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BESOV-MORREY SPACES ASSOCIATED WITH HERMITE
OPERATORS AND APPLICATIONS TO FRACTIONAL

HERMITE EQUATIONS
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Abstract. The purpose of this article is to establish the molecular decompo-
sition of the homogeneous Besov-Morrey spaces associated with the Hermite

operator H = −∆ + |x|2 on the Euclidean space Rn. Particularly, we obtain

some estimates for the operator H on the Hermite-Besov-Morrey spaces and
the regularity results to the fractional Hermite equations

(−∆ + |x|2)su = f,

and

(−∆ + |x|2 + I)su = f.

Our results generalize some results by Anh and Thinh [1].

1. Introduction

In this article, we study the Besov-Morrey spaces associated with the Hermite
operator H = −∆ + |x|2 on Rn, n ≥ 1. It is known that the classical theory of
the Besov and Triebel-Lizorkin spaces plays a crucial role not only in the theory of
function spaces, but also in the theory of partial differential equations and harmonic
analysis, see e.g. [7, 9, 10, 11, 12, 14, 15], and the references therein.

Recently, the theory of the Besov and Triebel-Lizorkin spaces associated with the
operators has been developed by many authors when one observed that the classical
Besov and Triebel-Lizorkin spaces are not always the most suitable to investigate
a number of operators, see [1, 2, 3, 4, 18, 10, 11, 19], and their references. For
example, Petrusev and Xu [13] studied the characterization of the inhomogeneous
Besov and Triebel-Lizorkin spaces in terms of Littlewood-Paley decomposition in
the context of Hermite expansions that the frame elements have almost exponential
localization. Note that these frame elements can be viewed as an analogue of the
ϕ-transform of Frazier and Jawerth [7]. Another approach introduced by Anh and
Thinh [1] is of defining the Besov and Triebel-Lizorkin spaces in terms of the heat
kernels via square functions. Their approach adapted to the study of the theory
of both homogeneous and inhomogeneous Besov and Triebel-Lizorkin spaces. This
allows them to extend the range of indices 1 ≤ p, q ≤ ∞ of the homogeneous Besov
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space BMα,H
p,q (resp. Triebel-Lizorkin spaces FMα,H

p,q ) to 0 < p, q ≤ ∞, compare to
the results in [8].

One of the most interesting studies of the theory of Besov spaces is the Besov-
Morrey spaces, introduced first by Kozono and Yamazaki [9] to investigate time-
local solutions of the Navier-Stokes equations with the initial data in the spaces of
this type. As a matter of fact, the Besov-Morrey spaces share several features of
Besov and Morrey spaces. They represent the local oscillations and singularities of
functions more precisely than the classical Besov spaces. Thus, they behav better
in many aspects, particularly under the action of singular integrals and pseudo-
differential operators. In addition, Mazzucato [11, 12] established the wavelet de-
compositions to characterize the homogeneous and inhomogeneous Besov-Morrey
spaces. For more results on the Besov-Morrey spaces, we refer the reader to
[9, 10, 11, 12, 14, 15, 17, 19] and the references therein.

Inspired by the above results, we would like to generalize the theory of the
homogeneous Besov spaces associated with the Hermite operator BMα,H

p,q to the one
of the homogeneous Besov-Morrey spaces associated with the Hermite operator
BMα,H

p,q,r in this paper. To study BMα,H
p,q,r, we use the results in [1], specifically, the

estimates on the heat kernels via the square functions. Beside, we also establish the
molecular decompositions for BMα,H

p,q,r. As applications, we obtain the regularity of
solutions to the fractional Hermite equations:

Hsu = f,

and
(H + I)su = f.

We organize this paper as follows: Section 2 contains some preliminary results
and definitions of functional spaces. Section 3 is devoted to the study of the molec-
ular decomposition for the Hermite-Besov-Morrey space. Finally, we investigate the
regularity of solutions on Hermite-Besov-Morrey spaces to the fractional Hermite
equations in Section 4.

Throughout this paper, we always use C and c to denote positive constants that
are independent of the main parameters involved but whose values may differ from
line to line. We write A . B if there is a universal constant C such that A ≤ CB;
and A ∼ B if A . B and B . A. We use the following notation: N = {0, 1, 2, . . . },
N+ = {1, 2, 3, . . . }, Z− = {−1,−2, . . . }, Z−0 = {0,−1,−2, . . . } a ∧ b = min{a, b},
a ∨ b = max{a, b}, and int[a] is the integer part of a.

