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OSCILLATION OF SECOND-ORDER EMDEN-FOWLER
NEUTRAL DELAY DIFFERENTIAL EQUATIONS

YINGZHU WU, YUANHONG YU, JINSEN XIAO

Abstract. In this article, we establish new oscillation criteria for the second-

order Emden-Fowler neutral delay differential equation“
r(t)|z′(t)|α−1z′(t)

”′
+ q(t)|x(σ(t))|β−1x

`
σ(t)

´
= 0,

where z(t) = x(t) + p(t)x(τ(t)), α > 0 and β > 0. Our results improve some
well-known results which were published recently in the literature. Some illus-

trative examples are also provided to show the significance of our results.

1. Introduction

In this article, we consider the second-order Emden-Fowler neutral delay differ-
ential equation (

r(t)|z′(t)|α−1z′(t)
)′

+ q(t)|x
(
σ(t)

)
|β−1x

(
σ(t)

)
= 0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)), t ≥ t0 > 0, α > 0, and β > 0. Here we use the
following assumptions:

(A1) r, σ ∈ C1([t0,∞), (0,∞)), r(t) > 0, r′(t) ≥ 0 σ(t) ≤ t, σ′(t) > 0, and
limt→∞ σ(t) =∞;

(A2) p, q, τ ∈ C([t0,∞), R), 0 ≤ p(t) < 1, q(t) ≥ 0, τ(t) ≤ t, and limt→∞ τ(t) =
∞.

A function x(t) ∈ C1([Tx,∞), R), Tx ≥ t0 is called a solution of (1.1) if it
satisfies the property r(t)|z′(t)|α−1z′(t) ∈ C1([Tx,∞), R) and (1.1) on [Tx,∞).
In this article, we only consider the nontrivial solutions of (1.1), which ensure
sup{|x(t)| : t ≥ T} > 0 for the condition T ≥ Tx. A solution of (1.1) is said to
be oscillatory if it has an arbitrarily large zero point on [Tx,∞); otherwise, it is
called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are
oscillatory.

Recently, there have been a large number of papers that devoted to the oscillation
of the neutral differential equations. We refer the readers to the articles [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
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Candan [5] studied the oscillation for second-order neutral differential equations
with distributed deviating arguments(

r(t)|z′(t)|α−1z′(t)
)′

+
∫ d

c

f
(
t, x
(
σ(t, ξ)

))
dξ = 0, (1.2)

where z(t) = x(t) +
∫ b
a
p(t, ξ)x(τ(t, ξ))dξ, |f(t, u)| ≥ q(t, ξ)|uα|, and α > 0.

In [5] the following results are presented, with the notation Q(t) =
∫ d
c

[1 −
p(σ(t, ξ))]αp(t, ξ)dξ, Q̄(t) =

∫∞
t
Q(s)ds, R̄(t) = ασ′1(t)

r1/α(σ1(t))
, and σ1(t) = σ(t, α).

Theorem 1.1 ([5, Theorem 2.1]). Assume that∫ ∞
t0

1
r1/α(t)

dt =∞, (1.3)∫ ∞
t0

Q(t) dt =∞, (1.4)

then (1.2) is oscillatory.

Theorem 1.2 ([5, Theorem 2.3]). Assume that (1.3) holds and∫ ∞
t0

Q(t) dt <∞. (1.5)

If

lim inf
t→∞

1
Q̄(t)

∫ ∞
t

Q̄
α+1
α (s)R̄(s)ds >

α

(α+ 1)
α+1
α

, (1.6)

then (1.2) is oscillatory.

In 2011, Li et al. [11] studied the oscillatory behavior of the second order Emden-
Fowler delay differential equation of the neutral type

(r(t)(x(t) + p(t)x(t− τ))′)′ + q(t)xβ
(
σ(t)

)
= 0, (1.7)

where τ ≥ 0, β ≥ 1, and r(t) satisfies∫ ∞
t0

1
r(t)

dt <∞, (1.8)

and they presented the following result.

Theorem 1.3 ([11, Theorem 2.1]). Suppose (1.8) holds. If there exists a function
ρ ∈ C1([t0,∞), R), ρ(t) ≥ t, ρ′(t) > 0, σ(t) ≤ ρ(t)− τ such that for all sufficiently
large t1 and any M > 0 and L > 0, it holds∫ ∞ [

q(t)(1− p
(
σ(t)

)
)βRβ

(
σ(t)

)
−
βM1−βσ′(t)Rβ−1

(
σ(t)

)
r
(
σ(t)

) ∫ t
t1

σ′(s)
r(σ(s)) ds

]
dt =∞, (1.9)

∫ ∞ [
q(t)(

1
1 + p(ρ(t))

)βδβ(t)− βρ′(t)
Lβ−1δ(t)r(ρ(t))

]
dt =∞, (1.10)

where R(t) =
∫ t
t0
r−1(s)ds and δ(t) =

∫ t
ρ(t)

r−1(s)ds, then (1.7) is oscillatory.

In 2016, Agarwal et al. [1] considered the oscillation criteria for second order
half-linear neutral delay differential equation

(r(t)[(x(t) + p(t)x(τ(t)))′]α)′ + q(t)xα
(
σ(t)

)
= 0, t ≥ t0, (1.11)
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where α ≥ 1 is a quotient of odd positive integers. A new oscillation criterion is
given as follow.

