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Abstract. This article concerns nonlinear functional integral equations of
product type. The first two equations set on a the positive half-axis encompass

different classes of nonlinear integral equations and may involve the product

of finitely many integral functions. The existence of integrable solutions is
based on improved versions of Krasnoselskii’s fixed point theorem combined

with techniques of measure of weak noncompactness and some elements from

functional analysis. The third one is an integro-differential equation set on a
bounded interval, for which the existence of absolutely continuous solutions is

provided. Examples show the applicability of our results.

1. Introduction

Nonlinear integral equations appear in several mathematical problems modeling
nonlinear phenomena. As special cases, integral equations of product type arise,
e.g., in the study of the spread of an infectious disease that does not induce perma-
nent immunity (see, e.g., [3, 12, 14, 15, 29] and references therein). For instance,
Gripenberg [14] studied the existence of periodic solutions to the following integral
equation of product type:

x(t) = k
(
P −

∫ t

−∞
A(t− s)x(s)ds

)(∫ t

−∞
a(t− s)x(s)ds

)
, t ∈ R.

This equation is related to models of disease spread that does not induce permanent
immunity and the function x stands for the infection rate, i.e., the rate at which in-
dividuals susceptible to catch the disease become infected. Then

∫ t
−∞ a(t−s)x(s)ds

is approximately proportional to the total infectivity if the average infectivity of
an individual infected at time s is proportional to a(t − s) at time t > s. P is
the size of population and P −

∫ t
−∞A(t− s)x(s)ds is approximately the number of

susceptibles provided that the cumulative probability for the loss of immunity of
an individual infected at time s is 1−A(t− s) (see [14, 15]).

Gripenberg [15] also studied the existence and the uniqueness of a bounded,
continuous, and nonnegative solution to the following integral equation of product
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type:

x(t) = k
(
p(t) +

∫ t

0

A(t− s)x(s)ds
)(
q(t) +

∫ t

0

B(t− s)x(s)ds
)
, (1.1)

for t > 0, under appropriate assumptions on functions A and B. The functions p, q
are related to the past-time infection. Gripenberg also obtained sufficient conditions
that guarantee the convergence of the solution as t→∞.

Pachpatte [27] provided a new integral inequality that he used to study the
boundedness, asymptotic behavior, and growth of solutions of equation (1.1).

Abdeldaim [1], and Li et al. [21] generalized Pachpatte’s inequality to some
integral inequalities in order to study the boundedness and the asymptotic behavior
of continuous solutions to equation (1.1).

Olaru [25] generalized (1.1) and showed the existence and uniqueness of a con-
tinuous solution to the following integral equation:

x(t) =
m∏
i=1

Ai(x)(t), a < t < b,

where Ai(x)(t) = gi(t) +
∫ t
a
Ki(t, s, x(s))ds, t ∈ [a, b], and Ki is continuous Lips-

chitzian for i = 1, . . . ,m.
Later Olaru [26] generalized (1.1) by studying the existence of a continuous

solution to the integral equation

x(t) =
(
g1(t) +

∫ t

0

K1(t, s, x(s))ds
)(
g2(t) +

∫ t

0

K2(t, s, x(s))ds
)
, (1.2)

for t > 0. He employed the weakly Picard technique operators in a gauge space.
Finally we mention Bellour et al. [8] who studied the existence of an integrable

solution to the following integral equation on the interval [0, 1],

x(t) = u(t, x(t)) +
(
p(t) +

∫ t

0

k1(t, s)f1(s, x(s))ds
)

×
(
q(t) +

∫ t

0

k2(t, s)f2(s, x(s))ds
)
.

(1.3)

In this paper, we consider the more general nonlinear integral equation

x(t) = f(t, x(t)) + f1

(
t,

∫ t

0

v1(t, s, x(s))ds
)
f2

(
t,

∫ t

0

v2(t, s, x(s))ds
)
, (1.4)

for t > 0. This equation encompasses many important integral and functional
equations that arise in nonlinear analysis and its applications, in particular integral
equations (1.1), (1.2), and (1.3) (see also [13, 20] for some other special cases).
When considering continuous solutions, we refer to [9] and some references therein.

However, many models of the spread of infectious diseases include data functions,
which are discontinuous. For this reason, we devote our investigations to extend
the theory developed for (1.1) and (1.2) to discuss the existence of a solution to
(1.4) in the space of integrable real functions on R+ when f1, f2 obey linear growths
in the second argument, which ensures continuity of the superposition operators.
The product term involves two nonlinear operators acting from L1 to L1 and to
L∞, respectively. An example is included to illustrate the applicability of our first
existence result. This is the content of Section 3.
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Section 4 is devoted to a generalization of equation (1.4) to m product terms
(m ≥ 2), each transforming L1 into Lpi with conjugate exponents pi > 1 (1 ≤ i ≤
m), which we call (Lp, Lq) product integrals:

x(t) = f(t, x(t)) +
m∏
i=1

fi

(
t,

∫ t

0

vi(t, s, x(s))ds
)
, t > 0.

Theorem 4.1 providing existence of integrable solution is proved via a fixed point
argument.

The main tools used in our considerations rely on conjunction of some techniques
of measures of noncompactness together with compactness criteria and an improved
version of Krasnosel’skii fixed point theorem proved in [24].

The third nonlinear integral equation discussed in this work is also of product
type and is set a bounded interval [a, b]:

x(t) = x0 +
∫ t

0

f(s, x(s))ds+
∫ t

0

(
α(s) + V1x(s)

)(
β(s) + V2x(s)

)
ds,

for a < t < b. The existence of absolutely continuous solutions is obtained in
Theorem 5.1, Section 5, extending results from [25].

Some elements from functional analysis including Dunford-Pettis weak compact-
ness criterion and fixed point theorems are collected in next Section 2.

2. Preliminary results

We denote by Lp = Lp(R+) (1 ≤ p <∞) the Banach space of equivalence classes
of measurable functions on R+ such that

∫ +∞
0
|x(t)|pdt < ∞. It is equipped with

the norm ‖x‖p =
( ∫ +∞

0
|x(t)|pdt

)1/p. L∞ = L∞(R+) will refer to the Banach space
of classes of measurable functions that are essentially bounded. Its norm is referred
to by ‖x‖∞ = ess supt≥0 |x(t)|. For the sake of clarity, we will shorten ‖x‖1 to ‖x‖,
unless specified otherwise.

Theorem 2.1 (Generalized Hölder’s theorem [10]). Assume that f1, f2, . . . , fn are
functions such that

fi ∈ Lpi(R+), 1 ≤ i ≤ n with
1
p1

+
1
p2

+ · · ·+ 1
pn

=
1
p
≤ 1. (2.1)

Then the product f = f1f2 . . . fn belongs to Lp(R+) and

‖f‖p ≤ ‖f1‖p1‖f2‖p2 · · · ‖fn‖pn (2.2)

The following result is a kind of converse to the Lebesgue dominated convergence
theorem.

