗ =∞ if N = 2.

(A4) f(x, t) = o(|t|) uniformly in x as |t| → 0.
(A5) lim|t|→∞

|F (x,t)|
|t|2α = +∞ uniformly for x ∈ RN , where F (x, t) =

∫ t
0
f(x, s)ds.

(A6) there exists a constant µ > 2α such that

f(x, t)G(t)− µF (x, t)g(t) ≥ 0,

for all (x, t) ∈ RN × R.

On the existence of infinitely many high energy solutions we have the following
result.

Theorem 2.2. Suppose that (A1)–(A6) are satisfied. Then the (1.4) admits a
sequence of weak solutions {un} ⊂ E such that ‖un‖ → ∞ and J(un) → ∞ as
n→∞.

To prove our main result, some properties of G−1(t) will be introduced so that
we can discuss the geometric structure of I more conveniently.

Lemma 2.3. g(t) and G−1(t) satisfy the following properties:

(G1) g(t) ≥ 1,∀t ∈ R;
(G2) |G−1(t)| ≤ |t|,∀t ∈ R;
(G3) limt→0

G−1(t)
t = 1;

(G4) if α > 1, then limt→∞
|G−1(t)|α

t =
√

2; if α = 1, then limt→∞
|G−1(t)|

t =
√

2
3 ;



EJDE-2018/147 MODIFIED NONLINEAR SCHRÖDINGER EQUATION 5

(G5) there exist a positive constant such that

|G−1(t)| ≥

{
C|t|, |t| ≤ 1,
Ct1/α, |t| ≥ 1;

(G6)
G−1(t)t
g(G−1(t))

≤ (G−1(t))2, ∀t ∈ R.

(G7) |G(t)| ≤ g(t)|t|, for any t ∈ R;
(G8) for any t ∈ R, we have tg′(t)

g(t) ≤ T (α), where

T (α) =

{
α− 1, α ≥ α1 ≈ 1.1586,
α2

2

(
3−α
2−α

)α−3
, 1 ≤ α < α1,

especially, for the case 1 ≤ α < α1, for accuracy, T (α) can be taken as
ρ(s0), where s0 satisfies ρ′(s0) = 0 and 1 ≤ α < α1,

ρ(s) =
(α− 1)α2s(1 + s)α + (2− α)α2s(1− s)α−1

2(1 + s2) + α2s(1 + s)α
, s ≥ 0.

(G9) for each λ > 1, one has

|G−1(λt)|2 ≤ λ2|G−1(t)|2, ∀t ∈ R.

(G10) the function (G−1(t))2 is strictly convex, and especially

|G−1(λt)|2 ≤ λ|G−1(t)|2, ∀t ∈ R, λ ∈ [0, 1].

(G11) there exists a constant c > 0 such that |G−1(t)|α ≤ c|t| for all t ∈ R.

Proof. The proof of (G2)–(G4) and (G8) can be found in [4]. By the definition of
g and direct calculation, (G1) and (G6) hold. In addition, since G−1 is an odd
function, (G5) and (G11) are consequences of (G3) and (G4), moreover (G7) is also
consequence of [4, 5]. To prove (G9), by (G7), we have

t = G(G−1(t)) ≤ g(G−1(t))G−1(t), for all t ≥ 0.

Thus
[(G−1(s))2]′t

(G−1(t))2
=

2G−1(t)(G−1(t))′t
(G−1(t))2

=
2G−1(t)t

g(G−1(t))(G−1(t))2
≤ 2(G−1(t))2

(G−1(t))2
= 2,

for all t ≥ 0. Then

ln
( (G−1(λt))2

(G−1(t))2

)
=
∫ λt

t

[(G−1(s))2]′

(G−1(s))2
ds ≤ 2 lnλ = lnλ2,

for all t ≥ 0 and λ > 1, which implies that

(G−1(λt))2 ≤ λ2(G−1(t))2, for all t ≥ 0.

Since G−1 is an odd function, and (G−1)2 is a even function, so the above inequality
holds for all t ∈ R.