2. Preliminaries

2.1. Dyadic cube. The set of all dyadic cubes D in Rn is defined by

D =
{ n∏
j=1

[mj2k, (mj + 1)2k) : m1,m2, . . . ,mn, k ∈ Z
}
.

For a dyadic cube Q :=
∏n
j=1

[
mj2k, (mj + 1)2k

)
, for some m1,m2, . . . ,mn, k ∈ Z

we denote by `(Q) and xQ the length and the center of the dyadic cube Q. In this
case, `(Q) = 2k and xQ =

(
(mj + 1/2)2k

)n
j=1

. Moreover, for every ν ∈ Z, we set

Dν = {Q ∈ D : `(Q) = 2ν}.
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2.2. Morrey space. Let us first recall the definition of the Morrey spaces.

Definition 2.1. For every 0 < p ≤ r <∞, the Morrey space Mr
p is defined by

Mr
p ≡

{
f ∈ Lploc(R

n) : ‖f‖Mr
p

= sup
x0∈Rn

sup
R>0

Rn( 1
r−

1
p )‖f‖Lp(B(x0,R)) <∞

}
.

Next, we point out some known results about the Morrey norms.

Proposition 2.2. Let 0 < p ≤ r <∞. Then

‖f‖Mr
p
∼ sup
Q∈D
|Q|

1
r−

1
p ‖f‖Lp(Q), (2.1)

‖fθ‖Mr
p

= ‖f‖θMrθ
pθ
, ∀θ > 0, (2.2)∥∥(∫ b

a

|F (·, t)|q dt
t

)1/q∥∥
Mr
p
≤
(∫ b

a

‖F (·, t)‖qMr
p

dt

t

)1/q

, for 0 < q ≤ p. (2.3)

Proof. Note that (2.1) and (2.2) follow from the definition of the Morrey spaces.
While, (2.3) can be obtained by using Minkowski integral inequality, see also [8,
(2.20)]. �

For θ > 0, we denote by Mθ the Hardy-Littlewood maximal function

Mθf(x) = sup
x∈B

( 1
|B|

∫
B

|f(y)|θdy
)1/θ

, x ∈ Rn,

where the supremum is taken over all balls B ⊂ Rn containing x.
Then, we have a version of the Fefferman-Stein vector-valued maximal inequality

for the Morrey spaces, see [16, Proposition 2.1].

Proposition 2.3. Let 0 < q ≤ ∞, 0 < p ≤ r <∞, and 0 < θ < min{p, q}. Then∥∥(∑
k∈Z
|Mθfk|q

)1/q∥∥
Mr
p
.
∥∥(∑

k∈Z
|fk|q

)1/q∥∥
Mr
p
.

Remark 2.4. As a consequence of Proposition 2.3, the Hardy-Littlewood maximal
operator Mθ is bounded on Mr

p.

Next, we put

Av =
(

sup
J∈D,`(J)>2v

( 1
|J |

)1−p/r ∑
Q∈Dv,Q⊂J

|Q|1−p/r|sQ|p
)1/p

.

We borrow a result of Wang [19, p.779] involving the characterization of Av in the
Morrey norms.

Lemma 2.5. Let 0 < p ≤ r < ∞, and ν ∈ Z. Assume that the sequence
{sQ : Q ∈ Dν} satisfies

‖
∑
Q∈Dν

|Q|−1/r|sQ|χQ‖Mr
p
<∞.

Then
‖
∑
Q∈Dv

|Q|−1/r|sQ|χQ‖Mr
p
∼ Aν .
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2.3. Kernel estimates on Hermite operators. For any k ≥ 0 and for t > 0, we
denote the kernel associated with (t

√
H)ke−t

√
H by pt,k(x, y). We recall here the

results of [1, Lemma 2.1 and Propisition 2.2].

Proposition 2.6. For k ∈ N, there exist C > 0 and δ > 0 so that

(1) |pt,k(x, y)| ≤ C tk

(t+|x−y|)n+k , for x, y ∈ Rn.
(2) for any |h| < t, we have

|pt,k(x+ h, y)− pt,k(x, y)| ≤ C
( |h|
t

)δ tk

(t+ |x− y|)n+k
, for x, y ∈ Rn.

Proposition 2.7. For every y ∈ Rn, we have pt,k(·, y) ∈ S.

2.4. Calderón reproducing formulas. In this part we recall Calderón’s formula
from [1], that is useful for studying the homogeneous Besov-Morrey spaces.