Theorem 2.2 ([10, Théorème IV.9]). Let Ω be a measurable set of Rn and (fn) a
sequence in Lp(Ω). If fn → f in Lp(Ω) with p ≥ 1, then there exists a subsequence
(fnk

) of (fn) and a function g ∈ Lp(Ω) such that:
(1) fnk

→ f , a.e. in Ω,
(2) |fnk

(t)| ≤ g(t), for all k ≥ 1 and a.e t ∈ Ω.

Also we need the following result.

Lemma 2.3. Let E be a topological space and (xn)n a sequence in E. If there exists
x ∈ E such that any subsequence (xnk

)k of (xn) has a new subsequence (xnkl
)l such

that xnkl
→ x in E, as l→∞. Then xn → x in E, as n→∞.
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This is a classical result in topology whose proof is sketched here for the sake of
completeness (see, e.g., [4, Exercise 9, Section 3.4, p.80].

Proof. On the contrary, there would exist some ε0 > 0 such that for all k = 1, 2, . . .,
there exists nk > k such that |xnk

− x| > ε. Then the sequence (xnk
) has no

convergent subsequence, a contradiction. Another way to see this result is to let
x = lim infn→∞ xn and x = lim supn→∞ xn. Now consider two subsequences (xnk

)
and (xnl

) that converge to x and x respectively. By Assumption these subsequences
have subsequences that converge to x. As a consequence x = x = x. �

Definition 2.4. Let I ⊂ R be an interval (bounded or unbounded) and n ≥ 1 an
integer. A function f : I × Rn → R satisfies Carathéodory’s conditions if

(i) for all x ∈ Rn, the function t 7→ f(t, x) is Lebesgue measurable on I,
(ii) for almost every (a.e. for short) t ∈ I, the function x 7→ f(t, x) is continuous

on Rn.

One of the most important operators in nonlinear analysis is the superposition
(or Nemytskii) operator generated by a time-space argument function f and defined
by (Fx)(t) = f(t, x(t)), where x : I → R is a measurable function. It is well known
that Nx is also measurable and that if N is defined in Lp with values in Lq, then it
is bounded and continuous. Moreover Krasnosel’skii [18] and Appell and Zabreiko
[2] proven the following characterization.

Theorem 2.5. Let I ⊂ R be an interval (bounded or unbounded) and p, q ∈
[1,+∞). Then the superposition operator generated by Carathéodory’s function
f maps continuously the space Lp(I) into Lq(I) if and only if |f(t, x)| ≤ a(t) +
c|x|

p
q , for a.e. t ∈ I and all x ∈ R, where c is a nonnegative constant and

a ∈ Lq(I, (0,+∞)).

The Sorza Dragoni Theorem reads as follows.

Theorem 2.6 ([23]). Let I ⊂ R be a bounded interval and let f : I × Rn → R be
a function satisfying Carathéodory’s conditions. Then, for each ε > 0, there exists
a closed subset Dε ⊂ I such that meas(I \Dε) < ε and the restriction of f on the
set Dε × Rn is continuous.

The Dunford-Pettis Theorem provides a useful characterization of weakly com-
pact sets of L1.

Theorem 2.7 ([10]). A bounded subsetM of the Banach space L1(R+) has compact
closure in the weak topology if and only if the following two conditions are fulfilled:

(a) for each ε > 0 there exists δ > 0 such that∫
D

|x(t)|dt ≤ ε, ∀D ⊂ R+, meas(D) ≤ δ, ∀x ∈M

(b) for each ε > 0 there exists T > 0 such that∫ +∞

T

|x(t)|dt ≤ ε, ∀x ∈M.

Given a Banach space E, let B(E) denote the family of all nonempty bounded
subsets of E and W(E) the subset of B(E) consisting of all relatively weakly com-
pact subsets of E. Br will refer to the closed ball centered at 0 with radius r in E.
The following concept of the measure of weak noncompactness was first introduced
by [11]; see also [6]. It is recalled in its axiomatic form.
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Definition 2.8. A function µ : B(E) → R+ is called a measure of weak noncom-
pactness if it satisfies the conditions:

(1) The set ker(µ) = {M ∈ B(E) : µ(M) = 0} is nonempty and ker(µ) ⊂
W(E).

(2) M1 ⊂M2 ⇒ µ(M1) ≤ µ(M2).
(3) µ(co(M)) = µ(M), where co(M) is the closed convex hull of M .
(4) µ(λM1 + (1− λ)M2) ≤ λµ(M1) + (1− λ)µ(M2), for all λ ∈ [0, 1].
(5) If (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of E with M1

bounded and M1 ⊇ M2 ⊇ . . . ⊇ Mn ⊇ . . . such that limn→∞ µ(Mn) = 0,
then M∞ := ∩∞n=1Mn is nonempty.

An important example of measure of weak noncompactness in L1(R+) has been
constructed by Banas and Knap [7] in the following way: for a bounded subset X
of L1(R+), let

µ(X) = c(X) + d(X),
where

c(X) = lim
ε→0

(
sup
x∈X

{
sup

{∫
D

|x(t)|dt : D ⊂ R+,meas(D) ≤ ε, x ∈ X
}})

,

d(X) = lim
T→∞

(
sup

{∫ +∞

T

|x(t)|dt : x ∈ X
})
.

Notice that the first term is related to integrability condition (a) in Theorem 2.7
while the second one treats the equiconvergence at positive infinity, namely condi-
tion (b) in Theorem 2.7. Moreover by Dunford-Pettis theorem 2.7, the kernel of
the measure of weak noncompactness µ coincides with the collection of all weakly
relatively compact subsets of the Banach space L1(R+).

The following two definitions are needed in Theorems 2.11 and 2.12. The first
one extends the concept of nonlinear contraction.

Definition 2.9. [22] Let (X, d) be a metric space. we say that T : X → X is a
separate contraction if there exist two functions ϕ,ψ : R+ → R+ satisfying

(1) ψ(0) = 0, ψ is strictly increasing,
(2) d(Tx, Ty) ≤ ϕ(d(x, y)), for all x, y ∈ X,
(3) ψ(r) + ϕ(r) ≤ r, for r > 0.

Definition 2.10. [16] Let M be a subset of a Banach space E. A continuous map
A : M → E is said to be (ws)-compact if for every weakly convergent sequence
(xn)n in M , the sequence (Axn)n has a strongly convergent subsequence in E.

Our existence results are based on the following two fixed point theorems. The
first one is a Krasnosels’kii type theorem under the weak topology.

Theorem 2.11 ([24]). Let M be a nonempty, bounded, closed, and convex subset
of a Banach space E. Suppose that F : M → E and G : M → E satisfy:

(i) F is a separate contraction,
(ii) G is (ws)-compact,

(iii) there exists γ ∈ [0, 1) such that µ(FS+GS) ≤ γµ(S) for all S ⊂M , where
µ is an arbitrary measure of weak noncompactness on E,

(iv) F (M) +G(M) ⊆M .
Then there exists x ∈M such that Fx+Gx = x.
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This is a generalization of the following result.

