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ALMOST PERIODIC FUNCTIONS IN QUANTUM CALCULUS

MARTIN BOHNER, JAQUELINE G. MESQUITA

Abstract. In this article, we introduce the concepts of Bochner and Bohr al-

most periodic functions in quantum calculus and show that both concepts are
equivalent. Also, we present a correspondence between almost periodic func-

tions defined in quantum calculus and N0, proving several important properties

for this class of functions. We investigate the existence of almost periodic solu-
tions of linear and nonlinear q-difference equations. Finally, we provide some

examples of almost periodic functions in quantum calculus.

1. Introduction

The theory of almost periodic functions was introduced by Bohr [8, 9, 10]. Later,
Bochner introduced the concept of almost periodic functions taking values in Ba-
nach spaces. In 1945, Sobolev established almost periodicity of solutions of the
wave equation.

This class of functions is more general than the class of periodic functions and
can describe more precisely several interesting models and phenomena in the envi-
ronment. For instance, these functions play an important role in the field of celestial
mechanics, since there are planets in orbits moving with periods that are not com-
mensurable and thus, almost periodic functions are the best choice to describe their
motion. See, for instance, [12, 13] and the references therein.

On the other hand, the theory of quantum calculus has attracted the attention
of several researchers (see [1, 2, 3, 4, 5, 6, 7, 14, 18, 19] and the references therein),
because of its potential for applications, since this theory can be used to investi-
gate black holes, conformal quantum mechanics, nuclear and high energy physics,
fractional quantum Hall effect, high-Tc superconductors, thermostatics of q-bosons
and q-fermions. See [14, 15, 16, 20] and the references therein.

In this article, our goal is to introduce the concept of almost periodic functions
in quantum calculus. Li [17] also gives such a concept, but in our work, we offer a
different approach and are able to prove new results following from our definitions.
We start by introducing this concept in the Bochner sense, and using this, we prove
several properties for this class of functions. After that, we introduce the concept
of almost periodicity in the Bohr sense and we establish a correspondence between
the Bohr almost periodic functions defined in quantum calculus and N0. As an
immediate consequence of [11, Theorem 1.27], we obtain a correspondence between
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almost periodic functions defined in quantum calculus and [0,∞). Using the first
correspondence, we are able to obtain an equivalence between these two concepts
of almost periodic functions in quantum calculus.

Also, we investigate the existence of almost periodic solutions of linear and non-
linear q-difference equations. Finally, in the last section, we provide some examples
of almost periodic functions in quantum calculus.

2. Quantum calculus

In this section, our goal is to present some basic concepts concerning the theory
of quantum calculus. All the definitions and results of this section can be found
in [1, 2, 3, 4, 5, 6, 7, 14]. Throughout this article, we let q > 1 and we use the
notation T = qN0 := {qn : n ∈ N0}. We start by presenting the quantum derivative
of a function f : T→ R.

Definition 2.1 (See [14]). The expression

f∆(t) =
f(σ(t))− f(t)

(q − 1)t
, where σ(t) = qt, t ∈ T,

is called the q-derivative (or Jackson derivative) of the function f : T→ R.

In what follows, we present some properties of the quantum derivative.

Theorem 2.2. If α, β ∈ R and f, g : T→ R are q-differentiable, then

(αf + βg)∆(t) = αf∆(t) + βg∆(t),

(fg)∆(t) = f(qt)g∆(t) + g(t)f∆(t) = f(t)g∆(t) + g(qt)f∆(t),(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(qt)

for all t ∈ T.

For simplicity, let us denote the quantum intervals by [a, b]T, [a, b)T, and (a, b]T
to represent [a, b]∩T, [a, b)∩T, and (a, b]∩T, respectively. The definite integral of
a function on T is defined as follows.

Definition 2.3. Let f : T → R and a, b ∈ T be such that a < b. The definite
integral of the function f is given by∫ b

a

f(t)∆t = (q − 1)
∑

t∈[a,b)T

tf(t).

Remark 2.4. As a consequence of Definition 2.3, we have that if m,n ∈ N0 with
m < n and f : T→ R, then∫ qn

qm

f(t)∆t = (q − 1)
n−1∑
k=m

qkf(qk).