Proposition 2.8. Let m1,m2 ∈ N+ and f ∈ S ′. Then

f = − 1
2m−1(m− 1)!

∫ ∞
0

(t
√

H)m1e−t
√

H(t
√

H)m2e−t
√

Hf
dt

t
in S ′,

where m = m1 +m2, and S ′ is the dual space of the Schwartz functions S as usual.

3. Besov-Morrey Spaces associated with the Hermite operators

It is convenient for us to introduce first the homogeneous Besov-Morrey spaces
corresponding to the Hermite operator H.

Definition 3.1. Let α ∈ R, 0 < p, q ≤ ∞, p ≤ r ≤ ∞, and for every positive
integer m > n + max{α, 0} + int[n( 1

θ0
− 1)] + 1, with θ0 = min{1, p, q}. Then, we

define the homogeneous Hermite-Besov-Morrey space BMα,H,m
p,q,r as follows

BMα,H,m
p,q,r :=

{
f ∈ S ′ : ‖f‖BMα,H,m

p,q,r
=
(∫ ∞

0

(
t−α‖(t

√
H)me−t

√
Hf‖Mr

p

)q dt
t

)1/q

<∞
}
.

Remark 3.2. If r = p, then the space BMα,H,m
p,q,r is exactly the space BMα,H,m

p,q in
[1].

We will show that BMα,H,m
p,q,r is independent of the choice of m when m is large

enough. Precisely, we have the following result.

Theorem 3.3. Let α ∈ R, 0 < p, q ≤ ∞, and p ≤ r ≤ ∞. Let m1,m2 be the
positive integers such that

m1,m2 > n+ max{α, 0}+ int[n(
1
θ0
− 1)] + 1,

with θ0 = min{1, p, q}. Then, the spaces BMα,H,m1
p,q,r and BMα,H,m2

p,q,r coincide with
equivalent norms.

As a consequence of Theorem 3.3, we can define the Besov space BMα,H
p,q,r as any

space BMα,H,m
p,q,r , for any positive integer m > n+ max{α, 0}+ int[n( 1

θ0
− 1)] + 1.

We now recall the definition of the molecules associated with the Hermite oper-
ator in [1].
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Definition 3.4. Let 0 < r ≤ ∞, α ∈ R, and N,M ∈ N+. A function u is said to
be an (H,M,N, α, r) molecule if there exist a function b from the domain (

√
H)M

and a dyadic cube Q ∈ D so that (i) u = (
√

H)Mb, and (ii)

|(
√

H)kb(x)| ≤ `(Q)M−k|Q|α/n−1/r
(

1 +
|x− xQ|
`(Q)

)−n−N
, for k = 0, . . . , 2M.

Briefly, we denote u = mQ, for every dyadic cube Q ∈ D.

Next, we have some elementary estimates.

Lemma 3.5. Let N ∈ N+ and a > t > 0. For any x, z ∈ Rn,∫
Rn

(
1 +
|x− y|
t

)−n−N(
1 +
|z − y|
a

)−n−N
dy . tn

(
1 +
|x− z|
t

)−n−N
.

For a proof of the above lemma, we refer to [1, Lemma 3.6]. Next, we have a
result of the molecular decomposition for BMα,H,m

p,q,r .

Theorem 3.6. Let α ∈ R, 0 < p, q ≤ ∞, p ≤ r ≤ ∞, and θ0 = min{1, p, q}.
(i) For every M,N ∈ N+ and m > n + max{α, 0} + int[n( 1

θ0
− 1)] + 1, if f ∈

BMα,H,m
p,q,r , then there exist a sequence of (H,M,N, α, r) molecules {mQ}Q∈Dv,v∈Z

and a sequence of coefficients {sQ}Q∈Dv,v∈Z so that

f =
∑
v∈Z

∑
Q∈Dv

sQmQ, in S ′.

Moreover, (∑
v∈Z

Aqv

)1/q

. ‖f‖BMα,H,m
p,q,r

. (3.1)

(ii) Conversely, if
f =

∑
v∈Z

∑
Q∈Dv

sQmQ, in S ′,

where {mQ}Q∈Dv,v∈Z is a sequence of (H,M,N, α, r) molecules and {sQ}Q∈Dv,v∈Z

is a sequence of coefficients satisfying
(∑

v∈Z A
q
v

)1/q
<∞, then f ∈ BMα,H,m

p,q,r , and

‖f‖BMα,H,m
p,q,r

.
(∑
v∈Z

Aqv

)1/q

, (3.2)

provided that N,M ∈ N+ such that n
n+N < θ0, M > max{ nθ0 − α,m}, with m >

max{α, 0}+N + n.