Theorem 2.12 ([20]). Let M be a nonempty bounded closed convex subset of a
Banach space E. Suppose that A :M→M satisfies:

(i) A is (ws)-compact.
(ii) A(M) is relatively weakly compact.

Then there is a x ∈M such that Ax = x.

We finish this section with some reminders and properties of absolute continuous
functions (see, e.g., [17, 28])

Definition 2.13. A function θ : [a, b] → R is absolutely continuous if for each
ε > 0 there exists δ > 0 such that

n∑
i=1

|θ(x′i)− θ(xi)| < ε,

for any finite collection {(xi, x′i) : i = 1, ..., n} of pairwise disjoint intervals in [a, b]
with

∑n
i=1 |x′i − xi| < δ.

Absolutely continuous functions enjoy important properties.

Theorem 2.14. If θ is absolutely continuous on [a, b], then θ has a derivative
defined almost everywhere on [a, b]. Moreover θ′(t) is integrable on [a, b] and

θ(t) = θ(a) +
∫ t

a

θ′(s)ds.

Theorem 2.15. Let θ be an integrable function on [a, b], then the function

ϑ(t) = ϑ(a) +
∫ t

a

θ(s)ds

is absolutely continuous. Moreover, ϑ is derivable almost everywhere on [a, b] and
ϑ′(t) = θ(t) a.e. t ∈ [a, b].

3. (L1, L∞) product type integral equation

To investigate the existence of integrable solutions to equation (1.4), we adopt
the following assumptions on the given nonlinearities. Notice that by Theorem
2.5, sublinear growth conditions are optimal to assure continuity of superposition
operators in L1.

(A1) The function f : R+ × R → R satisfies Carathéodory’s conditions and it
is a separate contraction with respect the second variable; moreover there
exist a function ϕ ∈ L1(R+) and a positive constant c such that

|f(t, x)| ≤ ϕ(t) + c|x|,

for a.e, t ∈ R+ and all x ∈ R.
(A2) The functions fi : R+×R→ R (i = 1, 2) satisfy Carathéodory’s conditions

and there exist two functions ϕ1 ∈ L1(R+), ϕ2 ∈ L1(R+) ∩ L∞(R+), and
positive constants ci (i = 1, 2) such that

|fi(t, x)| ≤ ϕi(t) + ci|x|,

for a.e. t, s ∈ R+ and all x ∈ R.
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(A3) The functions vi : R+ × R+ × R → R (i = 1, 2) satisfy Carathéodory’s
conditions and there exist two functions ai ∈ L1(R+) and positive constants
bi such that for a.e. t, s ∈ R+ and all x ∈ R

|vi(t, s, x)| ≤ ki(t, s)(ai(s) + bi|x|),
where ki : R+ × R+ → R (i = 1, 2) satisfy Carathéodory’s conditions.

(A4) The linear Volterra operator Ki (i = 1, 2) transforms the space L1(R+)
into itself and K2 transforms continuously the space L1(R+) into L∞(R+),
where

Kix(t) =
∫ t

0

ki(t, s)x(s)ds, t > 0.

Let ‖Ki‖ be the norm of the bounded linear operator Ki (i = 1, 2).

Remark 3.1. A sufficient condition for the linear operator

(Kx)(t) =
∫ t

0

k(t, s)x(s)ds, t ∈ R+

map L1 into itself is that the mapping

s 7→
∫ +∞

s

|k(t, s)|dt

be L∞(R) (see [5, Theorem 2]). This implies that K is continuous (see [30]). Clearly
a sufficient condition for the linear operator K map L1 into L∞ is that k ∈ L∞(R2).

Observe that solving (1.4) amounts to finding a fixed point of the operator

H := F +G : L1(R+)→ L1(R+) (3.1)

defined by the right side of equation (1.4). Furthermore the map H can be written
as

Hx(t) = Fx(t) +G1x(t)×G2x(t), t ∈ R+, (3.2)
where F is the Nemytskii operator generated by the function f , i.e.:

Fx(t) = f(t, x(t)),

Gix(t) = fi

(
t,

∫ t

0

vi(t, s, x(s))ds
)
, t > 0, (i = 1, 2).

Let Gx(t) = G1x(t) × G2x(t). N = {1, 2, 3, . . .} will denote the set of positive
integers. To abbreviate notation, we put

α = b1b2c1c2‖K1‖‖K2‖,
β = ‖ϕ‖+

(
‖ϕ1‖+ c1‖K1‖‖a1‖

)(
‖ϕ2‖∞ + c2‖K2‖‖a2‖

)
,

δ = c+ b1c1‖K1‖
(
‖ϕ2‖∞ + c2‖K2‖‖a2‖

)
+ b2c2‖K2‖

(
‖ϕ1‖+ c1‖K1‖‖a1‖

)
.

(3.3)

We start our proof with a compactness result crucial for our subsequent arguments.

Lemma 3.2. Under Assumptions (A1)–(A4), operators G1 and G2 are (ws)-com-
pact from L1(R+) into it self.

Proof. Let (yn)n be a weakly convergent sequence in L1(R+). Then the set X =
{yn : n ∈ N} is relatively weakly compact, hence bounded for the L1−norm.
Consequently some positive constant r exists and satisfies ‖yn‖ ≤ r, for all integer
n. Let ε > 0. Appealing to Dunford-Pettis theorem 2.7, Assumptions (A2)–(A4)
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guarantee the existence of some positive constant T and δ > 0 such that for each
closed subset D ⊂ R+ with meas(D) ≤ δ, we have for all integer n ∈ N∫

D

|G1yn(t)|dt+
∫ ∞
T

|(G1yn)(t)|dt ≤ ε

4
. (3.4)

Theorem 2.6 ensures the existence of a closed subset Dε of the interval [0, T ] sat-
isfying meas([0, T ] \ Dε) ≤ ε and such that the functions ϕ1, k1, v1, and f1 are
continuous on the sets Dε, Dε × [0, T ], Dε × [0, T ]× R, and Dε × R respectively.
Claim 1. The set G1(X) is relatively compact in L1(R+). Let

ϕ1 = sup
{
ϕ1(t) : t ∈ Dε

}
, k1 = sup

{
k1(t, s) : (t, s) ∈ Dε × [0, T ]

}
.

Then for n ∈ N and for each t ∈ Dε, we have∣∣∣ ∫ t

0

v1(t, s, yn(s))ds
∣∣∣ ≤ ∫ t

0

(
k1(t, s)[a1(s) + b1|yn(s)|

)
ds

≤ k1

(
‖a1‖+ b1r

)
:= K1(ε).