In the end, we prove (G10). In fact, for 1 ≤ α < α1, we have that φ(α) =
α2

2

(
3−α
2−α

)α−3 is increasing and 0 < φ(α) < 1, thus by (g8), for any 1 ≤ α < 2 and
s ∈ R, we have

sg′(s)
g(s)

≤ T (α) < 1,
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which yields

[(G−1(s))2]′′ =
2

g2(G−1(t))
− 2G−1(t)g′(G−1(t))

g3(G−1(t))
> 0.

And then, from the convexity of (G−1(t))2, for all λ ∈ [0, 1], one gets

|G−1(λt)|2 ≤ λ|G−1(t)|2, ∀t ∈ R.
�

Lemma 2.4. Assume that {vn} ⊂ E is a (PS)-sequence of I. Then {vn} is bounded
in E.

Proof. Suppose {vn} ⊂ E is a (PS)-sequence of I, that is

I(vn)→ c, (1 + ‖vn‖)I ′(vn)→ 0, as n→∞. (2.3)

By using (2.3), (A1), (G6) and (A6), we get

c+ o(1) = I(vn)− 1
µ
〈I ′(vn), vn〉

=
(1

2
− 1
µ

)∫
RN
|∇vn|2dx+

1
2

∫
RN

V (x)|G−1(vn)|2dx

− 1
µ

∫
RN

V (x)
G−1(vn)vn
g(G−1(vn))

dx+
1
µ

∫
RN

f(x,G−1(vn))vn
g(G−1(vn))

dx

−
∫

RN
F (x,G−1(vn))dx

≥
(1

2
− 1
µ

)∫
RN
|∇vn|2dx+

(1
2
− 1
µ

)∫
RN

V (x)|G−1(vn)|2dx

+
1
µ

∫
RN

(f(x,G−1(vn))vn
g(G−1(vn))

− µF (x,G−1(vn))
)
dx

≥
(1

2
− 1
µ

)∫
RN
|∇vn|2dx+

(1
2
− 1
µ

)∫
RN

V (x)|G−1(vn)|2dx,

(2.4)

which implies that there exists a constant C1 > 0 such that∫
RN
|∇vn|2dx+

∫
RN

V (x)|G−1(vn)|2dx ≤ C1. (2.5)

Obviously, from (2.5), if there exists a constant C2 > 0 such that∫
RN
|∇vn|2dx+

∫
RN

V (x)|G−1(vn)|2dx ≥ C2‖vn‖2, (2.6)

then {vn} is bounded in E. To do this, let

‖vn‖20 =:
∫

RN
|∇vn|2dx+

∫
RN

V (x)|G−1(vn)|2dx, (2.7)

and vn 6= 0 (if vn = 0, the conclusion obviously holds). Suppose (2.6) is not true,
then passing to a subsequence, one has

lim
n→+∞

‖vn‖20
‖vn‖2

= 0.

Set

un =
vn
‖vn‖

, kn =
(G−1(vn))2

‖vn‖2
,
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then we have ∫
RN
|∇un|2dx+

∫
RN

V (x)kn(x)dx→ 0, n→∞. (2.8)

Thus ∫
RN
|∇un|2dx→ 0,

∫
RN

V (x)kn(x)dx→ 0,
∫

RN
V (x)u2

ndx→ 1. (2.9)

Now according to the strategy in [51, 63], we claim that for each ε > 0, there exists
a constant C2 > 0 such that meas(Bn) ≤ ε, where meas(·) denotes the standard
Lebesgue measure and

Bn = {x ∈ RN : |vn| ≥ C2}.
Otherwise, there exists ε0 > 0 and a subsequence of {vn} (still denoted by {vn})
such that for any positive integer n

meas(An) ≥ ε0,

where An = {x ∈ RN : |vn| ≥ n}. By (G5) and (V0), we have

‖vn‖20 ≥
∫

RN
V (x)|G−1(vn)|2dx ≥

∫
An

V (x)|G−1(vn)|2dx ≥ C3n
1/αε0 → +∞,

as n→∞, which contradicts with (2.5), thus our claim is true.
Next notice that if vn ∈ RN \Bn, it follows from (G5), (G9) and (G10) that