Proof of part (i). For every f ∈ BMα,H,m
p,q,r , it follows from Proposition 2.8 that

f = cm,M,N

∫ ∞
0

(t
√

H)M+Ne−t
√

H(t
√

H)me−t
√

Hf
dt

t
, in S ′,

with cm,M,N = − 1
2m+M+N−1(m+M+N−1)!

. Thus,

f = cm,M,N

∑
v∈Z

∫ 2v+1

2v
(t
√

H)M+Ne−t
√

H(t
√

H)me−t
√

Hf
dt

t

= cm,M,N

∑
v∈Z

∑
Q∈Dv

∫ 2v+1

2v
(t
√

H)M+Ne−t
√

H[(t
√

H)me−t
√

Hf.χQ]
dt

t
.
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For any v ∈ Z and Q ∈ Dv, we set

sQ = 2−v(α−n/r) sup
(y,t)∈Q×[2v,2v+1)

|(t
√

H)me−t
√

Hf(y)|, (3.3)

and mQ = HM/2bQ, with

bQ =
1
sQ

∫ 2v+1

2v
tM (t
√

H)Ne−t
√

H[(t
√

H)me−t
√

Hf.χQ]
dt

t
.

Obviously, we have

f =
∑
v∈Z

∑
Q∈Dv

sQmQ, in S ′.

Thus, it remains to show that mQ is an (H,M,N, α, r) molecule. Indeed, for
k = 0, . . . , 2M , and for any x ∈ Rn, from Proposition 2.6 we have

|Hk/2bQ(x)| =
∣∣ 1
sQ

∫ 2v+1

2v
tM−k(t

√
H)N+ke−t

√
H[(t
√

H)me−t
√

Hf.χQ]
dt

t

∣∣
≤ 1
sQ

∫ 2v+1

2v
tM−k

∫
Q

|pt,N+k(x, y)|
∣∣(t√H)me−t

√
Hf(y)

∣∣dy dt
t

.
1
sQ

sup
(z,t)∈Q×[2v,2v+1)

∣∣(t√H)me−t
√

Hf(z)
∣∣

×
∫ 2v+1

2v
tM−k

∫
Q

tN

(t+ |x− y|)n+N
dy
dt

t
.

(3.4)

On the other hand, it is not difficult to verify that∫
Q

tN

(t+ |x− y|)n+N
dy ≤ C(n,N)

(
1 +
|x− xQ|

2v
)−n−N

, ∀t ∈ [2v, 2v+1). (3.5)

Combination (3.3), (3.4) and (3.5) yields

|Hk/2bQ(x)| . 2v(α+M−k−n/r)
(

1 +
|x− xQ|

2v
)−n−N

.

This implies that mQ is an (H,M,N, α, r) molecule.
Next, we prove (3.1). We observe that w(x, t) ≡ Hm/2e−t

√
Hf(x) is a solution of

the equation

−(∆x,t + |x|2)w = 0, with ∆x,tw = wtt + ∆w.

So, w is a subharmonic function. Thanks to [5, Lemma 5.2], for every θ ∈ (0,∞)
we obtain

sup
(y,t)∈ eQ |H

m/2e−t
√

Hf(y)| .
( 1

|Q̃|

∫
3
2

eQ |H
m/2e−t

√
Hf(y)|θdydt

)1/θ

,

where Q̃ = Q× [2v, 2v+1) is a cube in Rn+1.
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Note that |Q̃| ∼ 2v|Q| and t ∼ 2v, for any (y, t) ∈ Q̃. Hence, it follows from the
last inequality that

sup
(y,t)∈ eQ |(t

√
H)me−t

√
Hf(y)| .

( 1
|Q|

∫ 9
8 2v+1

3
4 2v

∫
3
2Q

|(t
√

H)me−t
√

Hf(y)|θdy dt
t

)1/θ

.
(∫ 9

8 2v+1

3
4 2v

[Mθ(|(t
√

H)me−t
√

Hf |)(x)]θ
dt

t

)1/θ

,

(3.6)
for any x ∈ Q. From (3.3) and (3.6), we obtain

|sQ|χQ(x) . 2−v(α−n/r)
(∫ 9

8 2v+1

3
4 2v

[Mθ(|(t
√

H)me−t
√

Hf |)(x)]θ
dt

t

)1/θ

χQ(x),

or ∑
Q∈Dv

|Q|−1/r|sQ|χQ(x) . 2−vα
(∫ 9

8 2v+1

3
4 2v

[Mθ(|(t
√

H)me−t
√

Hf |)(x)]θ
dt

t

)1/θ

.