Theorem 1.4 ([1, Theorem 2.2]). Assume that

π(t0) <∞, where π(t) =
∫ ∞
t

r−1/α(s)ds. (1.12)

If there exist the functions ρ, δ ∈ C1([t0,∞), (0,∞)) such that

lim sup
t→∞

∫ t

t0

[
ρ(s)q(s)(1− p(σ(s)))α −

(ρ′+(s))α+1r(σ(s))
(α+ 1)α+1(ρ(s)σ′(s))α

]ds =∞, (1.13)

lim sup
t→∞

∫ t

t0

[ψ(s)− δ(s)r(s)(ϕ+(s))α+1

(α+ 1)α+1
]ds =∞, (1.14)

where

ψ(t) = δ(t)[q(t)(1− p(σ(s))
π(τ
(
σ(t)

)
)

π
(
σ(t)

) )α +
1− α

r1/α(t)πα+1(t)
],

p(t) <
π(t)

π(τ(t))
, ϕ(t) =

δ′(t)
δ(t)

+
1 + α

r1/α(t)π(t)
,

ρ′+(t) = max{0, ρ′(t)}, and ϕ+(t) = max{0, ϕ(t)}, then (1.11) is oscillatory.

We see that the neutral delay Emden-Fowler equation (1.7) and neutral delay
half-linear equation (1.11) are not mutually inclusive each other. However, equa-
tions (1.7) and (1.11) are included in the (1.1). Therefor, it will be of great interest
to find some oscillation criteria for the neutral differential equation (1.1).

Our aim in this article is to establish some new sufficient conditions for the
oscillation of (1.1), by using generalized Riccati inequalities. To the best of our
knowledge, very little is known regarding the oscillation criterion of (1.1). The
relevance of our theorems becomes clear in the carefully selected examples.

The rest of article is organized as follows. In Section 2, we state and prove our
main results. In Section 3, we show several examples.

2. Main Results

The following inequalities contain the variable t, in which we assume that they
hold for the sufficiently large t, if there is no other statement.

Theorem 2.1. Assume that ∫ ∞
t0

(
1
r(t)

)1/αdt =∞, (2.1)∫ ∞
t0

[1− p
(
σ(t)

)
]βq(t)dt =∞ . (2.2)

Then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). We assume without loss of
generality that x(t) is eventually positive, that is, there exists a t0 ≥ 0 such that
x(t) > 0 for t ≥ t0 and thus there exists a t1 ≥ t0 such that x(τ(t)) > 0, and
x(σ(t)) > 0 for t ≥ t1. If x(t) is an eventually negative solution, it can be proved
by the similar manner. From (1.1), we have(

r(t)|z′(t)|α−1z′(t)
)′
≤ −q(t)xβ

(
σ(t)

)
≤ 0. (2.3)
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Hence, r(t)|z′(t)|α−1z′(t) is decreasing. Thus, we have two possible cases for z′(t).
Case I. z′(t) < 0 for t ≥ t1. Using the decreasing property of r(t)|z′(t)|α−1z′(t),
we obtain

r(t)|z′(t)|α−1z′(t) ≤ r(t2)|z′(t2)|α−1z′(t2), t ≥ t2 ≥ t1. (2.4)

Dividing both sides of (2.4) by r(t), integrating from t2 to t and using (2.1), we
have

z(t) ≤ z(t2)− r1/α(t2)|z′(t2)|
∫ t

t2

r−1/α(s)ds→ −∞, as t→∞,

which contradicts positivity of z(t).
Case II. z′(t) > 0 for t > t1. Since z(t) > x(t) and z(t) is increasing, we have

z(t) = x(t) + p(t)x(τ(t)) ≤ x(t) + p(t)z(τ(t)) ≤ x(t) + p(t)z(t).

Thus,
(1− p(t))z(t) ≤ x(t), t ≥ t∗2 ≥ t1

or
[1− p

(
σ(t)

)
]βzβ

(
σ(t)

)
≤ xβ

(
σ(t)

)
, t ≥ t3 ≥ t∗2. (2.5)

Substituting (2.5) into (2.3), we have

(r(t)(z′(t))α)′ ≤ −q(t)[1− p
(
σ(t)

)
]βzβ

(
σ(t)

)
. (2.6)

On the other hand, since r(t)(z′(t))α is decreasing, we have

r(t)(z′(t))α ≤ r(σ(t))(z′
(
σ(t)

)
)α

or ( r(t)
r
(
σ(t)

))1/α

≤
z′
(
σ(t)

)
z′(t)

. (2.7)

Set the function

w(t) :=
r(t)(z′(t))α

zβ
(
σ(t)

) , t ≥ t3. (2.8)

It is obvious that w(t) > 0. Taking the derivative of w(t), using (2.6), (2.7) and
(2.8), we have

w′(t) =
(r(t)(z′(t))α)′

zβ
(
σ(t)

) −
βr(t)(z′(t))αz′

(
σ(t)

)
σ′(t)

zβ+1
(
σ(t)

)
≤ −q(t)[1− p

(
σ(t)

)
]β − βσ′(t)(r1/α(t)z′(t))α+1

r1/α
(
σ(t)

)
zβ+1

(
σ(t)

) . (2.9)

In view of the positivity of z(t) and z′(t), we obtain

w′(t) + q(t)[1− p(σ(t))]β ≤ 0. (2.10)

Integrating both sides of (2.10) from t3 to t and using (2.2), we obtain

w(t) ≤ w(t3)−
∫ t

t3

q(s)[1− p(σ(s))]β ds→ −∞, as t→∞.

which contradicts the fact w(t) > 0. The proof is complete. �

Note that Theorem 2.1 is an improvement of [8, Theorem 1].