C

C2
2

v2
n ≤

(
G−1

( vn
C2

))2

≤ C3

(
G−1(vn)

)2

,

which implies∫
RN\Bn

V (x)u2
ndx ≤ C4

∫
RN\Bn

V (x)

(
G−1(vn)

)2
‖vn‖

dx ≤ C4

∫
RN

V (x)kn(x)dx

→ 0, as n→∞.
(2.10)

On the other hand, by the absolute equicontinuity of integral [33], there exists ε > 0
such that whenever Ω ⊂ RN and meas(Ω) < ε∫

Ω

V (x)u2
ndx ≤

1
2
. (2.11)

Thus it follows from (2.10) and (2.11) that∫
RN

V (x)u2
ndx =

∫
Bn

V (x)u2
ndx+

∫
RN\Bn

V (x)u2
ndx ≤

1
2

+ o(1),

which implies that 1 ≤ 1
2 , a contradiction. Thus (2.6) is indeed true, and then {vn}

is bounded in E. �

Lemma 2.5. Assume that {vn} is bounded in E, then for any v ∈ E, there exists
a constant C5 > 0 such that∫

RN
|∇(vn − v)|2dx+

∫
RN

V (x)[
G−1(vn)
g(G−1(vn))

− G−1(v))
g (G−1(v))

](vn − v)dx

≥ C5‖vn − v‖2.
(2.12)
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Proof. Let vn 6= v, otherwise, the conclusion is trivial. Set

wn =
vn − v
‖vn − v‖

, hn(x) =
(

G−1(vn(x))
g(G−1(vn(x)))

− G−1(v(x)))
g (G−1(v(x)))

)/
(vn(x)− v(x)).

(2.13)
To obtain (2.12), it suffices to prove that there exists a constant C5 > 0 such that∫

RN
|∇wn|2dx+

∫
RN

V (x)hn(x)w2
ndx ≥ C5. (2.14)

To do this, we argue it by contradiction. Assume that∫
RN
|∇wn|2dx+

∫
RN

V (x)hn(x)w2
ndx→ 0. (2.15)

By (G8),
d

dt
[
G−1(t)
g(G−1(t))

] =
1

g2(G−1(t))
− G−1(t)g′(G−1(t))

g3(G−1(t))
> 0, (2.16)

which implies that G−1(t)
g(G−1(t)) is strictly increasing and for each C6 > 0 there exists

a constant δ1 > 0 such that

d

dt

[ G−1(t)
g(G−1(t))

]
≥ δ1 (2.17)

as |t| ≤ C6. Moreover, by the Mean Value Theorem and (2.16), the second equality
of (2.13) becomes

hn(x) =
( G−1(vn(x))
g(G−1(vn(x)))

− G−1(v(x))
g (G−1(v(x)))

)/
(vn(x)− v(x))

=
d

dt
[
G−1(t)
g(G−1(t))

]
∣∣∣
t=vn(x)+θ(vn(x)+v(x))

≥ 0.
(2.18)

It follows from (2.13), (2.14) and (2.18) that∫
RN
|∇wn|2dx→ 0,

∫
RN

V (x)hn(x)w2
ndx→ 0,

∫
RN

V (x)w2
ndx→ 1. (2.19)

Thus similar to the argument of (2.10) and (2.11), one can get a contradiction. So
(2.12) holds. �

Now let {ei} be an orthonormal basis of E and define Xi = Rei, then E =
⊕∞i=1Xi. Let

Vn = ⊕ni=1Xi, Wn = ⊕∞i=nXi, n ∈ Z,
then Vn is finite dimensional. By [50, Lemma 3.8], we have the following conclusion.

Lemma 2.6. Assume (V0) and 2 ≤ s < 2∗, then supv∈Wn,‖v=1‖ ‖v‖s → 0 as
n→∞.