Definition 2.5. We say that a function p : T→ R is regressive provided

1 + (q − 1)tp(t) 6= 0 for all t ∈ T .

The set of all regressive functions will be denoted by R.
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Definition 2.6. If p ∈ R, then the exponential function is defined by

ep(t, s) =
logq t−1∏
k=logq s

(
1 + (q − 1)qkp(qk)

)
for t, s ∈ T with t > s.

If t = s, then we define ep(t, s) = 1, and if t < s, then we define ep(t, s) = 1/ep(s, t).

Theorem 2.7 (Variation of Constants [4, Theorem 2.77]). Let p ∈ R, f : T→ R,
t0 ∈ T, and y0 ∈ R. The unique solution of the initial value problem

y∆(t) = p(t)y + f(t), y(t0) = y0

is given by

y(t) = ep(t, t0)y0 +
∫ t

t0

ep(t, σ(s))f(s)∆s.

Lemma 2.8. Let a, b ∈ T with a < b and t ∈ T. Then∫ bt

at

f(s)∆s = t

∫ b

a

f(st)∆s.

Proof. We have ∫ bt

at

f(s)∆s =
logq b+logq t−1∑
k=logq a+logq t

(q − 1)qkf(qk)

=
logq b−1∑
k=logq a

(q − 1)qk+logq tf(qk+logq t)

= t

logq b−1∑
k=logq a

(q − 1)qkf(tqk)

= t

∫ b

a

f(st)∆s,

obtaining the desired result. �

Next, we give the definition of an ω-periodic function on T.

Definition 2.9 (See [1, Definition 3.1]). Let ω ∈ N. A function f : T→ R is called
ω-periodic if

qωf(qωt) = f(t) for all t ∈ T.

3. Bochner almost periodic functions

In this section, our goal is to introduce Bochner almost periodic functions for
quantum calculus and to prove their main properties. We start by presenting the
q-analogue of the concept of almost periodicity introduced by Bochner.

Definition 3.1. The function f : T → R is called Bochner almost periodic on
T if for every sequence {t′n} ⊂ T, there exists a subsequence {tn} ⊂ T such that
limn→∞ tnf(ttn) exists uniformly on T. The set of all almost periodic functions
f : T→ R is denoted by AP(T,R), AP(T), or simply APq.

Based on this definition, we are able to prove some important properties of
Bochner almost periodic functions defined on T as follows.
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Theorem 3.2. If f, g : T→ R are Bochner almost periodic, then
(i) f + g is Bochner almost periodic on T,

(ii) cf is Bochner almost periodic on T, for every c ∈ R,
(iii) fk : T→ R defined by fk(t) := f(tqk) is Bochner almost periodic on T, for

each k ∈ N0.

Proof. If f and g are Bochner almost periodic on T, then, for every sequence {t′n} ⊂
T, there exists a subsequence {tn} such that

lim
n→∞

tnf(ttn) and lim
n→∞

tng(ttn)

exist uniformly on T. Therefore, by the properties of limits, we obtain

lim
n→∞

tn(f + g)(ttn) = lim
n→∞

[tnf(ttn) + tng(ttn)] = lim
n→∞

tnf(ttn) + lim
n→∞

tng(ttn)

exists uniformly on T. Thus, f+g is Bochner almost periodic on T. This proves (i).
Similarly, (ii) follows directly from the definition and by the properties of limits.
Let us prove (iii). Since f is Bochner almost periodic on T, for every sequence
{t′n} ⊂ T, there exists a subsequence {tn} such that

lim
n→∞

tnf(ttn)

exists uniformly on T. Therefore, for each k ∈ N0, we have

lim
n→∞

tnfk(ttn) = lim
n→∞

tnf(ttnqk) = lim
n→∞

tnf((tqk)tn)

exists uniformly on T. Thus, fk is also Bochner almost periodic on T. �

Before presenting the next result, let us recall the definition of q-bounded func-
tions.

Definition 3.3 (See [3]). A function f : T→ R is called q-bounded if there exists
K > 0 such that t|f(t)| ≤ K for all t ∈ T.