(3.5)

Consequently,∣∣∣f1

(
t,

∫ t

0

v1(t, s, yn(s))ds
)∣∣∣ ≤ ϕ1 + c1k1

(
‖a1‖+ b1r

)
:= G1(ε). (3.6)

This proves that G1(X) is equibounded on the subset Dε. To show that G1(X)
is equicontinuous on Dε, take t1 and t2 in Dε. Without loss of generality we may
assume that t1 < t2. Then for each n ∈ N, we have the estimate∣∣ ∫ t2

0

v1(t2, s, yn(s))ds−
∫ t1

0

v1(t1, s, yn(s))ds
∣∣

≤
∫ t1

0

|v1(t2, s, yn(s))− v1(t1, s, yn(s))|ds+
∣∣ ∫ t2

t1

v1(t2, s, yn(s))ds
∣∣

≤
∫
Dε

|v1(t2, s, yn(s))− v1(t1, s, yn(s))|ds

+
∫

[0,t1]\Dε

|v1(t2, s, yn(s))|ds+
∫

[0,t1]\Dε

|v1(t1, s, yn(s))|ds

+ k1

(∫ t2

t1

a1(s)ds+ b1

∫ t2

t1

|yn(s)|ds
)

≤ meas(Dε)ωT (v1, t2 − t1)

+ 2k1

(∫
[0,t1]\Dε

a1(s)ds+ b1

∫
[0,t1]\Dε

|yn(s)|ds
)

+ k1

(∫ t2

t1

a1(s)ds+ b1

∫ t2

t1

|yn(s)|ds
)
,

where wT (v1, t2 − t1) refers to the modulus of continuity of v1 on the cartesian
product Dε × [0, T ] × [−K1(ε),K1(ε)]. Since a single set of L1 is weakly rela-
tively compact, we deduce from Theorem 2.7 that the terms of the real sequence( ∫ t2

t1
|yn(s)|ds

)
n

as well as
∫ t2
t1
a1(s)ds are arbitrarily small provided that the num-

ber t2 − t1 is small enough. In addition the function f1 is uniformly continuous
on the product Dε × [−K1(ε),K1(ε)], then the set G1(X) is equicontinuous and
equibounded on Dε. Ascoli-Arzela Theorem then implies that G1(X) is relatively
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strongly compact in C(Dε). Consequently, for each integer p ∈ N there exists a
closed subset Dp of [0, T ] with meas([0, T ]\Dp) ≤ 1

p such that G1(X) is relatively
compact in C(Dp).

Moreover there exists p0 ≥ 1 such that meas([0, T ]\Dp0) ≤ δ. Then the sequence
(G1(yn))n has a convergent subsequence (G1(zn))n with respect to the standard
norm of C(Dp0). Therefore some integer n0 ∈ N exists and satisfies that for all
m, n ≥ n0 and for every t ∈ Dp0 , we have

|G1(zn)(t)−G1(zm)(t)| ≤ ε

1 + 2 meas(Dp0)
. (3.7)

From (3.4) and (3.7), we deduce the estimates:∫ ∞
0

|G1(zn)(t)−G1(zm)(t)|dt

≤
∫
Dp0

|G1(zn)(t)−G1(zm)(t)|dt+
∫

[0,T ]\Dp0

|G1(zn)(t)|dt

+
∫

[0,T ]\Dp0

|G1(zm)(t)|dt+
∫ ∞
T

|G1(zn)(t)−G1(zm)(t)|dt ≤ ε.

Finally, we have proven that (G1(zn))n is a Cauchy sequence in the Banach space
L1(R+), proving that G1(X) is strongly relatively compact.

Claim 2. G1 is continuous. For this aim, consider a sequence (xn)n converging
to some limit x in L1. Theorem 2.2 yields some subsequence (xnk

)k of (xn)n and
an integrable function g such that xnk

→ x, as k → ∞ for a.e. t ∈ R+ and
|xnk

(t)| ≤ g(t), for a.e. t ∈ R+ and all k ∈ N. Since v1 satisfies Carathéodory’s
condition (A3), then v1(t, s, xnk

(s)) → v1(t, s, x(s)), as k → ∞ for a.e. t > 0.
According to Assumptions (A2) and (A3), we infer that∫ t

0

|v1(t, s, xnk
(s))|ds ≤

∫ t

0

k1(t, s)
[
a1(s) + b1g(s)

]
ds ∈ L1(R+). (3.8)

Lebesgue’s Dominated Convergence Theorem guarantees that∫
R+

∣∣∣ ∫ t

0

v1(t, s, xnk
(s))ds−

∫ t

0

v1(t, s, x(s))ds
∣∣∣dt→ 0, as k →∞. (3.9)

Using Theorem 2.5, we deduce that

‖(G1xnk
)− (G1x)‖ → 0, as k → +∞. (3.10)

This together with Lemma 2.3 imply that
∥∥(G1xn) − (G1x)

∥∥ → 0, proving that
G1 : L1 → L1 is continuous. We conclude thatG1 is (ws)-compact. By an argument
similar to the one above, we infer that the set G2(X) is relatively compact in L1(R+)
and that G2 is continuous, proving that G2 : L1 → L1 is (ws)-compact. �

Theorem 3.3. In addition to (A1)-(A4) assume that

(A5)
√
αβ < 1−δ

2 , where α, β, δ are defined in (3.3).

Then the nonlinear integral equation (1.4) has at least one solution x ∈ L1(R+).

Proof. We will show that operator H defined by (3.1) satisfies all conditions of
Theorem 2.11. The proof is split into three steps.
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Claim 1. There exists r0 > 0 such that F (Br0) + G(Br0) ⊆ Br0 . To see this, let
x, y ∈ Br for some positive constant r to be determined. We have the estimates:

‖Fx+Gy‖

≤
∫

R+

|f(t, x(t))|dt

+
∫

R+

∣∣∣f1

(
t,

∫ t

0

v1(t, s, y(s))ds
)∣∣∣∣∣∣f2

(
t,

∫ t

0

v2(t, s, y(s))ds
)∣∣∣dt

≤ ‖ϕ‖+ c‖x‖+
∫

R+

[
ϕ1(t) + c1

∫ t

0

(
k1(t, s)[a1(s) + b1|y(s)|

)
ds
]

×
[
ϕ2(t) + c2

∫ t

0

(
k2(t, s)[a2(s) + b2|y(s)|

)
ds
]
dt

≤ ‖ϕ‖+ c‖x‖+
[
‖ϕ1‖+ c1‖K1‖

(
‖a1‖+ b1‖y‖

)]
×
[
‖ϕ2‖∞ + c2‖K2‖

(
‖a2‖+ b2‖y‖

)]
≤ ‖ϕ‖+ cr +

[
‖ϕ1‖+ c1‖K1‖

(
‖a1‖+ b1r

)]
×
[
‖ϕ2‖∞ + c2‖K2‖

(
‖a2‖+ b2r

)]
.

(3.11)

Define the quadratic function θ(r) = αr2 + (δ − 1)r + β, r > 0, where α, β, δ are
defined in (3.3). According to Assumption (A5), the discriminant ∆ = (δ−1)2−4αβ
of the equation

θ(r) = 0 (3.12)

is a positive and 0 < δ < 1. If 0 < r1 < r2 are the roots of this equation, then
taking any r0 ∈ [r1, r2] gives ‖Fx+Gy‖ ≤ r0, proving our claim.