Lemma 2.7. Assume (A1), (A3) and (A4) hold. Then there exist constants ρ, δ > 0
and positive integer k ≥ 1 such that I|∂Sρ∩Wk

≥ δ and I(v) satisfies the (PS)-
condition.

Proof. Firstly, we prove that, for any v ∈ Sρ, there exists a positive constant C7

such that

‖v‖20 =:
∫

RN
|∇v|2dx+

∫
RN

V (x)|G−1(v)|2dx ≥ C7‖v‖2. (2.20)
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Otherwise, there exists a sequence {vn} ⊂ Sρ such that∫
RN
|∇v|2dx+

∫
RN

V (x)|G−1(v)|2dx ≤ 1
n
‖v‖2,

which yields ‖v‖20/‖v‖2 → 0 as n → +∞. Similar to (2.6), one gets a contraction.
Thus (2.20) holds.

On the other hand, for any ε > 0, form (A3) and (A4) there exists Cε > 0 such
that

|f(x, t)| ≤ ε|t|+ Cε|t|r−1, (x, t) ∈ RN × R. (2.21)

Moreover it follows from Lemma 2.6 and 2α < r < 2∗α that there exists an integer
k ≥ 1 such that

‖v‖22 ≤ C8‖v‖2, ‖v‖
r
α
r
α
≤ C9‖v‖

r
α , ∀v ∈Wk. (2.22)

Thus for any v ∈Wk and v ∈ Sρ, by (2.20)-(2.22), (G2) and (G11), we have

I(v) ≥ C7

2
‖v‖2 − ε

∫
RN
|G−1(v)|2dx− Cε

∫
RN
|G−1(v)|rdx

≥ C7

2
‖v‖2 − ε

∫
RN
|v|2dx− C̃ε

∫
RN
|v| rα dx

≥ C7

2
ρ2 − C8ερ

2 − C̃εC9ρ
r
α = δ > 0,

(2.23)

for small ε > 0 and ρ > 0, that is I|∂Sρ∩Wk
≥ δ.

Let {vn} ⊂ E be any (PS)-sequence of I(v), i.e; there exists c > 0 such that
|I(vk)| ≤ c and I ′(vk)→ 0 as k →∞. From Lemma 2.4, we know {vn} is bounded
in E. Thus, up to a subsequence, we have vn ⇀ v in E. Moreover, the compactness
of embedding E ↪→ Ls(RN ) (s ∈ [2, 2∗)) implies that vn → v in Ls(RN ) for any
2 ≤ s < 2∗ and vn(x)→ v(x) a.e. on RN .

According to (G11) and (G5), we have

|G−1(t)|α ≤ c|t| ≤ cg(G−1(t))|G−1(t)|,

which yields
|G−1(t)|α−1

g(G−1(t))
≤ c. (2.24)

Thus by (G1), (G2), (G11) and (2.24), one has∣∣∣ ∫
RN

[f(x,G−1(vn))
g(G−1(vn))

−
f
(
x,G−1(v)

)
g (G−1(v))

]
(vn − v)dx

∣∣∣
≤
∫

RN

[
|f(x,G−1(vn))
g(G−1(vn))

|+ |f(x,G−1(v))
g(G−1(v))

|
]
|vn − v|dx

≤
∫

RN
[ε
(
|G−1(vn)|+ |G−1(v)|

)
+ Cε

( |G−1(vn)|r−1

g(G−1(vn))
+
|G−1(v)|r−1

g(G−1(v))

)
]|vn − v|dx

≤
∫

RN
[ε (|vn|+ |v|) + C̃ε

(
|vn|

r−α
α + |v|

r−α
α

)
]|vn − v|dx

≤ C10(‖vn‖2 + ‖v‖2)‖vn − v‖2 + C11

(
‖vn‖

r−α
α
r
α

+ ‖v‖
r−α
α
r
α

)
‖vn − v‖ rα

= on(1).
(2.25)
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Thus Lemma 2.5, (2.25) and I ′(vn)→ 0 imply

o(1) = 〈I ′(vn)− I ′(v), vn − v〉

=
∫

RN
|∇(vn − v)|2dx+

∫
RN

V (x)[
G−1(vn)
g(G−1(vn))