Theorem 3.4. Bochner almost periodic functions on T are q-bounded.

Proof. In fact, suppose f : T → R is a Bochner almost periodic function which is
not q-bounded. Then, there exists a sequence {t′n} ⊂ T such that

t′n|f(t′n)| → ∞,
which implies that there is no subsequence {tn} ⊂ T such that

tn|f(ttn)|
converges at t = q0 ∈ T, contradicting the fact that f is Bochner almost periodic
on T. �

Remark 3.5. Throughout the paper, similarly as in [13, Page 3], we also use the
notation Ttnf = f̄ to represent that

lim
n→∞

tnf(ttn) = f̄(t) for every t ∈ T.

This notation is used only when the limit exists. When we use it, we specify the
mode of convergence (e.g., pointwise, uniform).

Definition 3.6. The set

H(f) = {g : T→ R | there exists {tn} ⊂ T with Ttnf = g uniformly}
is called the hull of f : T→ R.
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Theorem 3.7. If f : T → R is regressive and Bochner almost periodic, then, for
every sequence {t′n} ⊂ T, there exists a subsequence {tn} such that for all t, s ∈ T,
we have

lim
n→∞

ef (ttn, stn) =

{
ef̄ (t, s), if f̄ is regressive,
0, otherwise,

(3.1)

where Ttnf = f̄ .

Proof. If f : T→ R is Bochner almost periodic, then, for every sequence {t′n} ⊂ T,
there exists a subsequence {tn} such that

lim
n→∞

tnf(ttn) = f̄(t) for every t ∈ T

uniformly, i.e., Ttnf = f̄ . Therefore, for s < t,

ef (ttn, stn) =
logq t+logq tn−1∏
k=logq s+logq tn

(
1 + (q − 1)qkf(qk)

)

=
logq t−1∏
k=logq s

(
1 + (q − 1)qk+logq tnf(qk+logq tn)

)

=
logq t−1∏
k=logq s

(1 + (q − 1)qktnf(qktn)),

which implies

lim
n→∞

ef (ttn, stn) = lim
n→∞

logq t−1∏
k=logq s

(
1 + (q − 1)qktnf(qktn))

)
= ef̄ (t, s)

if f̄ is regressive, and otherwise, we obtain

lim
n→∞

ef (ttn, stn) = 0 ,

proving (3.1). If t = s, then (3.1) clearly holds. Finally, if t < s and f̄ is regressive,
then

ef (ttn, stn) =
1

ef (stn, ttn)
→ 1

ef̄ (s, t)
= ef̄ (t, s)

as n→∞, so (3.1) holds as well. Otherwise, limn→∞ ef (ttn, stn) = 0. �

Remark 3.8. Notice that if we assume that f : T → R is a positive function in
Theorem 3.7, that is, f(t) > 0 for every t ∈ T, then the regressivity of f implies
that f̄ is also a regressive function.

Corollary 3.9. If f : T→ R is Bochner almost periodic, then, for every sequence
{t′n} ⊂ T, there exists a subsequence {tn} such that

lim
n→∞

coshf (ttn, stn) and lim
n→∞

sinhf (ttn, stn) (3.2)

exist uniformly on T.
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Proof. The proof follows directly from Theorem 3.7, and combining Theorem 3.14
and the following definition of coshf and sinhf (see [4])

coshf =
ef + e−f

2
and sinhf =

ef − e−f
2

,

proving the result. �

Theorem 3.10. If a, b : T→ R are Bochner almost periodic functions, x : T→ R
solves

x∆(t) = a(t)x(t) +
b(t)
t
,

and the condition
(A1) for every {t′n} ⊂ T, there exists {tn} ⊂ {t′n} such that

lim
n→∞

tnx(t0tn) = x(t0)

is satisfied, then x is Bochner almost periodic.