Claim 2. There exists γ ∈ [0, 1) such that µ(FX+GX) ≤ γµ(X) for all X ⊆ Br0 .
Let X be a nonempty subset of Br0 , ε > 0, and D a nonempty measurable subset
of R+ with meas(D) ≤ ε. Then for all x, y ∈ X, we have the estimate∫

D

|Fx(t) +Gy(t)|dt

≤
∫
D

|f(t, x(t))|dt+
∫
D

∣∣∣f1

(
t,

∫ t

0

v1(t, s, y(s))ds
)∣∣∣∣∣∣f2

(
t,

∫ t

0

v2(t, s, y(s))ds
)∣∣∣dt

≤ ‖ϕ‖L1(D) + c‖x‖L1(D) +
∫
D

[
ϕ1(t) + c1

∫ t

0

k1(t, s)[a1(s) + b1|y(s)|]ds
]

×
[
ϕ2(t) + c2

∫ t

0

(
k2(t, s)[a2(s) + b2|y(s)|

)
ds
]
dt

≤
∫
D

ϕ(t) dt+ c‖x‖L1(D) +
[ ∫

D

ϕ1(t) dt+ c1‖K1‖
(∫

D

a1(t) dt+ b1‖y‖L1(D)

)]
× [‖ϕ2‖∞ + c2‖K2‖(‖a2‖+ b2 r0)].

Using Theorem 2.7, we obtain

lim
ε→0

(
sup

{∫
D

ξ(t)dt : D ⊂ R+,meas(D) ≤ ε
})

= 0, (3.13)
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where ξ is any one of the functions ϕ,ϕ1, a1. Hence

c(FX +GX) ≤ γ c(X), (3.14)

where
γ := c+ b1c1‖K1‖ [‖ϕ2‖∞ + c2‖K2‖ (‖a2‖+ b2r0)] . (3.15)

Let us fix an arbitrary positive number T . Then for any functions x, y ∈ X, we
have∫ ∞

T

|Fx(t) +Gy(t)|dt

≤
∫ ∞
T

|f(t, x(t))|dt+
∫ ∞
T

∣∣∣f1

(
t,

∫ t

0

v1(t, s, y(s))ds
)∣∣∣

×
∣∣∣f2

(
t,

∫ t

0

v2(t, s, y(s))ds
)∣∣∣dt

≤
∫ ∞
T

ϕ(t)dt+ c

∫ ∞
T

|x(t)|dt

+
∫ ∞
T

∣∣∣(ϕ1(t) + c1

∫ t

0

(k1(t, s)[a1(s) + b1|y(s)|])ds
)

×
(
ϕ2(t) + c2

∫ t

0

(
k2(t, s)[a2(s) + b2(s)|y(s)|]

)
ds
)∣∣∣dt

≤
∫ ∞
T

ϕ(t) dt+ c

∫ ∞
T

|x(t)|dt +
(∫ ∞

T

ϕ1(t) dt+ c1‖K1‖
(∫ ∞

T

a1(t)dt

+ b1

∫ ∞
T

|y(t)|dt
))(
‖ϕ2‖∞ + c2‖K2‖(‖a2‖+ b2r0)

)
.

(3.16)

A single set of L1 being weakly relatively compact, by applying Dunford-Pettis
theorem 2.7 with ξ any one of the functions ϕ(t), ϕ1(t), and a1(t), we find that

lim
T→∞

∫ +∞

T

ξ(t)dt = 0.

Hence
d(FX +GX) ≤ γ d(X), for all X ⊂ Br0 . (3.17)

Finally, adding (3.14) and (3.17) leads to

µ(FX +GX) ≤ γ µ(X), for all X ⊂ Br0 . (3.18)

Let
η = c+ b1c1‖K1‖‖ϕ2‖∞ + b1c1c2‖K1‖‖K2‖‖a2‖.

Using notation (3.3), the constant γ in (3.15) may be rewritten as

γ = η + αr0 = η +
(
1− δ − β

r0

)
,

where r0 is any root of the quadratic equation (3.12). Since 0 < η < δ, we deduce
that 0 < γ < 1, showing that F +G is a strict γ-set contraction, as claimed.
Claim 3. Operator G is (ws)-compact. Let (xn)n be a weakly convergent sequence
in Br0 . From Lemma 3.2, there exists a subsequence (xnk

)k and two functions
g1, g2 ∈ L1(R+) such that the sequences (G1xnk

)k and (G2xnk
)k converge to g1

and g2 respectively for the L1 norm. By Theorem 2.2, we can find a subsequence
(xnk′ )k′ of (xnk

)k such that (G2xnk′ )k′ converges to g2, as k′ →∞, for a.e. t ∈ R+.
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By straightforward computations, we obtain that g2 is essentially bounded. Indeed
for all integer k′ and a.e. t ∈ R+ we have∣∣(G2xnk′ )(t)

∣∣ ≤ ϕ2(t) + c2

∫ t

0

(
k2(t, s)[a2(s) + b2|xnk′ (s)|

)
ds

≤ ‖ϕ2‖∞ + c2‖K2‖
(
‖a2‖+ b2r0

)
:= M.

(3.19)

Hence ‖G2xnk′‖∞ ≤ M . With the triangle and Hölder’s inequalities, we deduce
the following estimates:

‖Gxnk′ − g1g2‖
≤ ‖(G1xnk′ )(G2xnk′ )− (G2xnk′ )g1‖+ ‖(G2xnk′ )g1 − g1g2‖1
≤ ‖G2xnk′‖∞‖G1xnk′ − g1‖+ ‖(G2xnk′ )g1 − g1g2‖
≤M‖G1xnk′ − g1‖+ ‖(G2xnk′ )g1 − g1g2‖.

(3.20)

Since for a.e. t ∈ R+, we have∣∣(G2xnk′ )(t)g1(t)− g1(t)g2(t)
∣∣ ≤ 2M |g1(t)| ∈ L1(R+),

and an application of Lebesgue’s Dominated Convergence Theorem implies

‖(G2xnk′ )g1 − g1g2‖ → 0, as k′ → +∞. (3.21)

Hence
‖Gxnk′ − g1g2‖ → 0, as k′ → +∞. (3.22)

Then G is (ws)-compact. Finally Assumption (A1) guarantees that F is a separate
contraction mapping and Theorem 2.11 completes the proof of Theorem 3.3. �

Example 3.4. Consider the nonlinear integral equation of product type

x(t) =
1

π(1 + t2)
+

x2(t)
10(1 + |x(t)|)

+
( exp(−t)

10(1 + t)
+
∫ t

0

1
ts+ λ+ x2(s)

ln(1 + x2(s))ds
)

×
( cos(t)

1 + t2
+
∫ t

0

exp(−(t+ s))
( 1
π(1 + s2)

+ sin(x(s))
)
ds
)
,

(3.23)

for t > 0. Note that (3.23) is a special case of (1.4) where we have set

f(t, x) =
1

π(1 + t2)
+

x2

10(1 + |x|)
,

f1(t, x) =
exp(−t)
10(1 + t)

+ x, f2(t, x) =
cos(t)
1 + t2

+ x,

v1(t, s, x) =
1

ts+ λ+ x2
ln(1 + x2),

v2(t, s, x) = exp(−(t+ s))
( 1
π(1 + s2)

+ sin(x)
)
,

k1(t, s) =
1

ts+ λ
, k2(t, s) = exp(−(t+ s)).

