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LOGARITHMIC REGULARIZATION OF NON-AUTONOMOUS
NON-LINEAR ILL-POSED PROBLEMS IN HILBERT SPACES

MATTHEW FURY

Communicated by Jerome A Goldstein

ABSTRACT. The regularization of non-autonomous non-linear ill-posed prob-
lems is established using a logarithmic approximation originally proposed by
Boussetila and Rebbani, and later modified by Tuan and Trong. We first prove
continuous dependence on modeling where the solution of the original ill-posed
problem is estimated by the solution of an approximate well-posed problem.
Finally, we illustrate the convergence via numerical experiments in L2 spaces.

1. INTRODUCTION

In this paper, we study a class of non-linear non-autonomous ill-posed problems.
In recent literature, the regularization of ill-posed problems is a topic of substantial
investigation with applications to various natural phenomena, especially inverse
processes such as backward diffusion (cf. [I6]). Ill-posed problems such as the
backward heat equation

U = —Ugy, T ER, >0,

u(,0) = p(2) (L)
may lack existence and/or uniqueness of solutions corresponding to certain initial
data, or may possess solutions that do not depend continuously on the initial data.

The regularization of ill-posed problems involves defining an “e-close” well-posed
problem whose solutions approximate solutions of the original ill-posed problem.
Let us set A = —A and consider functions ¢ — u(t) having range in L?(R). Then
becomes the abstract Cauchy problem

du
—=A t
7 u, >0,

u(0) = .

(1.2)
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Lattes and Lions [I0] define the perturbation fz(A) = A — 3A2, 3> 0 yielding an
approximate well-posed problem

i%) = fg(Aw, t>0,
v(0) = .
Moreover, if ¢ is replaced with @5 satisfying ||¢ — ¢s]l2 < J, one may find G = 3(9)
such that 5 — 0 as 6 — 0, and va(t) —u(t)]]2 — 0 as 6 — O for each t > 0 (Here
vg(t) is the solution of corresponding to initial data ¢s).

Many other authors including Miller [I3], Showalter [I5], and Mel’nikova [12] pio-
neered similar methods of regularization; for example, Showalter applies a bounded
approximation fz(A) = A(I+BA)~" in [15]. More recently, extensions to variations
of have been established by Ames and Hughes [I], Long and Dinh [I1]], Trong
and Tuan [I7, 18], Huang and Zheng [8, @], Boussetila and Rebbani [2], and Fury
[4, [5]. For instance, Trong and Tuan [I8] consider the non-linear problem

W s mu(t), 0<t<T,

dt
u(0) = ¢

with a Lipschitz condition on h. Applying Boussetila and Rebbani’s logarithmic
approximation

(1.3)

(1.4)

Fald) = = In(5 4 €A, 50, p2 L (1.5)
which is of milder error order than fz(A) = A — BA? or f3(A) = A(I + BA)~L,
Trong and Tuan establish regularization for where h satisfies a global Lipschitz
condition. In a more recent paper [19], taking p = T = 1, Tuan and Trong modify
to

fa(A) = —In(BA+e ™), 0<p<1 (1.6)

in order to treat the case where h is locally Lipschitz.
In this paper, we apply a version of (1.6 to problems that are both non-linear
and non-autonomous. We consider the problem with non-constant operators,

A DYu() + h(tu(t) 0<s<t<T

dt (1.7)

u(s) = ¢
in a Hilbert space H where D is a positive, self-adjoint operator in H, A(t,D) =
Zle aj(t)D? with a; € C([0,T] : RT) N C'([0,T]) for each 1 < j < k, and
h:[s,T] x H — H satisfies (H1)-(H2) below (Section [2). Problem is ill-
posed since {A(t, D) }1e[0,) is not a stable family of generators; in fact since each
a;(t) > 0, none of the operators A(t, D) generates a Cy semigroup on H (cf. [14}
Section 5.2], [0, Theorem 2.1.2]). Also, note that taking D = —A, k = 1 and
ag(t) = a1(t) = 1, i.e. A(t,D) = —A, problem reduces to the non-linear
backward heat equation which is certainly ill-posed.
Based on ([1.7), consider the approximate well-posed problem