− G−1(v))
g (G−1(v))

](vn − v)dx

−
∫

RN
[
f(x,G−1(vn))
g(G−1(vn))

−
f
(
x,G−1(v)

)
g (G−1(v))

](vn − v)dx

≥ C5‖vn − v‖2 + on(1),

which yields vn → v in E. The proof is complete. �

Lemma 2.8. For each finite-dimensional subspace E′ ⊂ E, there is a constant
R > ρ such that I|E′\BR ≤ 0.

Proof. Suppose that the conclusion of the lemma is not invalid for some finite-
dimensional subspace E′ ⊂ E. Then there is a sequence {vn} ⊂ E′ such that
‖vn‖ → ∞ and I(vn) > 0, that is

1
2

∫
RN

(
|∇vn|2 + V (x)|G−1(vn)|2

)
dx >

∫
RN

F (x,G−1(vn))dx. (2.26)

By (G2), we have ∫
RN

F (x,G−1(vn))dx
‖vn‖2

<
1
2
. (2.27)

On there other hand, let wn = vn
‖vn‖ . Then up to a sequence, we can assume

that wn ⇀ w in E, wn → w in Ls(RN ), s ∈ [2, 2∗), wn ⇀ w for a.e. x ∈ RN . Let
Λ = {x ∈ RN : w(x) 6= 0} and Λ1 = {x ∈ RN : w(x) = 0}, we assert measΛ = 0.
In fact, if not, by (A5), (G4) and the Fatou’s Lemma, one has∫

Λ

F (x,G−1(vn))
‖vn‖2

dx =
∫

Λ

F (x,G−1(vn))dx
(G−1(vn))2α

(G−1(vn))2α

v2
n

w2
ndx→ +∞. (2.28)

On the other hand, by assumptions (A3)–(A5), there exists a constant C12 > 0
such that

F (x, t) ≥ −C12t
2, ∀(x, t) ∈ RN × R,

which implies that∫
Λ1

F (x,G−1(vn))
‖vn‖2

dx ≥ −C12

∫
Λ1

(G−1(vn))2

‖vn‖2
dx ≥ −C12

∫
Λ1

w2
ndx.

Since wn → w in L2(RN ), by [50], there exists a function h ∈ L2(RN ) such that

|wn(x)| ≤ h(x), a.e. x ∈ RN .

Thus Lebesgue’s dominated convergence theorem guarantees

lim inf
n→∞

∫
Λ1

F (x,G−1(vn))
‖vn‖2

dx ≥ 0. (2.29)

Consequently, (2.28) and (2.29) yield

lim inf
n→∞

∫
RN

F (x,G−1(vn))
‖vn‖2

dx = +∞, (2.30)
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which contradicts (2.27). So meas Λ = 0 and w(x) = 0 a.e x ∈ RN . According
the fact of all norms are equivalent on the finite dimensional space and Sobloev
embedding theorem, there is a constant d > 0 such that

0 = lim
n→∞

‖wn‖22 ≥ lim
n→∞

d‖wn‖2 = d,

a contradiction, and the desired conclusion is obtained. �

Proof of Theorem 2.2. Let V = Vn, X = Wn, then E = V ⊕ X, V is a finite-
dimensional space. Obviously, by (f1), we know the functional I is even and I(0) =
0. Lemma 2.7 implies that I satisfies (PS)-condition, and by Lemmas 2.7 and 2.8,
(i) and (ii) of Lemma 1.1 are also satisfied. Thus, by Lemma 1.1, I possesses a
sequence of critical points {vn} ⊂ E such that I(vn) → ∞ as n → ∞, i.e., the
problem (1.4) has a sequence of solutions {un} ⊂ E such that and ‖un‖ → ∞ and
J(un)→∞ as n→∞, where un = G−1(vn). �

3. Further results

In this section, we obtain infinitely many high energy solutions for (1.4) by using
some easily verifiable assumptions:

(A7) there exists a constant M > 0 such that

M0 = inf
(x,t)∈RN×[G−1(M),+∞)

F (x, t) > 0.