Proof. Since a, b : T→ R are Bochner almost periodic, for every sequence {t′n} ∈ T,
there exists a subsequence {tn} such that both

lim
n→∞

tna(ttn) = ā(t) and lim
n→∞

tnb(ttn) = b̄(t)

exist uniformly, that is, Ttna = ā and Ttnb = b̄. Therefore, by Theorems 2.7 and
3.7, and Lemma 2.8, we obtain

tnx(ttn) = tn

[
ea(ttn, t0tn)x(t0tn) +

∫ ttn

t0tn

ea(ttn, σ(s))
b(s)
s

∆s
]

= ea(ttn, t0tn)tnx(t0tn) + t2n

∫ t

t0

ea(ttn, σ(stn))
b(stn)
stn

∆s

= ea(ttn, t0tn)tnx(t0tn) +
∫ t

t0

ea(ttn, tnσ(s))
tnb(stn)

s
∆s

→ eā(t, t0)x(t0) +
∫ t

t0

eā(t, σ(s))
b̄(s)
s

∆s = y(t),

obtaining the desired result. �

Remark 3.11. We point out that in the proof of Theorem 3.10, it is possible
to determine explicitly the function y, and its relation with x. Indeed, a careful
examination shows us that y is the solution of

y∆(t) = ā(t)y(t) +
b̄(t)
t
, y(t0) = x(t0),

where Ttna = ā and Ttnb = b̄.

Now, we present the definition of a Bochner almost periodic function on T de-
pending on one parameter. This definition is useful for applications to nonlinear
q-difference equations.

Definition 3.12. A function f : T × R → R is called Bochner almost periodic
on t for each x ∈ R, if for every sequence {t′n} ∈ T, there exists a subsequence
{tn} ⊂ {t′n} such that

lim
n→∞

tnf(ttn, x)

exists uniformly on T for each x ∈ R.
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Remark 3.13. As before, we use the notation Ttnf = f̄ to represent that

lim
n→∞

tnf(ttn, x) = f̄(t, x) for each x ∈ R.

Next, we present a result concerning the properties of Bochner almost periodic
functions on T with respect the first variable. We omit its proof, since it follows
analogously to the proof of Theorem 3.2.

Theorem 3.14. If f, g : T × R → R are Bochner almost periodic with respect to
the first variable for each x in R, then

(i) f + g is Bochner almost periodic with respect to the first variable, for each
x in R.

(ii) cf is Bochner almost periodic for each x ∈ R, where c ∈ R.

Now, we present a result which shows an important property of Bochner almost
periodic functions.

Theorem 3.15. Let f : T×R→ R be Bochner almost periodic for each x ∈ R and
suppose that f satisfies Lipschitz condition

|f(t, x)− f(t, y)| ≤ L(t)|x− y| for all t ∈ T and x, y ∈ R, (3.3)

where L : T→ (0,∞) is Bochner almost periodic, i.e., for every sequence {t′n} ⊂ T,
there exists a subsequence {tn} such that

lim
n→∞

tnL(ttn) = L̃(t)

exists uniformly for every t ∈ T. Then, f̄ given by Ttnf = f̄ satisfies the Lipschitz
condition with the function L̃.

Proof. Let t ∈ T and x, y ∈ R. Let ε > 0. Then, by the Bochner almost periodicity
of f and L, for every sequence {t′n} ∈ T, there exists a subsequence {tn} ⊂ {t′n}
such that

|f̄(t, x)− tnf(ttn, x)| ≤ ε

3
, |f̄(t, y)− tnf(ttn, y)| ≤ ε

3
, (3.4)

|L̃(t)− tnL(ttn)| ≤ ε

3|x− y|
(3.5)

for n sufficiently large. Therefore, we obtain

|f̄(t, x)− f̄(t, y)|
≤ |f̄(t, x)− tnf(ttn, x)|+ |f̄(t, y)− tnf(ttn, y)|+ |tnf(ttn, x)− tnf(ttn, y)|
≤ |f̄(t, x)− tnf(ttn, x)|+ |f̄(t, y)− tnf(ttn, y)|+ tnL(ttn)|x− y|
(3.4)

≤ 2ε
3

+ |L̃(t)− tnL(ttn)||x− y|+ L̃(t)|x− y|

(3.5)

≤ ε+ L̃(t)|x− y|.