% = f(t, D)o(t) + h(t,v(t)) 0<s<t<T (1.8)

v(s) =



EJDE-2018/28 LOGARITHMIC REGULARIZATION 3

where following Tuan and Trong [19], we define f3(¢, D) by (2.1)—(2.2) below. We
show that if w(t) is a solution of (|1.7) adhering to certain stabilizing conditions,
then

lu(t) —vs(t)l| < C'BT 1~ BT for0<s<t<T (1.9)
where vg(t) is the unique solution of and C’ is a nonnegative constant indepen-
dent of both 5 and ¢. Note that by letting ¢ = T in ([1.9), we have ||u(T) —vg(T)|| <
C'(1-InB)~! — 0as 3 — 0. Thus, the estimate a considerable improvement
over other Hélder-continuous dependence results such as ||[u(7) —vg(7)|| < CB* T,
0 <7 < T which is inapplicable when 7 =T (cf. [T}, Bl 6} [IT], 17, [1]]).

In Section we prove regularization for which follows quickly from . In
the last section of the paper, Section [b] we apply the theory to higher order partial
differential equations with variable coefficients in L? spaces. We also provide some
numerical experiments in order to demonstrate the convergence of the solutions
vg(t) to u(t) within concrete examples.

2. APPROXIMATE WELL-POSED PROBLEM

Consider the generally ill-posed problem where D is a positive, self-adjoint
operator in a Hilbert space H and A(t,D) = Z§=1 a;j(t)D7 satisfies a; € C([0,T] :
R*T)NCL([0,T]) for each 1 < j < k. Also let us assume the following conditions on
h:[s,T] x H— H:

(H1) h is uniformly Lipschitz in H, i.e. [|h(t, 1) — h(t, p2)|| < Llj¢1 — 2| for

some constant L > 0 independent of t € [s,T] and every o1, @2 € H,

(H2) for each ¢ € H, h(t, ) is continuous from [s,T] into H.

Set 7 =T — s. For (t,A) € [0,T] x [0,00), define the function
1 —r AN
fa(t, A) = max{0, - In(BrA(t,\) +e "N} 0< B <L (2.1)

Then for each 0 <t <T, fg(t, D) is defined by means of the functional calculus for
self-adjoint operators in the Hilbert space H. Particularly, since f3(t, \) is a Borel
function defined for A € [0, 00), the operator fz(t, D) is then defined by

Dom(fs(t, D) = {¢ < 1 [ o MBUNPAER) 2, 9) < o),
7 (2.2)
falt. D)o = | , F3ENIBQ ) for o € Dom(15(1, D),

where {E(-)} denotes the resolution of the identity associated with the operator D
and o(D) is its spectrum (cf. [3, Theorem XII.2.3, Theorem XII.2.6]). Note that
since D is positive, self-adjoint, we have o(D) C [0, c0).

Let us find the maximum and minimum values of fg(¢, A) on [0,T] % [0, 00). Note,

the function F(z) = —LIn(frz + e ™), © > 0 has F'(z) = ﬁi;:_% Hence,
F(z) attains an absolute maximum at xp; = —11Inf3 so that F(z) < F(zy) =

—1m[B(1 —1np)] for z > 0. Furthermore, since F(zp) > 0 and lim,_,oc F(z) =
—00, we obtain a unique zg > s such that F(x) > 0 on [0,z5] and F(z) < 0 on
(x3,00). By (2.1, it follows that

0< fa(t,A) < f% In[B(1—1InpB)] for (t,\) €[0,T] x [0,00) (2.3)
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and so for each ¢ € [0,T], f3(t, D) is a bounded operator on H satisfying
1
1fa(t, D) < ——In[B(1 —Inp)] forall 0 <t<T. (2.4)
T

Proposition 2.1. Let H be a Hilbert space and for 0 < 8 < 1, let the operators
fa(t,D),0 <t < T be defined by 2.1)~([2.2). Assume the function h: [s,T] x H —
H satisfies conditions (H1) and (H2). Then is well-posed, with unique classical
solution vg(t) for every ¢ € H where vg(t) satisfies the integral equation

t
vg(t) = efs fo(@P)dag, 4 / el Jo(@D)ap (40 (r))dr. (2.5)

S

Proof. See [B, Proposition 2.1]. In particular, e/s f5(¢:P)da

on H which by (2.4), satisfies

is an evolution system

i Fo@D)da|| < [B(1 —nB)]T=5 forall0<s<t<T. (2.6)
Well-posedness follows immediately from ({2.6]). O

The following lemma will aid in establishing continuous dependence on modeling
and is motivated by the approximation condition, Condition A, of Ames and Hughes
(cf. [1, Definition 1], and also [I8, Definition p. 4]).