EJDE-2018/159 SECOND-ORDER EMDEN-FOWLER DIFFERENTIAL EQUATIONS 5

Lemma 2.2. Assume that x(t) is an eventually positive solution of (1.1), and w(t)
is defined by (2.8). Then

w′(t) ≤ −q(t)(1− p
(
σ(t)

)
)β − ξKσ′(t)

r1/ξ(θ(t))
w
ξ+1
ξ (t), (2.11)

where ξ = min{α, β} and

K =

{
1, α = β

const > 0, α 6= β,
θ(t) =

{
t, α > β

σ(t), α ≤ β.

Proof. Proceeding as in the proof of Theorem 2.1, we obtain (2.9); that is

w′(t) ≤ −q(t)[1− p
(
σ(t)

)
]β − βσ′(t)[r1/α(t)z′(t)]α+1

r1/α(σ(t))zβ(σ(t))

≤ −q(t)[1− p(σ(t))]β − βσ′(t)
r1/α

(
σ(t)

) [z
(
σ(t)

)
]
β−α
α w

α+1
α (t).

(2.12)

If β ≥ α, in view of z
(
σ(t)

)
being increasing, then there exist constants K1 > 0

and t4 ≥ t3 such that [z(σ(t))]
β−α
α ≥ K1 for t ≥ t4. Thus, (2.12) gives

w′(t) ≤ −q(t)[1− p
(
σ(t)

)
]β − αK1σ

′(t)
r1/α

(
σ(t)

)w α+1
α (t). (2.13)

It is easy to check that K1 = 1 for α = β.
Next, if α > β, since (r(t)(z′(t))α)′ ≤ 0 and r′(t) ≥ 0, we obtain z′′(t) ≤ 0,

which implies that z′(t) is decreasing and [z′(t)]
β−α
β is increasing. Then there exist

constant K2 > 0 and t5 ≥ t4 such that [z′(t)]
β−α
β ≥ K2 for t ≥ t5. Hence, by (2.12)

it has

w′(t) ≤ −q(t)[1− p(σ(t))]β − βσ′(t)
r1/β(t)

[z′(t)]
β−α
β w

β+1
β (t)

≤ −q(t)[1− p(σ(t))]β − βK2σ
′(t)

r1/β(t)
w
β+1
β (t), t ≥ t5.

(2.14)

Combining (2.13) and (2.14), we have that inequality (2.11) holds for all α > 0 and
β > 0. �

We now consider the case when (2.2) does not hold. We use the following notation
for simplicity:

Q(t) =
∫ ∞
t

q(s)[1− p(σ(s))]βds, A(t) =
ξKσ′(t)
r1/ξ(θ(t))

. (2.15)

Define a sequence of functions {yn(t)}∞n=0 by

y0(t) = Q(t), t ≥ t0

and

yn(t) =
∫ ∞
t

A(s)y
ξ+1
ξ

n−1(s)ds+ y0(t), t ≥ t0, n = 1, 2, 3, . . . . (2.16)

By induction we see that y0 ≤ yn+1(t), t ≥ t0, n = 1, 2, 3, . . .
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Lemma 2.3. Assume that x(t) is an eventually positive solution of (1.1). Then
yn(t) ≤ w(t), where w(t) and yn(t) are defined by (2.8) and (2.16), respectively.
Also, there exits a positive function y(t) on [T,∞), such that limn→∞ yn(t) = y(t)
for t ≥ T ≥ t0 and

y(t) =
∫ ∞
t

A(s)y
ξ+1
ξ (s)ds+ y0(s), t ≥ T. (2.17)

Proof. Proceeding as in the proof of Lemma 2.2, we have inequality (2.11) or

w′(t) ≤ −q(t)[1− p(σ(t))]β −A(t)w
ξ+1
ξ (t). (2.18)

Integrating both sides of (2.18) from t to t′, we obtain

w(t′)− w(t) +
∫ t′

t

q(s)[1− p(σ(s))]βds−
∫ t′

t

w
ξ+1
ξ (s)A(s)ds ≤ 0. (2.19)

Then it is clear that

w(t′)− w(t) +
∫ t′

t

w
ξ+1
ξ (s)A(s)ds ≤ 0. (2.20)

It follows that ∫ ∞
t

w
ξ+1
ξ (s)A(s)ds <∞, t ≥ T. (2.21)