Thanks to Lemma 2.5, we have

Av . 2−vα
∥∥(∫ 9

8 2v+1

3
4 2v

[Mθ(|(t
√

H)me−t
√

Hf |)]θ dt
t

)1/θ∥∥
Mr
p
.

Next, Minkowski integral inequality (see (2.3)) yields

Av . 2−vα
[ ∫ 9

8 2v+1

3
4 2v

‖Mθ

(
|(t
√

H)me−t
√

Hf |
)
‖θMr

p

dt

t

]1/θ
.

At the moment, for a fixed θ ∈ (0, θ0), then Mθ is a bounded operator on Mr
p,

likewise

Av . 2−vα
[ ∫ 9

8 2v+1

3
4 2v

‖(t
√

H)me−t
√

Hf‖θMr
p

dt

t

]1/θ
.
[ ∫ 9

8 2v+1

3
4 2v

(
t−α‖(t

√
H)me−t

√
Hf‖Mr

p

)θ dt
t

]1/θ
.
[ ∫ 9

8 2v+1

3
4 2v

(
t−α‖(t

√
H)me−t

√
Hf‖Mr

p

)q dt
t

]1/q
,

where the last inequality is obtained by using Hölder’s inequality. Therefore,(∑
v∈Z

Aqv

)1/q

.
[∑
v∈Z

∫ 9
8 2v+1

3
4 2v

(
t−α‖(t

√
H)me−t

√
Hf‖Mr

p

)q dt
t

]1/q
.

By noting that
∑
v∈Z χ( 3

4 2v, 98 2v+1) ≤ 2, we obtain∑
v∈Z

∫ 9
8 2v+1

3
4 2v

(
t−α‖(t

√
H)me−t

√
Hf‖Mr

p

)q dt
t
≤ 2

∫ ∞
0

(
t−α‖(t

√
H)me−t

√
Hf‖Mr

p

)q dt
t
,

which implies(∑
v∈Z

Aqv

)1/q

.
[ ∫ ∞

0

(
t−α‖(t

√
H)me−t

√
Hf‖Mr

p

)q dt
t

]1/q
= ‖f‖BMα,H,m

p,q,r
.

This completes the proof of part (i). �
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To prove (ii) of Theorem 3.6, we need the following auxiliary lemmas.

Lemma 3.7. Let N > 0, and let η, v ∈ Z be such that v ≤ η. Let {fQ}Q∈Dv be a
sequence of functions satisfying

|fQ(x)| .
(
1 + 2−η|x− xQ|

)−n−N
.

Then, for any θ ∈ ( n
n+N ,∞) and for a sequence of numbers {sQ}Q∈Dv , we have∑

Q∈Dv

|sQ||fQ(x)| . 2
(η−v)n

θ Mθ

( ∑
Q∈Dv

|sQ|χQ
)

(x).

The proof of the above lemma can be found in [7, p.147]. Next, we recall [1,
Lemma 3.6].

Lemma 3.8. Under the assumptions as in (ii) of Theorem 3.6, we have

|(t
√

H)me−t
√

HmQ(x)| . |Q|αn− 1
r

( t

2v
)m−N−n(

1 +
|x− xQ|

2v
)−n−N

, ∀t < 2v,

|(t
√

H)me−t
√

HmQ(x)| . |Q|αn− 1
r

(2v

t

)M(
1 +
|x− xQ|

t

)−n−N
, ∀t ≥ 2v.

Proof of part (ii) of Theorem 3.6. We begin by writing

‖f‖q
BMα,H,m

p,q,r
=
∑
k∈Z

∫ 2k+1

2k

(
t−α‖

∑
v∈Z

∑
Q∈Dv

sQ(t
√

H)me−t
√

HmQ‖Mr
p

)q dt
t

.
∑
k∈Z

(
2−kα‖

∑
v>k

∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

|(t
√

H)me−t
√

HmQ|‖Mr
p

)q
+
∑
k∈Z

(
2−kα‖

∑
v≤k

∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

|(t
√

H)me−t
√

HmQ|‖Mr
p

)q
:= I1 + I2.