Lemma 2.2. Let H be a Hilbert space and for 0 < B < 1, let the operators

fa(t,D),0 <t < T be defined by (2.1)—(2.2). Define B(\) = Zle BN where
Bj = maxycjo,7) a;(t) for each 1 < j < k. Then for each t € [0,T],

Dom(B(D)e™?P)) € Dom(A(t, D)) N Dom( f4(t, D)),
I(=A(t, D) + fa(t, D))¢| < V28| B(D)e™?P)g||
for all p € Dom(B(D)e™B(P)).

Proof. Lett € [0,T)]. For A > 0, we have 0 < A(t, \) < B(\) < B(\)e™® which by
(2:2) shows that Dom(A(t, D)) 2 Dom(B(D)e™B()). Certainly, Dom(f5(t, D)) =
H D Dom(B(D)e™2(P)) as well since fs(t,D) is a bounded operator. Now let
¢ € Dom(B(D)e™()) and let x5 be as in the paragraph preceding inequality
[23). Set eg ={A>0:B(\) <25} and let ej3 be the complement of eg in [0, 00).
We have

Lﬁ—AwM+maAWﬂMM%@
= / |A(t, \) + %ln(BTA(t, A) + e TAEN 2ZA(E(N) g, )
e
- / |% In(em A0V 4 %ln(ﬁTA(t, A) + e mAENY 24BN, )
eg
= / ) |% In(BrA(t, \)e™EN 1 1) 2d(E(\)gp, 9).
Applying the fact that In(z 4+ 1) < z for = > 0, we get

/N—A@M+ﬂﬁAWaﬂm%@s/NmWAw““Wmmm%w
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< /oo 1BB(N)e" BV PA(E(N)p, )
0

= 3| B(D)e™? P2,

Also, since zg > —l In 3, we have

[ 1= 400+ Bt NP 0) = [ 1ACNEAEN). )
< [, I B BN )
/IﬁB PPN, )

< [ 18BN BN, )
0
= 2| B(D)erPPlg|%.
Combining yields ||(—A(t, D) + f5(t, D))p||? < 262||B(D)e™2P)p||2, which proves
the desired result. O
Following Lemma [2.2] let us define for (¢,\) € [0,7] x [0, 00),
gt \) = —A(t A) + f5(t, A). (2.7)
Note, In(B7A(t, \) + e~ TAENY) > In(e"AEAN)) = —7A(t, \) which, after dividing
through by —7, yields fs(t, A) < A(t, )\) and hence
gp(t,\) <0 for (t,\) € [0,7T] x [0, 00). (2.8)
For each natural number n, set
en={A>0:B(\) <n}. (2.9)

Then by and (2.7), we have [gs(t,A)| < n — LIn[3(1 — In )] for all (t,)) €
[0,T] x ey,. Thus, if we set E, = E(e,), then each of A(t, D)E,, fg(t,D)E,, and
gs(t, D)E, is a bounded operator on H for all ¢t € [0,T]. Following [5, Lemma 2.3,
Corollary 2.4], we obtain evolution systems Uy (¢, s), Va.n(t,s), and Wa (¢, s) sat-
isfying the following for all ¢, € F,H and all 0 < s <t <T:

(S1) Un(t, 8)pn = els 20DV, Vs (8, 5) 0y, = ei 1@ P, and

Wn(t’ 8)<Pn = ef gﬁ(q’D)dq Pn
(S2) U,(t,s)Wgn(t,s)en = Van(t,s)en = Wan(t,s)Us(t, s)pn.

3. CONTINUOUS DEPENDENCE ON MODELING

In this section, we use the results from Section [2]to prove continuous dependence
on modeling for the ill-posed problem (1.7) (Theorem below).

Lemma 3.1. Let u(t) and vz(t) be classical solutions of - and respectz'vely
where the operators fg(t,D),0 <t < T are defined by (2.1 and h:[s,T] x
H — H satisfies the hypotheses of Proposition [2.1} Also set On = Engo and
hn(t, ) = Eyh(t, @) for all (t,¢) € [s,T] x H. Then

E,u(t) =Uy,(t, 8)en —i—/ U, (t, 7)h (r, u(r))dr,
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t
Enva(t) = Vg n(t, s)pn —|—/ Van(t,r)hn (1, va(r))dr
for allt € [s,T].