Otherwise, w(t′) ≤ w(t) −
∫ t′
t
w
ξ+1
ξ (s)A(s)ds → −∞ as t′ → ∞, which contra-

dicts to the fact that w(t) > 0. Since w(t) is positive and decreasing limt→∞ w(t) =
l ≥ 0. By (2.21), we have l = 0. Thus, from (2.19), we have

w(t) ≥ Q(t) +
∫ ∞
t

w
ξ+1
ξ (s)A(s)ds = y0(t) +

∫ ∞
t

w
ξ+1
ξ (s)A(s)ds,

i.e.
w(t) ≥ Q(t) = y0(t). (2.22)

Moreover, by induction we can also see that w(t) ≥ yn(t) for t ≥ t0, n = 1, 2, 3 . . .
Thus, since the sequence {yn(t)}∞n=0 monotone increasing and bounded above, it
converges to y(t). Letting n → ∞ in (2.16) and using Lebesgue’s monotone con-
vergence theorem, we obtain (2.17). �

The following theorem provides a new oscillation criterion of (1.1) with respect
to that the condition (2.2) of Theorem 2.1 does not hold.

Theorem 2.4. Assume that (2.1) holds and (2.2) is not valid. If

lim inf
t→∞

1
Q(t)

∫ ∞
t

Q
ξ+1
ξ (s)A(s)ds >

ξ

(ξ + 1)
ξ+1
ξ

, (2.23)

where ξ,Q(t) and A(t) are defined by (2.11) and (2.15), then (1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Proceeding as in the proof of
Lemma 2.2 and Lemma 2.3, we obtain (2.22) and have

w(t)
Q(t)

≥ 1 +
1

Q(t)

∫ ∞
t

A(s)Q
ξ+1
ξ (s)

(w(s)
Q(s)

) ξ+1
ξ

ds, t ≥ T. (2.24)

Let λ = inft≥T
w(t)
Q(t) , then obviously λ ≥ 1.
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On the other hand, from (2.23) we know that there exists a constant C > 0 such
that

lim inf
t→∞

1
Q(t)

∫ ∞
t

Q
ξ+1
ξ (s)A(s)ds > C >

ξ

(ξ + 1)
ξ+1
ξ

. (2.25)

Then, from (2.24) and (2.25), we see that

λ ≥ 1 + λ
ξ+1
ξ C. (2.26)

Using the inequality

Bu−Au
ξ+1
ξ ≤ ξξ

(ξ + 1)ξ+1

Bξ+1

Aξ
,

where A > 0, B ≥ 0 and ξ > 0. We get

λ− Cλ
ξ+1
ξ ≤ ξξ

(ξ + 1)ξ+1

1
Cξ

. (2.27)

Combining (2.25) and (2.27), we see that

λ < 1 + Cλ
ξ+1
ξ ,

which contradicts with (2.26). The proof is complete. �

Theorem 2.4 improves Theorem 1.2 and the corresponding result in [6]. In the
following, we establish new oscillation criteria of (1.1) with respect to that the
condition (2.1) of Theorem 2.1 is invalid.

Theorem 2.5. Assume that (1.12) holds. If there exists a function ρ in the space
C1([T0,∞), (0,∞)) such that for all sufficiently large T and any K > 0, M > 0, it
holds

lim sup
t→∞

∫ t

T

[
ρ(s)q(s)(1− p(σ(s)))β −

(ρ′+(s))ξ+1r(θ(s))
(ξ + 1)ξ+1(Kρ(s)σ′(s))ξ

]
ds =∞, (2.28)

lim sup
t→∞

∫ t

T

[πη(s)q(s)(1− p(σ(s))
π(τ(σ(s)))
π(σ(s))

)β − µ

π(s)r1/α(s)
]ds =∞, (2.29)

where p(t) < π(t)
π(τ(t)) , ξ = min{α, β}, η = max{α, β},

θ(t) =

{
t, α > β,

σ(t), α ≤ β,

ρ′+(t) = max{0, ρ′(t)}, and µ = ( η
η+1 )η+1( ηM )η (when α = β, K = 1,M = α), then

(1.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of (1.1). Without loss of generality,
we assume that there exists a t1 ≥ t0 > 0 such that x(t) > 0, x(τ(t)) > 0 and
x(σ(t)) > 0 for t ≥ t1. Hence, z(t) > 0, t ≥ t1. On the other hand, from (1.1) we
see that (

r(t)|z′(t)|α−1z′(t)
)′
≤ 0, t ≥ t1, (2.30)

which implies that r(t)|z′(t)|α−1z′(t) is decreasing. Hence, z′(t) does not eventually
change signs, that is, there exists a t2 ≥ t1 such that either z′(t) > 0 or z′(t) < 0
for all t ≥ t2.
Case I. z′(t) > 0 for t ≥ t2. It follows from the definition of z(t) that

x(t) = z(t)− p(t)x(τ(t)) ≥ z(t)− p(t)z(τ(t)) ≥ (1− p(t))z(t). (2.31)
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It follows from equations (1.1) and (2.31) that

(r(t)(z′(t))α)′ + q(t)(1− p
(
σ(t)

)
)βzβ

(
σ(t)

)
≤ 0, t ≥ t3 ≥ t2. (2.32)

Define a function u(t) by

u(t) := ρ(t)
r(t)(z′(t))α

zβ
(
σ(t)

) , t ≥ t3. (2.33)