By simple calculations, we can check that all of Assumptions (A1)–(A5) are fulfilled
for every λ > λ0 =

(
5π
128

)2(
√

13 +
√

37)4. As a consequence, by Theorem 3.3,
Equation (3.23) has at least one integrable solution, for all λ > λ0.
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4. (Lp, Lq) product type integral equation

In what follows, let m ≥ 2 be an integer and pi ∈ (1,+∞) (i = 1, . . . ,m) satisfy
1
p1

+ · · ·+ 1
pm

= 1. Consider the product functional integral equation

x(t) = f(t, x(t)) +
m∏
i=1

fi

(
t,

∫ t

0

vi(t, s, x(s))ds
)
, t ∈ R+ (4.1)

and set
(A2’) For i = 1, . . . ,m, the functions fi : R+ × R → R (i = 1,m) satisfy

Carathéodory’s conditions and there exist a function ϕi ∈ Lpi(R+) and
positive constants ci such that

|fi(t, x)| ≤ ϕi(t) + ci|x|1/pi , for a.e. t, s ∈ R+ and all x ∈ R.
(A4’) The linear Volterra operator Ki (i = 1, . . . ,m) maps continuously the space

L1(R+) into itself. ‖Ki‖ denotes the norm of the linear operator Ki.
(A5’) c+

∏m
i=1 ci(bi‖Ki‖)1/pi < 1,

Theorem 4.1. Under Assumptions (A1), (A2’), (A3), (A4’), (A5’), equation (4.1)
has at least one integrable solution on R+.

Proof. Note that, in view of our assumptions, Theorem 2.5 assures that the Nemyt-
skii operator F is continuous from L1 into L1 while Gi (i = 1, . . .m) is continuous
from L1 into Lpi (i = 1, . . . ,m). In addition the generalized Hölder inequality im-
plies that the operator G :=

∏m
i=1Gi : L1(R+)→ L1(R+) is well defined and thus

the operator F + G is also well defined from L1(R+) into itself. Observe further
that for any measurable set Ω ⊆ R+ and for x, y ∈ L1(R+), by Hölder’s inequality
(2.1) we have the estimates:

‖Fx+Gy‖L1(Ω)

≤
∫

Ω

|f(t, x(t))|dt+
∫

Ω

m∏
i=1

∣∣∣fi(t, ∫ t

0

vi(t, s, y(s))ds
)∣∣∣dt

≤ ‖ϕ‖L1(Ω) + c‖x‖L1(Ω)

+
m∏
i=1

(∫
Ω

∣∣∣fi(t, ∫ t

0

vi(t, s, y(s))ds
)∣∣∣pi

dt
)1/pi

≤ ‖ϕ‖L1(Ω) + c‖x‖L1(Ω)

+
m∏
i=1

(
‖ϕi‖Lpi (Ω) +

(∫
Ω

∫ t

0

(
ki(t, s)[ai(s) + bi|y(s)|]

)
ds dt

)1/pi
)

≤ ‖ϕ‖L1(Ω) + c‖x‖L1(Ω)

+
m∏
i=1

[
‖ϕi‖Lpi (Ω) + ci‖Ki‖1/pi

(
‖ai‖L1(Ω) + bi‖y‖L1(Ω)

)1/pi
]
.

(4.2)

Claim 1. There exists r0 > 0 such that F (Br0) + G(Br0) ⊆ Br0 . From (4.2), for
x, y ∈ Br we have

‖Fx+Gy‖

≤ ‖ϕ‖+ cr +
m∏
i=1

(
‖ϕi‖pi

+ ci‖Ki‖1/pi

(
‖ai‖L1(R+) + bir

)1/pi
)
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= ‖ϕ‖+ cr +
m∏
i=1

r1/pi

(‖ϕi‖pi

r1/pi
+ ci‖Ki‖1/pib

1/pi

i

(‖ai‖
bir

+ 1
)1/pi

)
= ‖ϕ‖+ cr + r

m∏
i=1

(‖ϕi‖pi

r1/pi
+ ci‖Ki‖1/pib

1/pi

i

(‖ai‖
bir

+ 1
)1/pi

)
.

By Assumption (A5’), we conclude that

lim
r→+∞

‖ϕ‖+ c r + r

m∏
i=1

(‖ϕi‖pi

r1/pi
+ ci‖Ki‖1/pib

1/pi

i

(‖ai‖
bir

+ 1
)1/pi

)
− r = −∞.

Consequently some positive number r0 exists and satisfies ‖Fx+Gy‖ ≤ r0, for all
x, y ∈ Br0 .
Claim 2. There exists γ ∈ [0, 1) such that µ(FX+GX) ≤ γµ(X), for all X ⊆ Br0 .
Let X be a nonempty subset of Br0 , ε > 0, and D a nonempty measurable subset
of R+ with meas(D) ≤ ε. Using (4.2), we obtain for x, y ∈ X

‖Fx+Gy‖L1(D) ≤ ‖ϕ‖L1(D) + c‖x‖L1(D) +
m∏
i=1

[
‖ϕi‖Lpi (D)

+ ci‖Ki‖1/pi

(
‖ai‖L1(D) + bi‖y‖L1(D)

)1/pi
]
.

(4.3)

Letting ε → 0 and taking into account the fact that the single sets {ϕ}, {|ϕi|pi},
and {ai} are weakly relatively compact in L1, we obtain that

c(FX +GX) ≤ γ c(X),

where

γ := c+
m∏
i=1

ci(bi‖Ki‖)1/pi < 1. (4.4)

Similarly, for each T > 0, we have

‖Fx+Gy‖L1([T,+∞[)

≤ ‖ϕ‖L1([T,+∞[) + c‖x‖L1([T,+∞[) +
m∏
i=1

[( ∫ +∞

T

|ϕi|pi(t)dt
)1/pi

+ ci‖Ki‖1/pi

(∫ +∞

T

|ai(t)|dt+ bi

∫ +∞

T

|y(t)|dt
)1/pi

]
.

(4.5)

Letting T → +∞, we obtain c(FX +GX) ≤ γc(X). Hence

µ(FX +GX) ≤ γ µ(X), ∀X ⊆ Br0 .