Letting ε→ 0+, we arrive at

|f̄(t, x)− f̄(t, y)| ≤ L̃(t)|x− y|.

So, (3.3) is satisfied for f̄ and L̃. �
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4. Bohr almost periodic functions

We start this section by introducing the q-analogue of the concept of almost
periodicity introduced by Bohr for quantum calculus.

Definition 4.1. We say that f : T→ R is Bohr almost periodic if for every ε > 0,
there exists Nε ∈ N such that any Nε consecutive elements of T contain at least
one s with

|stf(ts)− tf(t)| < ε, for all t ∈ T. (4.1)

Remark 4.2. From this definition, it is clear that if f is a periodic function on T,
then f is Bohr almost periodic function on T. Indeed, suppose f is an ω-periodic
function on T, where ω ∈ N0, then for every ε > 0, there exists Nε := dεeω+ 1 ∈ N
such that any Nε consecutive elements of T contain at least one s with

|stf(ts)− tf(t)| = 0 < ε for all t ∈ T,
obtaining that f is Bohr almost periodic on T.

Next, we establish a correspondence between Bohr almost periodic functions
defined on T and N0.

Theorem 4.3. A necessary and sufficient condition for a function g : T → R to
be Bohr almost periodic on T is the existence of a Bohr almost periodic sequence
f : N0 → R such that g(t) = f(logq t)/t for every t ∈ T.

Proof. First, assume f : N0 → R is Bohr almost periodic sequence in the sense
of [11, Page 45]. Let ε > 0. Then, there exists Nε > 0 such that among any Nε
consecutive integers, there exists ω ∈ N such that

|f(n+ ω)− f(n)| < ε for all n ∈ N0.

Define g : T→ R by g(t) = f(logq t)/t for t ∈ T. Consider a set of Nε consecutive
elements t ∈ T. Then, logq t ∈ N are N ′ε consecutive integers. Thus, among them,
there exists logq s ∈ N with

|f(n+ logq s)− f(n)| < ε for all n ∈ N0. (4.2)

Then, we have

|tsg(ts)− tg(t)| = |f(logq t+ logq s)− f(logq t)|
(4.2)
< ε for all t ∈ T.

By Definition 4.1, g is Bohr almost periodic on T. Next, suppose g : T→ R is Bohr
almost periodic on T. Let ε > 0. Then, there exists Nε > 0 such that among any
Nε consecutive elements of T, there exists s ∈ T with

|tsg(st)− tg(t)| < ε for all t ∈ T.
Define f : N0 → R by f(n) = qng(qn) for n ∈ N0. Consider a set of Nε consecutive
integers n ∈ N0. Then, qn ∈ T are N ′ε consecutive elements of T. Thus, among
them, there exists s ∈ T with |tsg(st)−tg(t)| < ε for all t ∈ T. Defining ω := logq s,
we obtain

|f(n+ ω)− f(n)| = |qnsg(qns)− qng(qn)| < ε for all n ∈ N0.

This implies that f : N0 → R is a Bohr almost periodic sequence. �

The next result can be found in [11, Theorem 1.27]. It describes a correspondence
between Bohr almost periodic defined in Z and R.
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Theorem 4.4. A necessary and sufficient condition for a sequence to be Bohr
almost periodic is the existence of a Bohr almost periodic f : R → R such that
g(n) = f(n) for all n ∈ Z.

As an immediate consequence of Theorems 4.3 and 4.4, we obtain the following
correspondence between Bohr almost periodic for functions defined on T and [0,∞).

Theorem 4.5. A necessary and sufficient condition for g : T → R to be Bohr
almost periodic on T is the existence of a Bohr almost periodic function f : [0,∞)→
R such that g(t) = f(logq t)/t for every t ∈ T.

The next result shows that the class of Bochner almost periodic functions is
equivalent to the class of Bohr almost periodic functions in quantum calculus.

Theorem 4.6. f : T → R is Bochner almost periodic if and only if f is Bohr
almost periodic.

Proof. Suppose f is Bochner almost periodic, but f is not Bohr almost periodic.
Therefore, there exists at least one ε > 0 such that for any Nε ∈ N, the set of Nε
consecutive numbers in T does not contain any element satisfying (4.1).