Then, u(t) > 0, t ≥ t3. Taking differentiation on both sides of (2.33), we have

u′(t) ≤ −ρ(t)q(t)(1− p(σ(t)))β +
ρ′(t)
ρ(t)

u(t)− ρ(t)r(t)(z′(t))αβσ′(t)z′(σ(t))
zβ+1

(
σ(t)

) . (2.34)

For this inequality, if α ≤ β, in view of r1/α(t)z′(t) ≤ r1/α(σ(t))z′(σ(t)), we see
that

u′(t) ≤ −ρ(t)q(t)(1− p(σ(t)))β +
ρ′(t)
ρ(t)

u(t)− βσ′(t)
(ρ(t)r(σ(t)))1/α

[z(σ(t))]
β−α
α u

α+1
α (t).

Because z(σ(t)) is increasing, there exists constants K1 > 0 and t4 ≥ t3 such that
[z(σ(t))]

β−α
α ≥ K1, t ≥ t4. Thus, the above inequality gives

u′(t) ≤ −ρ(t)q(t)(1− p(σ(t)))β +
ρ′(t)
ρ(t)

u(t)− αK1σ
′(t)

(ρ(t)r
(
σ(t)

)
)1/α

u
α+1
α (t). (2.35)

Obviously, if α = β, then K1 = 1.
If α > β, since (r(t)(z′(t))α)′ ≤ 0 and r′(t) ≥ 0, we obtain z′′(t) ≤ 0, which

implies that z′(t) is decreasing and [z′(t)]
β−α
β is increasing. Then there exist con-

stants K2 > 0, t5 ≥ t4 such that [z′(t)]
β−α
β ≥ K2, t ≥ t5. Thus, inequality (2.34)

becomes

u′(t) ≤ −ρ(t)q(t)(1− p(σ(t)))β +
ρ′(t)
ρ(t)

u(t)

− βσ′(t)
(ρ(t)r(t))1/β

[z′(t)]
β−α
β u

β+1
β (t)

≤ −ρ(t)q(t)(1− p(σ(t)))β +
ρ′(t)
ρ(t)

u(t)

− βK2σ
′(t)

(ρ(t)r(t))1/β
u
β+1
β (t), t ≥ t5.

(2.36)

Combining (2.35) and (2.36), we obtain for any α > 0 and β > 0 that

u′(t) ≤ −ρ(t)q(t)(1− p(σ(t)))β +
ρ′(t)
ρ(t)

u(t)− ξKσ′(t)
(ρ(t)r(θ(t)))1/ξ

u
ξ+1
ξ (t), (2.37)

for t ≥ t5, where ξ = min{α, β}, and

K =

{
1, α = β

K > 0, α 6= β,
θ(t) =

{
t, α > β

σ(t), α ≤ β.

Let y = u(t), D = ρ′(t)
ρ(t) , and C = ξKσ′(t)

(ρ(t)r(θ(t)))1/ξ
. By (2.37) and the inequality

Dy − Cy
ξ+1
ξ ≤ ξξ

(ξ + 1)ξ+1

Dξ+1
+

Cξ
, (2.38)
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where C > 0, y ≥ 0, and D+ = max{0, D}, we obtain

u′(t) ≤ −ρ(t)q(t)(1− p(σ(t)))β +
(ρ′+(t))ξ+1r(θ(t))

(ξ + 1)ξ+1(Kρ(t)σ′(t))ξ
. (2.39)

Integrating both sides of (2.39) from T > t5 to t, we obtain

u(t) ≤ u(T )−
∫ t

T

[
ρ(s)q(s)(1− p(σ(s)))β −

(ρ′+(s))ξ+1r(θ(s))
(ξ + 1)ξ+1(Kρ(s)σ′(s))ξ

]
ds. (2.40)

Letting t→∞ in the above inequality, we obtain a contradiction with (2.28).
Case II. z′(t) < 0 for t > t2. By (2.30) we have

(r(t)(−z′(t))α)′ ≥ 0, t ≥ t2. (2.41)

Then, r1/α(t)(−z′(t)) is an increasing function and thus

z′(s) ≤
( r(t)
r(s)

)1/α

z′(t), s ≥ t ≥ t2. (2.42)

Integrating the above inequality from t to l, we obtain

z(l) ≤ z(t) + r1/α(t)z′(t)
∫ l

t

r−1/α(s)ds, l ≥ t ≥ t2.

Letting t→∞, we then have

z(t) ≥ π(t)r1/α(t)(−z′(t)), t ≥ t2. (2.43)

It follows that
zα(t) ≥ πα(t)r(t)(−z′(t))α, t ≥ T1 ≥ t2. (2.44)

If α ≥ β, then zα−β(t) is a decreasing function and thus there exists a constant
l1 > 0 such that zα−β(t) ≤ l1 and t ≥ T1.