Claim 3. Operator G : L1 → L1 is (ws)-compact. To see that G is continuous
take a sequence (xn)n converging to some limit x ∈ L1. Since Gi : L1 → Lpi are
continuous, we conclude that for each 1 ≤ i ≤ m,

lim
n→∞

‖Gixn −Gix‖pi
= 0. (4.6)

Moreover, by Hölder’s inequality, we infer that the sequence
(∏m

i=2Gixn
)
n

con-
verges to

∏m
i=2Gix in Lr-norm with 1

r = 1
p2

+ 1
p3

+ . . . 1
pm

. Hence there exists some
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M > 0 with
∥∥∥∏m

i=2Gixn

∥∥∥
r
≤M , for all integer n. As a consequence

‖Gxn −Gx‖ ≤M‖G1xn −G1x‖p1 + ‖G1x‖p1
∥∥ m∏
i=2

Gixn −
m∏
i=2

Gix
∥∥
r
, (4.7)

showing that G is continuous.
Let (yn)n be a weakly convergent sequence in L1(R+). Then the set X = {yn :

n ∈ N} is relatively weakly compact, hence bounded for the L1-norm. As a result,
some positive constant r exists and satisfies ‖yn‖ ≤ r, for all integer n. Let ε > 0.
Since G(X) is weakly relatively compact, Dunford-Pettis Theorem 2.7 guarantees
the existence of some positive constants T and δ such that for each closed subset
D ⊂ R+ with meas(D) ≤ δ and all integer n ∈ N, we have∫

D

|Gyn(t)|dt+
∫ ∞
T

|(Gyn)(t)|dt ≤ ε

4
. (4.8)

Theorem 2.6 implies the existence of a closed subset Dε of the interval [0, T ] sat-
isfying meas([0, T ] \ Dε) ≤ ε and such that the functions ϕi, ki, vi, and fi for
(i = 1, . . . ,m) are continuous on the sets Dε, Dε × [0, T ], Dε × [0, T ] × R, and
Dε × R respectively.

We show that the set G(X) is relatively compact in L1(R+). From (3.5) and
Assumption (A2’), we deduce that for each n ∈ N and for each t ∈ Dε, we have∣∣ ∫ t

0

vi(t, s, yn(s))ds
∣∣ ≤ ∫ t

0

(
ki(t, s)[ai(s) + bi|yn(s)|

)
ds

≤ ki
(
‖ai‖+ bir

)
:= Ki(ε).

(4.9)

Hence ∣∣∣fi(t, ∫ t

0

vi(t, s, yn(s))ds
)∣∣∣ ≤ ϕi + ci

(
Ki(ε)

)1/pi := Gi(ε). (4.10)

This proves that for each i = 1, . . .m, the set Gi(X) is equibounded on Dε. Ar-
guing as in Lemma 3.2, we can see that the sequences

( ∫ t
0
vi(t, s, yn(s))ds

)
n

is
equicontinuous on Dε. Since the function g :=

∏m
i=1 fi : R2m → R defined by

g(x1, . . . , x2m) =
m∏
i=1

fi(x2i−1, x2i)

is uniformly continuous on the product
∏m
i=1Dε × [−Ki(ε),Ki(ε)]], then the set

G(X) is equicontinuous and equibounded on Dε. By Ascoli-Arzela Theorem, the
set G(X) is relatively strongly compact in C(Dε). Consequently, for each integer
p ∈ N, there exists a closed subset Dp of [0, T ] with meas([0, T ]\Dp) ≤ 1

p such
that G(X) is relatively compact in C(Dp). Moreover there exists p0 ≥ 1 such that
meas([0, T ]\Dp0) ≤ δ. Therefore the sequence (G(yn))n has a subsequence, still
denoted (G(yn))n, which converges with respect to the standard norm of C(Dp0).
Then some integer n0 ∈ N exists and satisfies that for all m,n ≥ n0 and for every
t ∈ Dp0 :

|G(yn)(t)−G(ym)(t)| ≤ ε

1 + 2 meas(Dp0)
. (4.11)

From (4.8) and (4.11), we deduce the estimates:∫ ∞
0

|G(yn)(t)−G(ym)(t)|dt
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≤
∫
Dp0

|G(yn)(t)−G(ym)(t)|dt+
∫

[0,T ]\Dp0

|G(yn)(t)|dt

+
∫

[0,T ]\Dp0

|G(ym)(t)|dt+
∫ ∞
T

|G(yn)(t)−G(ym)(t)|dt ≤ ε.

We conclude that (G(yn))n is a Cauchy sequence in the Banach space L1(R+),
proving that G(X) is strongly relatively compact. Finally G is (ws)-compact,
which completes the proof. �

Remark 4.2. A comparison between conditions (A5) and (A5’) shows that the
first one derived from an algebraic quadratic equation is optimal for existence of
solution in case of (L1, L∞) product operators. However, the second condition,
derived from a first-order inequality is a sufficient condition for existence. In this
respect, it is to point out that Theorem 4.1 does not encompass Theorem 3.3.

5. Absolutely continuous solutions for a nonlinear
integro-differential equation of product type

In this section, we study the nonlinear integro-differential equation of product
type in the space AC([a, b]) (a < b):

x′(t) = f(t, x(t)) +
(
α(t) +

∫ t

0

v1(t, s, x(s))ds
)

×
(
β(t) +

∫ t

0

v2(t, s, x(s))ds
)
,

x(0) = x0.

(5.1)

Consider the following assumptions:
(A6) The function α ∈ L1([a, b]) and β ∈ L∞([a, b]).
(A7) The function f : [a, b] × R → R satisfies Carathéodory’s conditions and

there exist a function φ ∈ L1([a, b]) and a positive constant c such that

|f(t, x)| ≤ φ(t) + c|x|,
for a.e. t ∈ [a, b] and for all x ∈ R.

(A8) The functions v1, v2 : [a, b] × [a, b] × R → R satisfy Carathéodory’s con-
ditions and there exist a constant bi > 0 and two functions ai ∈ L1([a, b])
(i = 1, 2) such that

|vi(t, s, x)| ≤ ki(t, s)
(
ai(s) + bi|x|

)
,

for a.e. t, s ∈ [a, b], where ki : [a, b] × [a, b] → R, (i = 1, 2) satisfy
Carathéodory’s conditions.

(A9) The linear Volterra operator K1 transforms the space L1([a, b]) into itself
and K2 transforms continuously the space L1([a, b]) into L∞([a, b]), where

Kix(t) =
∫ t

0

ki(t, s)x(s)ds, t ∈ [a, b] (i = 1, 2).

Let ‖Ki‖ be a norm of the linear operator Ki.
Solving (5.1) is equivalent to finding a fixed point of the operator Q defined on

the space L1([a, b]) into itself by

Qx(t) = x0 +
∫ t

0

f(s, x(s))ds+
∫ t

0

(
α(s) + V1x(s)

)(
β(s) + V2x(s)

)
ds, (5.2)
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where

Vix(s) =
∫ s

0

vi(s, τ, x(τ))dτ (i = 1, 2). (5.3)

Theorem 5.1. Assume (A6)-(A9) and that
(A10)

2
(
b1b2‖K1‖‖K2‖

[
|x0|+ ‖φ‖+

(
‖α‖+ ‖K1‖‖a1‖

)(
β

+ ‖K2‖‖a2‖
)])1/2

+ c+ b1‖K1‖
(
β + ‖K2‖‖a2‖

)
+ b2‖K2‖

(
‖α‖+ ‖K1‖‖a1‖

)
<

1
b− a

,

(5.4)

where β = ess supt∈[a,b] β(t).