Proof. The first identity follows from uniqueness of solutions since both sides of the
equation are classical solutions of the linear inhomogeneous problem

dw
— <s<
— A(t,D)E,w(t) + hp(t,u(t)) 0<s<t<T (3.1)
w(s) = on.
The second identity holds by a similar argument with A(t, D)FE, replaced by
f5(t, D)E, in (B.1). 0

As in Lemma set B(\) = 25:1 B;X where B; = max;co,1]a;(t) for each
1 <j < k. We have

Theorem 3.2. Let u(t) and vg(t) be classical solutions of and l-b re-
spectively where the operators fsg(t,D),0 < t < T are defined by . ) and
h : [s,T] x H — H satisfies the hypotheses of Proposition Then zf there
exist constants M, M" > 0 such that |B(D)e(T=9BD)¢/! A(q’D)dqcpH < M’ and
| B(D)e(T=9)BD) [ Ala-D)dap ¢ y(t))|| < M”" for all t € [s,T], then there exist
constants C and L independent of 3 such that

lu(t) — vl < BFE (A —mBTFCT=) foro<s<t<T.  (3.2)

Proof. Set ¢, = Enp and h,(t,¢) = E,h(t,¢) for all (t,¢) € [s,T] x H. From
Lemma 3] for 0 <s <¢<T,

[ Epu(t) — Envp(t)]]
< ”U t S)SDn Vﬁ n(t 5)9071”

[ W 00) = Vit 03

S NU(t, 8)on — Vault, s)enll (3.3)
+/ [Un (&, 7)o (r, u(r)) — Vo (8, 7)ha (7, u(r))[|dr (3.4)
—|—/ \Van(t,m)hn(r,u(r)) — Van(t,r)h,(r,vs(r))| dr. (3.5)

For the first expression, by (S2) and [14, Theorem 5.1.2], we have

= (I = Wan(t,s)Un(t, s)eul
= ”(Wﬁ,n(t’ t) - Wﬁ,n(ta 8))Un(t7 S)@n“

t
0
= H/S %Wﬂ,n(t7p)Un(t75)@ndp||
t
| / (Wi (1, 9)95(ps D) En)Un(t, )|

t
< / W (t, 9)g5(p, D)Un (2, 8)nl1dp-
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Next from (2.9) and ([2.2)), note that U,(t, s)¢, € Dom(B(D)eT=*)B(P)) There-
fore, by (S1), (2.8), and Lemma | we have

€D < [ loato. DIt )l
< V3(t = 5) | BD)T PO 1, 5)g .

Similarly, for the second expression,

= [ 10 = Wanter)Un (e o ()
</ VBBt — DI BD)T I EOI, (1,7, u(r)

Combining the above we have
1Un(t;8)pn = Van(tss)onl

/ U (7Y (,14(r)) — Vg b 7Y () < BC

where C' is a constant independent of 8 and also independent of n and ¢ by our
stabilizing constants M’ and M”. Finally, by (S1), (2.6), and (H1), the third
expression satisfies

B = [ Vit 09) = ol )

(3.6)

< / B~ 10 B)] 7% ||, u(r)) — b (r05(r)) | dr (37)

t .,
<L [ 180 - wB) = Julr) ~ ()
Combining (3.6) and (3.7), we have shown that

[Enu(t) — Envp(t)]| < BC+L/ B = A= u(r) — v (r)|dr,

and since all constants on the right are independent of n, we may let n — oo to
obtain

[u(t) —va(B)]] < BC + L/: B = BT u(r) = va(r)|dr. (3.8
Note that 0 < § < 1 implies

0<[B(1—Inp)|T <1 forallte[sT]. (3.9)
Hence multiplying through by [3(1 — In ,8)];;—55 and applying (3.9), we obtain

[B(1 = BT [[u(t) — vs(t)]| < BC + L/: [B(1 = n B)] 7=+ [|u(r) — va(r) | dr-

Gronwall’s inequality (cf. [14], Theorem 6.1.2]) then yields the estimate

(B0~ 7= Ju(t) - vp(1)]| < GCHT
which is equivalent to . ([l
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4. REGULARIZATION FOR PROBLEM (|1.7)

Below, Theorem establishes the main result of the paper, that is regulariza-
tion for (1.7]). Its proof uses our estimate from Theorem

Theorem 4.1. Let u(t) be a classical solution of (1.7) and assume the hypotheses
of Theorem|3.2. Then given § > 0, there exists § = 3(5) > 0 such that

(i) 8—0asd — 0,
(ii) [Ju(t) — v‘g,(t)” —0asd — 0 for s <t <T whenever ||o — @s|| <9

where vg(t) is the solution of (1.8) with initial data vs.