Define a function V (t) by

V (t) :=
r(t)(−z′(t))α

zβ(t)
, t ≥ T1. (2.45)

Hence, V (t) > 0, t ≥ T1 and we have

l1 ≥ zα−β(t) ≥ πα(t)V (t), α ≥ β. (2.46)

On the other hand, from (2.43) it follows that

zβ(t) ≥ πβ(t)
(
r1/α(t)(−z′(t))

)β−α+α

. (2.47)

Note that
(
r1/α(t)(−z′(t))

)β−α is an increasing function for β > α. Then there
exists a constant l2 > 0 such that

l2 ≥
(
r1/α(t)(−z′(t))

)α−β
≥ πβ(t)V (t), β > α. (2.48)

Combining (2.46) and (2.48), we have

0 < πη(t)V (t) ≤ l, (2.49)

where η = max{α, β} and l = max{l1, l2}.
We further observe that (2.43) gives ( z(t)π(t) )′ ≥ 0 for t ≥ t2. Then z(t)

π(t) is an
increasing function and thus

x(t) = z(t)− p(t)x(τ(t)) ≥ z(t)− p(t)z(τ(t)) ≥
(

1− p(t)π(τ(t))
π(t)

)
z(t).
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Note that z′(t) < 0. Hence we find

xβ(σ(t)) ≥
(

1− p(σ(t))
π(τ(t))
π(σ(t))

)β
zβ(t). (2.50)

Combining (1.1) and (2.50), we obtain

(r(t)(−z′(t))α)′ −Q(t)zβ(t) ≥ 0, t ≥ T1 ≥ t2, (2.51)

where

Q(t) = q(t)
(

1− p(σ(t))
π(τ(σ(t)))
π(σ(t))

)β
. (2.52)

Differentiating on both sides of (2.45), using (2.51), we obtain

V ′(t) ≥ Q(t) +
βr(t)(−z′(t))α+1

zβ+1(t)
, t ≥ T1. (2.53)

For this inequality, if α ≥ β, because [z′(t)]
β−α
α is an increasing function, there

exist constants M1 > 0, T2 ≥ T1, such that [z′(t)]
β−α
α ≥ M1, t ≥ T2. From(2.53),

we obtain

V ′(t) ≥ Q(t)+
β

r1/α(t)
[z(t)]

β−α
α V

α+1
α (t) ≥ Q(t)+

βM1

r1/α(t)
V
α+1
α (t), t ≥ T2. (2.54)

Note that if α = β, then M1 = 1.
Now if α < β, [r1/α(t)(−z′(t))]

β−α
β is an increasing function and there exist

constants M2 > 0 and T > T2, such that [r1/α(t)(−z′(t))]
β−α
β > M2, t ≥ T . By

(2.53), we have

V ′(t) ≥ Q(t) +
β

r1/α(t)
[
r1/α(t)(−z′(t))

] β−α
β V

β+1
β (t)

≥ Q(t) +
βM2

r1/α(t)
V
β+1
β (t), t ≥ T.

(2.55)

Combining (2.54) and (2.55), we obtain

V ′(t) ≥ Q(t) +
M

r1/α(t)
V
η+1
η (t), t ≥ T, (2.56)

where η = max{α, β}, and M =

{
α, α = β

K > 0, α 6= β.

Multiplying both sides of (2.56) by πη(t) and integrating from T to t, yields∫ t

T

πη(s)Q(s)ds ≤
∫ t

T

πη−1(s)r−1/α(s)[ηV (s)−Mπ(s)V
η+1
η (s)]ds

+ πη(t)V (t)− πη(T )V (T ).
(2.57)

Let y = V (s), D = η and C = Mπ(s). Again by the inequality (2.38), we have∫ t

T

πη(s)Q(s)ds ≤
∫ t

T

µ

π(s)r1/α(s)
ds+ πη(t)V (t)− πη(T )V (T ). (2.58)

Combining (2.58), (2.52), and (2.49), we have∫ t

T

[πη(s)q(s)(1− p(σ(s))
π(τ(σ(s)))
π(σ(s))

)β − µ

π(s)r1/α(s)
]ds ≤ l, (2.59)
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where µ = ( η
η+1 )η+1( ηM )η, which contradicts condition (2.29). The proof is com-

plete. �

Setting α = β in (1.1), by Theorem 1.3 we immediately have the following result.

Corollary 2.6. Suppose that α = β and (1.12) holds. If there exists a function ρ
in the space C1([t0,∞), (0,∞)) such that for all sufficiently large T, T ≥ t0, it holds
that

lim sup
t→∞

∫ t

T

[ρ(s)q(s)(1− p(σ(s)))α −
(ρ′+(s))α+1r(σ(s))

(α+ 1)α+1(ρ(s)σ′(s))α
]ds =∞, (2.60)

lim sup
t→∞

∫ t

T

[πα(s)q(s)(1− p(σ(s))
π(τ(σ(s)))
π(σ(s))

)α − ε

π(s)r1/α(s)
]ds =∞, (2.61)

where p(t) < π(t)
π(τ(t)) , ε = ( α

α+1 )α+1 and ρ′+(t) = max{0, ρ′(t)}, then (1.1) is oscil-
latory.

Corollary 2.6 holds for any α > 0 while Theorem 1.4 holds for α ≥ 1, which is
a quotient of odd positive integers. On the other hand, condition (2.61) is more
general than condition (1.14) of Theorem 1.4. We shall illustrate this in Example
3.3, given in next section.

Note that in (1.1), if α = 1 and β > 1, then (1.1) is super-linear and Theorem
2.5 has the following corollary.