Thus, the proof is complete if we can demonstrate that

I1, I2 .
∑
v∈Z

Aqv. (3.7)

We first prove (3.7) for I1. Keep in mind that v ≥ k+1 in this case. Since θ0 > n
n+N

and M > max{ nθ0 − α,m}, we can choose a real number θ ∈ ( n
n+N , θ0) such that

M > n
θ − α. By noting that 2v ≥ 2k+1 > t, Lemma 3.8 implies

sup
t∈[2k,2k+1)

|(t
√

H)me−t
√

HmQ(x)| . |Q|αn− 1
r 2(k−v)(m−N−n)

(
1 + 2−v|x− xQ|

)−n−N
.

Thus, ∑
Q∈Dv

|sQ| sup
t∈[2k,2k+1)

|(t
√

H)me−t
√

HmQ(x)|

.
∑
Q∈Dv

|Q|αn− 1
r 2(k−v)(m−N−n)|sQ|

(
1 + 2−v|x− xQ|

)−n−N
. 2vα2(k−v)(m−N−n)

∑
Q∈Dv

|Q|−1/r|sQ|
(
1 + 2−v|x− xQ|

)−n−N
.

(3.8)
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Now, we apply Lemma 3.7 with η = v and fQ(x) = (1 + 2−v|x− xQ|)
−n−N to

obtain∑
Q∈Dv

|Q|−1/r|sQ|
(
1 + 2−v|x− xQ|

)−n−N
.Mθ

( ∑
Q∈Dv

|Q|−1/r|sQ|χQ
)

(x), (3.9)

for θ ∈ ( n
n+N , θ0). Inserting (3.9) into (3.8) yields∑

Q∈Dv

|sQ| sup
t∈[2k,2k+1)

|(t
√

H)me−t
√

HmQ(x)|

. 2vα2(k−v)(m−N−n)Mθ

( ∑
Q∈Dv

|Q|−1/r|sQ|χQ
)

(x).

Then

I1 .
∑
k∈Z

[
2−kα

∥∥∑
v>k

2αv2(k−v)(m−N−n)Mθ

( ∑
Q∈Dv

|Q|−1/r|sQ|χQ
)∥∥

Mr
p

]q
=
∑
k∈Z

∥∥∑
v>k

2(k−v)(m−N−n−α)Mθ

( ∑
Q∈Dv

|Q|−1/r|sQ|χQ
)∥∥q

Mr
p

.
∑
k∈Z

[∑
v>k

2(k−v)(m−N−n−α)
∥∥Mθ

( ∑
Q∈Dv

|Q|−1/r|sQ|χQ
)∥∥

Mr
p

]q
.

(3.10)

Again the fact that Mθ is bounded on Mr
p implies∥∥Mθ

( ∑
Q∈Dv

|Q|−1/r|sQ|χQ
)∥∥

Mr
p
. ‖

∑
Q∈Dv

|Q|−1/r|sQ|χQ‖Mr
p
∼ Av. (3.11)

Combination (3.10) and (3.11) yields

I1 .
∑
k∈Z

[∑
v>k

2(k−v)(m−N−n−α)Av

]q
.

Applying Young’s inequality yields∑
v>k

2(k−v)(m−N−n−α)Av

≤
(∑
v>k

2
(k−v)(m−N−n−α)q

2(q−1)

) q−1
q
(∑
v>k

2
(k−v)(m−N−n−α)q

2 Aqv

)1/q

.

Since m > N + n + α,
∑
v>k 2

(k−v)(m−N−n−α)q
2(q−1) is then bounded by a constant

independent of k, v. Thus,

I1 .
∑
k∈Z

∑
v>k

2
(k−v)(m−N−n−α)q

2 Aqv

=
∑
v∈Z

(∑
k<v

2
(k−v)(m−N−n−α)q

2

)
Aqv .

∑
v∈Z

Aqv.

It remains to show that estimate (3.7) holds for I2. Actually, the proof for I2 is
most likely to the one for I1, with only one different point that we use Lemma 3.8
for v ≤ k, i.e.

sup
t∈[2k,2k+1)

|(t
√

H)me−t
√

HmQ(x)
∣∣ . |Q|αn− 1

r 2(v−k)M
(

1 +
|x− xQ|

2v
)−n−N

.
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Proceed similarly to the proof (from (3.8) to (3.11)) above, we obtain

I2 .
∑
k∈Z

[∑
v≤k

2(v−k)(M+α)Av

]q
.

By noting that M + α > 0, apply Young’s inequality yields the result. This com-
pletes the proof of Theorem 3.6. �

Proof of Theorem 3.3. Let N = int[n( 1
θ0
− 1)] + 1, and M > max{m1,m2,

n
θ0
−α}.