Let τ ∈ T and consider an arbitrary number α1 ∈ N, then there are no elements
satisfying (4.1) on [τ, τqα1)T. Take α2 = logq(τ)α1, then there are no elements sat-
isfying (4.1) on [τqα1 , τqα1+α2)T. Proceeding this way, we can construct a sequence
{tk}∞k=1, where tk := qαk , such that tk →∞ when k →∞. Then, for any i, j > 1,
i > j, we obtain

sup
t∈T
|titf(tit)− tjtf(tjt)| = sup

t∈T
|tjt(ti(tj)−1f(tit)− f(tjt))|

= tj sup
t∈T
|t(ti(tj)−1f(tit)− f(tjt))|

= tj sup
t∈T
|t(ti(tj)−1f(ti(tj)−1t)− f(tj(tj)−1t))|

= tj sup
t∈T
|tti(tj)−1f(ti(tj)−1t)− tf(t)|

≥ sup
t∈T
|tti(tj)−1f(ti(tj)−1t)− tf(t)| ≥ ε,

which proves that the sequence {tntf(tnt)} cannot contain any uniformly conver-
gent subsequence. This contradicts the fact that f(t) is Bochner almost periodic.

Reciprocally, assume f : T→ R satisfies Definition 4.1. Then, defining g : N0 →
R by

g(n) = qnf(qn), n ∈ N0,

we obtain from Theorem 4.3 that g : N0 → R is Bohr almost periodic, and hence, by
[11, Theorem 1.26], g : N0 → R is Bochner almost periodic, i.e., for every sequence
{n′k} ⊂ N0, there exists a subsequence {nk} such that limk→∞ g(n + nk) exists
uniformly for every n ∈ N0. Hence, there exists the uniform limit as k →∞ of

g(n+ nk) = qn+nkf(qn+nk) = qnqnkf(qnqnk) for all n ∈ N0.

Now, let {t′n} ⊂ T be a sequence. Then, t′k = qn
′
k for some {n′k} ⊂ N0. There exists

a subsequence {nk} such that

lim
k→∞

qnkf(qnqnk) exists uniformly for all n ∈ N0.
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Define tk = qnk , t = qn. Then

lim
k→∞

tkf(ttk) exists uniformly for all t ∈ T,

obtaining the desired result. �

Remark 4.7. From Theorem 4.6, we obtain that the class of Bohr almost periodic
functions and the class of Bochner almost periodic functions in quantum calculus
are equal. Therefore, if f : T → R satisfies Definition 3.1 or Definition4.1, we
simply call f almost periodic on T. Also, all properties which we have proven for
Bochner almost periodic functions remain true for Bohr almost periodic functions.

5. Examples

In this section, we present some examples of almost periodic functions in quan-
tum calculus.

Example 5.1. The function F (t) = (cos(logq t) + cos(
√

2 logq t))/t is almost peri-
odic on T. Indeed, since the function f(t) = cos t+ cos(

√
2t) is almost periodic on

R (see [13, Page 3]), it follows by Theorem 4.5 that the function

F (t) =
f(logq t)

t
=

cos(logq t) + cos(
√

2 logq t)
t

is also almost periodic on T.

Example 5.2. The function F (t) = (sin(logq t)+sin(π logq t))/t is almost periodic
on T. In fact, since the function f(t) = sin t+ sin(πt) is almost periodic on R (see
[11, Page 107]), it follows by Theorem 4.5 that the function

F (t) =
f(logq t)

t
=

sin(logq t) + sin(π logq t)
t

is also almost periodic on T.

Example 5.3. The function

F (t) = (sin(logq t) + sin(π logq t) + cos(logq t) + cos(
√

2 logq t))/t

is almost periodic on T. This follows from Examples 5.1 and 5.2, and Theorem 3.2.

Example 5.4. The function F (t) = (sin(π logq t)+2(−1)logq t)/t is almost periodic
on T. This follows from Example 5.1, Theorem 3.2 and Theorem 4.3, since (−1)logq t

is a periodic function on N0.
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