Corollary 2.7. Suppose (1.8) holds. If there exists a function ρ in the space
C1([t0,∞), (0,∞)), and the constants K > 0 and M > 0, such that for all suffi-
ciently large T ≥ t0, it holds

lim sup
t→∞

∫ t

T

[
ρ(s)q(s)(1− p(σ(s)))β −

(ρ′+(s))2r(σ(s))
4(Kρ(s)σ′(s))

]
ds =∞, (2.62)

lim sup
t→∞

∫ t

T

[πβ(s)q(s)(1− p(σ(s))
π(τ(σ(s)))
π(σ(s))

)β − µ1

π(s)r(s)
]ds =∞, (2.63)

where p(t) < π(t)
π(τ(t)) , ρ′+(t) = max{0, ρ′(t)}, µ1 =

(
β
β+1

)β+1( βM )β, and
π(t) =

∫∞
t

1
r(s)ds, then (1.7) is oscillatory.

Note that in equation (1.1), if α = 1 and 0 < β < 1, then (1.1) is sub-linear and
Theorem 2.5 has the following corollary.

Corollary 2.8. Suppose (1.8) holds. If there exists a function ρ in the space
C1([t0,∞), (0,∞)), and the constants K > 0 and M > 0, such that for all suffi-
ciently large T ≥ t0, we have

lim sup
t→∞

∫ t

T

[
ρ(s)q(s)(1− p(σ(s)))β −

(ρ′+(s))β+1r(s)
(β + 1)β+1(Kρ(s)σ′(s))β

]
ds =∞ , (2.64)

lim sup
t→∞

∫ t

T

[
π(s)q(s)(1− p(σ(s))

π(τ(σ(s)))
π(σ(s))

)β − µ2

π(s)r(s)

]
ds =∞, (2.65)

where µ2 = 1/(4M), then (1.7) is oscillatory.
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3. Examples

In this section, we provide some examples to illustrate our results.

Example 3.1. Consider the neutral delay differential equation(
|z′(t)|α−1z′(t)

)′
+ eµβt(t)|x(µt)|β−1x(µt) = 0, (3.1)

where z(t) = x(t) + (1− e−t)x(t− 1), α > 0, β > 0, and 0 < µ < 1.

Comparing (3.1) with (1.1), we see that r(t) = 1, q(t) = eµβt, σ(t) = µt, and
p(t) = 1− e−t, then q(t)[1− p

(
σ(t)

)
]β = 1. Clearly one can see that conditions of

Theorem 2.1 are satisfied. Hence, (3.1) is oscillatory.

Example 3.2. Consider the neutral differential equation(
e−(α2 +α

ξ )t|z′(t)|α−1z′(t)
)′

+ e−t|x(t− 2)|β−1x(t− 2) = 0, (3.2)

where z(t) = x(t) + 1
2x(t− τ), τ > 0, α > 0, β > 0, and ξ = min{α, β}.

Comparing the (3.2) with (1.1), we see that r(t) = e−(α2 +α
ξ )t, q(t) = e−t, then

Q(t) =
∫ ∞
t

q(s)[1− p(σ(s))]βds = (
1
2

)βe−t,

A(t) =
ξKσ′(t)
r1/α(θ(t))

= ξKe(
1
2+ 1

ξ )θ(t).

In view of θ(t) =

{
t, α > β

σ(t), α ≤ β,
we have that for α > β,

lim inf
t→∞

1
Q(t)

∫ ∞
t

[Q(s)]
ξ+1
ξ A(s)ds

= lim inf
t→∞

2βet
∫ ∞
t

[
(
1
2

)βe−s
] ξ+1

ξ ξKe(
1
2+ 1

ξ )sds

= lim inf
t→∞

ξK2−
β
ξ et
∫ ∞
t

e−
s
2 ds =∞.

If α ≤ β we have

lim inf
t→∞

1
Q(t)

∫ ∞
t

[Q(s)]
ξ+1
ξ A(s)ds

= lim inf
t→∞

2βet
∫ ∞
t

[
(
1
2

)βe−s
] ξ+1

ξ ξKe(
1
2+ 1

ξ )(s−2)ds

= lim inf
t→∞

ξK2−
β
ξ e−( ξ+1

ξ )et
∫ ∞
t

e−
s
2 ds =∞.

Clearly one can see that all conditions of Theorem 2.4 are satisfied, therefore, (3.2)
is oscillatory.

Example 3.3. Consider the half-linear delay differential equation of neutral type(
t6
[(
x(t) +

1
6
x(
t

3
)
)′]3)′ +Kt2x3(

t

2
) = 0, t ≥ 1. (3.3)
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We claim that this equation satisfies the conditions of Corollary 2.6. First, in
(3.3), α = β = 3,K > 0. If we choose ρ(t) = 1 then ρ′(t) = 0, and we have

ρ(t)q(t)(1− p(σ(s)))α =
125K
216

t2,

then condition (2.60) is satisfied.
By (1.12), we have π(t) = 1

t , and condition (1.12) holds. Notice that τ(t) =

t
3 , σ(t) = t

2 , and thus
π(τ
(
σ(t)
)
)

π(σ(t)) = 3; then πα(t)q(t)(1 − p(σ(t))π(τ(σ(t)))
π(σ(t)) )α = K

8t ,
where ε = ( 3

4 )4, ε
π(t)r1/α(t)

= 81
256t .