Because m1 and m2 play the same role, it then suffices to prove that BMα,H,m1
p,q ↪→

BMα,H,m2
p,q .

In fact, for f ∈ BMα,H,m1
p,q,r , thanks to (i) of Theorem 3.6, there exist a sequence

of (H,M,N, α, r) molecules
{
mQ : Q ∈ Dv, v ∈ Z

}
, and a sequence of coefficients{

sQ : Q ∈ Dv, v ∈ Z
}

so that

f =
∑
v∈Z

∑
Q∈Dv

sQmQ, in S ′,

and (∑
v∈Z

Aqv

)1/q

. ‖f‖
BM

α,H,m1
p,q,r

.

In other words, (
∑
v∈Z A

q
v)

1/q is finite.
By (ii) of Theorem 3.6, we obtain f ∈ BMα,H,m2

p,q,r . Furthermore, f satisfies

‖f‖
BM

α,H,m2
p,q,r

.
(∑
v∈Z

Aqv

)1/q

.

Or, we obtain the result. �

4. Regularity on Besov-Morrey spaces for fractional Hermite
equations

In this part, we study the regularity results of solutions of the two fractional
Hermite equations:

Hsu = f, and (I + H)s = f, on Rn,

for any s > 0, and for f ∈ BMα,H
p,q,r. To solve the indicated equations, it is necessary

to investigate the operators H−s and (I + H)−s, named by the Riesz potential of
Hermite operator and the Bessel potential of Hermite operator respectively.

In fact, by following [1, Proposition 2.5], we can define the operators H−s : S ′ →
S ′ and (I + H)−s : S ′ → S ′ by setting

〈H−sf, φ〉 = 〈f,H−sφ〉, and 〈(I + H)−sf, φ〉 = 〈f, (I + H)−sφ〉,

for any f ∈ S ′, and for φ ∈ S. Note that 〈·, ·〉 is the pair between a linear function
in S ′ and a function in S. Moreover, for any φ ∈ S we have

H−sφ =
1

Γ(s)

∫ ∞
0

tse−tHφ
dt

t
∈ S,

(I + H)−sφ =
1

Γ(s)

∫ ∞
0

tse−te−tHφ
dt

t
∈ S.
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Let Kt(x, y) (resp. Kt,k(x, y)) be the kernel of e−tH (resp. (tH)ke−tH). Thanks to
[6, Lemma 2.5], and [1, Lemma 2.4], we have the following results.

Lemma 4.1. For k ∈ N, there exists c, C > 0 so that for all y ∈ R

|∂kxKt(x, y)| ≤

{
Ct−

k+1
2 exp

(
− c |x−y|

2

t

)
, 0 < t ≤ 1;

e−te−|x−y|
2
, t > 1.

(4.1)

Kt,k(x, y) ≤ C

tn/2
exp

(
− c |x− y|

2

t

)
, (4.2)

Our regularity results are as follows.

Theorem 4.2. Let α ∈ R, 0 < q ≤ ∞, 0 < p ≤ r ≤ ∞, and f ∈ BMα,H
p,q,r. Assume

that u is a solution of equation Hsu = f , Then, there exists a constant C > 0 such
that

‖u‖BMα+2s,H
p,q,r

≤ C‖f‖BMα,H
p,q,r

.

Theorem 4.3. Let α ∈ R, 0 < q ≤ ∞, 0 < p ≤ r ≤ ∞, and f ∈ BMα,H
p,q,r. Assume

that u is a solution of equation (H + I)su = f . Then, there exists a constant C > 0
such that

‖u‖BMα+2s,H
p,q,r

≤ C‖f‖BMα,H
p,q,r

.

Theorems 4.2 and 4.3 are just a consequence of the theorem below.

Theorem 4.4. Let α ∈ R, 0 < p ≤ r < ∞, and 0 < q ≤ ∞. For any s > 0, the
operator H−s (resp. (I + H)−s) is bounded from BMα,H

p,q,r to BMα+2s,H
p,q,r .

Proof of Theorem 4.4. Let {mQ : Q ∈ Dv, v ∈ Z} be a sequence of (H, 4M,N,α, r)
molecules, with M,N ∈ N, and M > s+ n/2 +N/2.