Theorem 3.1. Suppose that (A2)–(A4), (A6), (A7) are satisfied. Then (1.4) ad-
mits a sequence of weak solutions {un} ⊂ E such that ‖un‖ → ∞ and J(un)→∞
as n→∞.

Proof. We only need to prove that the assumption (A7) is stronger than (A5). To
do this, for any (x, t) ∈ RN × R, let

ϕ(s) = F
(
x,G−1

( t
s

))
sµ, s ≥ 1.

It follows from (A6) and (A7) that

ϕ′(s) = f
(
x,G−1

( t
s

))(
− t

s2

)[
G−1

( t
s

)]′
sµ + µF

(
x,G−1

( t
s

))
sµ−1

=
sµ−1

g(G−1
(
t
s

)
)

[
− t

s
f
(
x,G−1

( t
s

))
+ µF

(
x,G−1

( t
s

))
g
(
G−1

( t
s

))]
≤ 0,

(3.1)

which implies that ϕ(s) is decreasing on [1,+∞). Thus for |t| > M , notice that
M |t|
t is an odd function and F is a even function, we have

ϕ(1) = F (x,G−1(t)) ≥ ϕ
( |t|
M

)
= F

(
x,G−1

(M |t|
t

))( |t|
M

)µ ≥ M0

M
|t|µ,

for |t| > M . Consequently, from (G2), we have

F (x,G−1(t))
|G−1(t)|2α

≥ M0

M
|t|µ−2α, |t| > M.

Notice µ > 2α, we get

lim
|t|→∞

F (x,G−1(t))
|G−1(t)|2α

= +∞,
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uniformly for x ∈ RN . Further, it follows from (G5) that

lim
|t|→∞

F (x, t)
|t|2α

= +∞,

uniformly for x ∈ RN . Consequently, the assumption (A7) implies (A5). The proof
is complete. �

In the next theorem, we use the assumption

(A8) F (x, 1) > 0 for any x ∈ RN , and there exists a constant σ > 2α such that
any c > 1,

F (x, ct) ≥ cσF (x, t), (x, t) ∈ RN × R.

Theorem 3.2. Suppose that (A1)–(A4), (A6), (A8) are satisfied. Then (1.4) ad-
mits a sequence of weak solutions {un} ⊂ E such that ‖un‖ → ∞ and J(un)→∞
as n→∞.

Proof. We consider that (A8) implies (A5). In fact, for any x ∈ RN and |s| > 1,
we have

F (x, |s|) ≥ |s|σF (x, 1).

Consequently,

F (x, s)
|s|2α

≥ |s|σ−2αF (x, 1).

It follows from σ > 2α and F (x, 1) > 0 that

lim
|s|→∞

F (x, s)
|s|2α

= +∞,

uniformly for x ∈ RN . Consequently, the assumption (A8) implies (A5). The proof
is complete. �

In the next theorem, we use the assumption

(A9) Assume F̃ (x, t) = 1
4f(x, t)t − F (x, t) ≥ 0, and there exist constants c > 0

and 2∗

2∗−1 < σ < 2 such that

F̃ (x, t) ≥ c|F (x, t)
t
|σ, (x, t) ∈ RN × R with t large enough.

Theorem 3.3. Suppose that (A1)–(A3), (A5), (A9) are satisfied. Then (1.4) ad-
mits a sequence of weak solutions {un} ⊂ E such that ‖un‖ → ∞ and J(un)→∞
as n→∞.

Following the method in [51, 63], the theorem above can be obtained directly.

Acknowledgments. The authors were supported financially by the National Nat-
ural Science Foundation of China (11571296).
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