If we set K > 81
32 , condition (2.61) is satisfied. By Corollary 2.6, equation (3.3)

is oscillatory for K > 81/32.
Now if we use Theorem 1.4 to work through this example, we need to satisfy

condition (1.14). However, (1.11) requires the function ψ(t) > 0, but where

q(t)(1− p(σ(t))
π(τ(σ(t)))
π(σ(t))

)α =
K

8
t2,

1− α
r1/α(t)πα+1(t)

= −2t2,

then ψ(t) = δ(t)t2(K8 − 2). Hence, ψ(t) > 0 holds for K > 16. However Corollary
2.6 only requires K > 81

32 . Consequently, Corollary 2.6 improves Theorem 1.4.

Example 3.4. Consider the neutral-type equation(
t8|z′(t)|α−1z′(t)

)′
+ t5|x(

t

3
)|β−1x(

t

3
) = 0, t ≥ 1, (3.4)

where z(t) = x(t) + 1
4x( t2 ), α = 4, β = 2.

We now use Theorem 2.5 to show that this equation is oscillatory. Notice that
π(t) = 1

t in (3.4), then (1.12) holds. If we choose ρ(t) = 1, then (2.28) is satisfied.
To verify condition (2.29), we have

lim sup
t→∞

∫ t

T

[
πη(s)q(s)

(
1− p(σ(s))

π(τ(σ(s)))
π(σ(s))

)β
− µ

π(s)r1/α(s)

]
ds

= lim sup
t→∞

∫ t

T

[ 1
s4
s5(

1
2

)2 −
( 4
5 )5( 4

M )4

s

]
ds =∞.

Then (2.29) holds. Hence, by Theorem 2.5, equation (3.4) is oscillatory.
Note that Theorem 1.4 cannot be applied to the oscillation of (3.4).

Example 3.5. Consider the super-linear Emden-Fowler equation(
t2
(
x(t) +

1
8
x(
t

4
)
)′)′

+ t|x(
t

5
)|β sgnx(

t

5
) = 0, t ≥ 1. (3.5)

In this example, α = 1, β = 3
2 > 1, and π(t) = 1

t ; as a result, (1.12) holds. By
Letting ρ(t) = 1, condition (2.62) is satisfied. On the other hand,

lim sup
t→∞

∫ t

T

[
πη(s)q(s)

(
1− p(σ(s))

π(τ(σ(s)))
π(σ(s))

)β
− µ1

π(s)r(s)

]
ds

= lim sup
t→∞

∫ t

T

[ 1√
s

(
1
2

)3/2 − (
3
5

)5/2(
3

2M
)3/2

1
s

]
ds =∞.

This shows that (2.63) holds. Then by Corollary 2.7, equation (3.5) is oscillatory.
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Example 3.6. Consider the sub-linear Emden-Fowler equation(
t2
(
x(t) +

1
8
x(
t

4
)
)′)′

+ t|x(
t

5
)|β sgnx(

t

5
) = 0, t ≥ 1, (3.6)

where 0 < β = 1/2 < 1.

In this example, it is easy to find that (1.12) and (2.64) are satisfied. We also
see that

lim sup
t→∞

∫ t

T

[
π(s)q(s)

(
1− p(σ(s))

π(τ(σ(s)))
π(σ(s))

)β
− µ2

π(s)r(s)

]
ds

= lim sup
t→∞

∫ t

T

[
(
1
2

)1/2 − 1
4M

1
s

]
ds =∞,

which shows that (2.65) is satisfied. By Corollary 2.8, we can say that (3.6) is
oscillatory.

However, Theorem 1.3 cannot be applied to this example because it requires
β ≥ 1.

Example 3.7. Consider the linear neutral-type equation(
t2
(
x(t) + px(

t

m
)
)′)′

+ qx(t) = 0, (3.7)

where m > 1, 0 ≤ p < 1
m , q > 0, and α = β = 1.

Observe that (1.12) and (2.28) of Theorem 2.5 are satisfied. Because π(t) =
1
t , r(t) = t2, µ = 1

4 , by condition (2.29) we have

lim sup
t→∞

∫ t

T

[
π(s)q(s)

(
1− p(σ(s))

π(τ(σ(s)))
π(σ(s))

)β
− µ

π(s)r(s)

]
ds

= lim sup
t→∞

∫ t

T

[q
s

(1−mp)− 1
4s
]
ds.

Hence, if q(1−mp) > 1/4, then condition (2.29) holds. According to Theorem 2.5,
the neutral-type equation (3.7) is oscillatory. If we set p = 0 in (3.7), then the
second-order Euler equation (t2x′(t))′ + qx(t) = 0 is oscillatory as q > 1/4.

We remark that Theorem 2.5 can be applied to the linear equation (3.7), the half-
linear equation (3.3), the super-linear equation (3.5), and the sub-linear equation
(3.6). This gives four types of equations with uniform oscillation criterion and
improves the results in the literature such as [1, 2, 11, 14].
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