We first prove that H−s(mQ) is an (H, 2M,N,α+2s, r) molecule associated with
the cube Q. Indeed, let mQ = H2MbQ as in Definition 3.4, and put yQ = H−sHMbQ.
Then

H−smQ = HMyQ = (
√

H)2MyQ.
Thus, it suffices to show that

|(
√

H)kyQ(x)| . `(Q)2M−k|Q|
α+2s
n − 1

r

(
1 +
|x− xQ|
`(Q)

)−n−N
, (4.3)

for k = 0, . . . , 4M . In fact, we have

yQ(x) = H−sHMbQ =
1

Γ(s)

∫ ∞
0

tse−tHHMbQ(x)
dt

t
.

Therefore,

|(
√

H)kyQ(x)| ≤ 1
Γ(s)

∫ 4v

0

|tse−tH(
√

H)2M+kbQ(x)|dt
t

+
1

Γ(s)

∫ ∞
4v
|tse−tH(

√
H)2M+kbQ(x)|dt

t
:= I1 + I2.

First, we estimate I1. Thanks to Lemma 4.1, we have

|e−tH(
√

H)2M+kbQ(x)| =
∫

Rn
|Kt(x, y)(

√
H)2M+kbQ(y)|dy

.
∫

Rn

1
tn/2

exp
(
− 2c

|x− y|2

t

)
|(
√

H)2M+kbQ(y)|dy.
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Taking Definition 3.4 into account, we obtain

|e−tH(
√

H)2M+kbQ(x)| .
∫

Rn

1
tn/2

exp
(
− c |x− y|

2

t

)(
1 +
|x− y|√

t

)−n−N
× |Q|αn− 1

r 2v(2M−k)
(

1 +
|y − xQ|

2v
)−n−N

dy.

Next, we apply the inequality (1 + a+ b) ≤ (1 + a)(1 + b), for all a, b ≥ 0 and the
fact t < 4v to the right hand side of the above inequality to obtain

|e−tH(
√

H)2M+kbQ(x)|

. |Q|αn− 1
r 2v(2M−k)

(
1 +
|x− xQ|

2v
)−n−N ∫

Rn

1
tn/2

exp
(
− c |x− y|

2

t

)
dy;

thus

|e−tH(
√

H)2M+kbQ(x)| . |Q|αn− 1
r 2v(2M−k)

(
1 +
|x− xQ|

2v
)−n−N

.

This implies

I1 . |Q|
α
n−

1
r 2v(2M−k)

(
1 +
|x− xQ|

2v
)−n−N ∫ 4v

0

ts
dt

t

. |Q|
α+2s
n − 1

r 2v(2M−k)
(

1 +
|x− xQ|

2v
)−n−N

.

(4.4)

It remains to consider I2. By (4.2), we have

|HMe−tH(
√

H)kbQ(x)| = t−M |(tH)Me−tH(
√

H)kbQ(x)|

= t−M
∫

Rn
|Kt,M (x, y)(

√
H)kbQ(y)|dy

. t−M
∫

Rn

1
tn/2

exp
(
−c |x− y|

2

t

)
|(
√

H)kbQ(y)|dy.

In similar to the above proof, we also have

|HMe−tH(
√

H)kbQ(x)|

. t−M
∫

Rn

1
tn/2

(
1 +
|x− y|√

t

)−n−N
|Q|αn− 1

r 2v(4M−k)
(

1 +
|y − xQ|

2v
)−n−N

dy.

By Lemma 3.5, and noting that t ≥ 4v, we obtain

|HMe−tH(
√

H)kbQ(x)|

. t−M |Q|αn− 1
r 2v(4M−k)

(
1 +
|x− xQ|√

t

)−n−N
.
( t

4v
)(n+N)/2

t−M |Q|αn− 1
r 2v(4M−k)

(
1 +
|x− xQ|

2v
)−n−N

.

Thus

I2 . |Q|
α
n−

1
r 2v(4M−k−N−n)

(
1 +
|x− xQ|

2v
)−n−N ∫ ∞

4v
ts+

n+N
2 −M dt

t

. |Q|
α+2s
n − 1

r 2v(2M−k)
(

1 +
|x− xQ|

2v
)−n−N

.

(4.5)

Hence, (4.3) follows from (4.4) and (4.5). Thus H−s(mQ) is an (H, 2M,N,α+2s, r)
molecule associated with the cubeQ. By Theorem 3.6 and a suitable choice ofM,N ,
we obtain the boundedness of H−s from BMα,H

p,q,r to BMα+2s,H
p,q,r .
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Similarly, we can also establish the boundedness of the Bessel potential (I+H)−s

from BMα,H
p,q,r to BMα+2s,H

p,q,r . We leave the proof to the reader. �
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