Then the nonlinear integro-differential equation (5.1) has a solution x in the space
AC([a, b]).

Proof. We show that Q : L1([a, b])→ L1([a, b]) satisfies all hypotheses of Theorem
2.12.
Claim 1. There exists a ball Br0 = B(0, r0) in L1([a, b]) such that Q(Br0) ⊆ Br0 .
To see this, pick an arbitrary x ∈ Br for some positive constant r and observe that:

‖Qx‖L1([a,b])

≤
∫ b

a

|x0|dt+
∫ b

a

∫ t

a

|f(s, x(s))|ds dt+
∫ b

a

∫ t

a

∣∣∣α(s) +
∫ s

a

v1(s, τ, x(τ))dτ
∣∣∣

×
∣∣∣β(s) +

∫ s

a

v2(s, τ, x(τ))dτ
∣∣∣ds dt

≤ (b− a) (|x0|+ ‖φ‖+ cr) + (b− a)
[
β + ‖K2‖

(
‖a2‖+ b2 r

)]
×
[
‖α‖+ ‖K1‖

(
‖a1‖+ b1 r

)]
.

(5.5)

Hence
∥∥Qx∥∥

L1([a,b])
≤ r whenever ς(r) ≤ 0, where

ς(r) = b1b2‖K1‖‖K2‖ r2 + |x0|+ ‖φ‖+
(
‖α‖+ ‖K1‖‖a1‖

)(
β + ‖K2‖‖a2‖

)
+
[
c+ b1‖K1‖

(
β + ‖K2‖‖a2‖

)
+ b2‖K2‖

(
‖α‖+ ‖K1‖‖a1‖

)
− 1
b− a

]
r.

From Assumption (A10), it suffices to choose

0 < r0 =
1
b−a −

[
c+ b1‖K1‖

(
β + ‖K2‖‖a2‖

)
+ b2‖K2‖

(
‖α‖+ ‖K1‖‖a1‖

)]
+
√

∆
2b1b2‖K1‖‖K2‖

,

where ∆ > 0 is the discriminant of the quadratic equation ς(r) = 0.
Claim 2. The set Q(Br0) is relatively weakly compact. Take an arbitrary ε > 0
and a measurable subset D of [a, b] such that meas(D) ≤ ε. For each x ∈ Br0 ,
arguing as in Claim 1, we obtain∫

D

|Qx(t)|dt ≤ meas(D)[|x0|+ (‖φ‖+ cr0)] + meas(D)
[
β + ‖K2‖

(
‖a2‖+ b2r0

)]
×
[
‖α‖+ ‖K1‖

(
‖a1‖+ b1r0

)]
.
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Hence

lim
ε→0

(
sup

{∫
D

|Qx(t)|dt : D ⊂ [a, b],meas(D) ≤ ε
})

= 0.

Consequently Q(Br0) is a weakly relatively compact subset of L1[a, b].

Claim 3. Operator Q : L1[a, b] → L1[a, b] is (ws)-compact. In view of assump-
tions and Theorem 2.5, Q is a continuous operator. Consider an arbitrary weakly
convergence sequence (xn) in L1[a, b]; then there exists r > 0 such that ‖xn‖ ≤ r,
for all n ∈ N. Without loss of generality, let t1, t2 ∈ [a, b] be such that t1 < t2.
Then for each integer n, we have the estimate

|Qxn(t2)−Qxn(t1)|

≤
∣∣∣ ∫ t2

a

f(s, xn(s))ds−
∫ t1

a

f(s, xn(s))ds
∣∣∣

+
∣∣∣ ∫ t2

a

(
α(s) +

∫ s

a

v1(s, τ, xn(τ))dτ
)(
β(s) +

∫ s

a

v2(s, τ, xn(τ))dτ
)
ds

−
∫ t1

a

(
α(s) +

∫ s

a

v1(s, τ, xn(τ))dτ
)(
β(s) +

∫ s

a

v2(s, τ, xn(τ))dτ
)
ds
∣∣∣

≤
∫ t2

t1

|f(s, xn(s))|ds+
∫ t2

t1

∣∣∣(α(s) +
∫ s

a

v1(s, τ, xn(τ))dτ
)

×
(
β(s) +

∫ s

a

v2(s, τ, xn(τ))dτ
)∣∣∣ds

≤
∫ t2

t1

φ(s)ds+ c

∫ t2

t1

|xn(s)|ds

+
∫ t2

t1

[
α(s) +

∫ s

a

(
k1(s, r)[a1(τ) + b1|xn(τ)|

)
dτ
]

×
[
β(s) +

∫ t

0

(
k2(s, τ)[a2(τ) + b2|xn(τ)|

)
dτ
]
ds

≤
∫ t2

t1

φ(s)ds+ c

∫ t2

t1

|xn(s)|ds

+
[
β + ‖K2 ‖

(
‖a2‖+ b2r0

)] ∫ t2

t1

[
α(s) + ‖K1‖

(
a1(s) + b1 |xn(s)|

)
ds
]
.

Since a single set of L1[a, b] is weakly relatively compact and from the relative
weakly compactness of the set {xn : n ∈ N}, we conclude that the terms |Qxn(t2)−
Qxn(t1)| are arbitrarily small provided that the number t2 − t1 is small enough.
Hence the sequence (Qxn)n is equicontinuous on [a, b]. Moreover for each t ∈ [a, b]
and for all n ∈ N, we have

|Qxn(t)| ≤ |x0|+
∫ t

a

|f(s, xn(s))|ds+
∫ t

a

∣∣∣α(s) +
∫ s

0

v1(s, τ, xn(τ))dτ
∣∣∣

×
∣∣∣β(s) +

∫ s

a

v2(s, τ, xn(τ))dτ
∣∣∣ds

≤ |x0|+
∫ b

a

(φ(s) + c |xn(s)|) ds
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+
∫ b

a

[
α(s) +

∫ s

a

(
k1(s, r)[a1(τ) + b1|xn(τ)|

)
dτ
]

×
[
β(s) +

∫ t

a

(
k2(s, τ)[a2(τ) + b2|xn(τ)|

)
dτ
]
ds

≤ |x0|+ ‖φ‖+ c r0 +
[
β + ‖K2‖

(
‖a2‖+ b2r0

)]
×
[
‖α‖+ ‖K1‖

(
‖a1‖+ b1r0

)]
.

This proves that the sequence (Qxn)n is equibounded on [a, b]. By Ascoli Arzela
Theorem, the sequence (Qxn)n has a convergent subsequence with respect to the
sup-norm. Therefore it is convergent in L1[a, b]. This implies that operator Q
is (ws)-compact. Finally, all conditions Theorem 2.12 are fulfilled. Hence equa-
tion (5.2) has at lest one solution x ∈ L1[a, b]. Since the functions f(·, x(·)) and
(α(·) + V1x(·))(β(·) + V2x(·)) are integrable on [a, b], we infer that the solution x is
absolutely continuous on [a, b]. �
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