Proof. Let § > 0 be given and let || — ¢s|| < d. Also, let vg(t) be the solution of
(1.8) as in Theorem For s <t < T, by Theorem then

Ju(t) — o3 (0] < [lu(t) — va(t)]| + llvg(t) — vi(2)]]
< BT (1= In B) 7=+ CeXT=9) 4 [Jug (1) — v} ()]
Consider the second quantity in (4.1)). By (2.6)) and (H1), we have
[og(t) — vi(1)]]

t
< el PV — gy 4 [ el PP Ry, 05(r)) = B o))
s

(4.1)

<5[B(1 - AT 1L / [B(1 — In B)] 75 [lus(r) — v (r)|dr-

Hence,
[B(1—1n )] 7= |lug(t) — w5 ()| < 5+ L /St [B(1 =10 B)] 7= ug(r) — v5(r)||dr

which by Gronwall’s Inequality gives us
B~ Ing)| T

Therefore, [[v(t) — vj(t)]| < d[3(1 —In B)]% eX(T=%) and choosing 3 = § yields

vp(t) — V()] < sebT),

log(t) = v§()]| < BT (1 —In §)T=7 LT =9), (4.2)
Thus 8 — 0 as § — 0, and combining (4.1]) with (4.2), we obtain

[u(t) = v(B)]| < 875 (1 — In B) =5 (C + 1) T~*) = 0 as § — 0.

5. EXAMPLES

The theory of this paper may be applied to a wide class of ill-posed partial
differential equations in L? spaces including the backward heat equation with a
time-dependent diffusion coefficient. Let us examine a concrete example of higher
order with H = L?(0,) where for ¢ € L*(0,7), [¢ll2 = (5 \cp(z)|2d:1:)1/2. Also
define Dy = —¢" for all twice-differentiable ¢ € L2(0,7) whose first and second
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derivatives in the sense of distributions are also members of L?(0, 7). Consider the
fourth-order non-linear partial differential equation

2e 2

Up + Ugy — € Uppze = P(u) — e sinz — e2¢' sin x,
(z,t) € (0,m) x (0,1)
u(0,t) = u(m,t) =0, te€]0,]1]

u(z,0) =esinz, x €[0,7]

(5.1)

where 1)(u) is a compactly supported continuous function which coincides with u?
on a sufficiently large interval centered at the origin. For example, following [I8]
Section 4], let us fix M large and positive, and define

u? lu] < M
() Mu + 2M? —2M <u<-M

u) =
—Mu+2M? M<u<2M
0 lu| > 2M

(see Figure [1)).
(3
< 1 1 >
—2M -M M 2M

FIGURE 1. ¥(u)

Note, is an example of where A(t,D) = D +¢!D? a1(t) = 1, ax(t) =
as(t) = e, h(z, t,u(z,t) = ¥(u(z,t) — e sinz — 2 sinz, and p(z) = esinz. It
is straight-forward to check that the function h satisfies conditions (H1) and (H2),
and that the exact solution of is u(z,t) = ¢ sina.

For the corresponding well-posed problem, following work in [11] and [I8], let
us assume an approximate solution of the form vy (x,t) = 25:1 vn (t) sin(nx). Set
ws(z) = (e + 6\/g) sinx so that ||¢ — 5|2 = §. Then solving is equivalent to
solving the system of N differential equations

’U;n(t)+1n(6(m2+€tm4)+€_(m2+etm4))vm(t)

2 ™
= 7/ h(z,t,v(z,t))sin(mz)dz, te€(0,1), 1<m <N,
0

™ (5.2)

v1(0) =e+46

2, 00 =ws(0) = = oy (0) =0
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where h(z,t,v(z,t)) = ¥(v(z,t)) — e sinz — 2 sin® 2.
We apply a finite difference method in order to estimate the solution vy (z,t) of

1
At = —., t;=iAt, 0<i<100.
100" ) 0<7<100
For each ¢t = 0,1,2,..., we solve the N difference equations

m(ti+1)At ’Um( l) +1n (ﬂ(mQ + etim4) + e—(m2+et'im4))(vm( Z+1)2+ ’Um( l>)

/ Z v (t;) sin(na)]? — e sinz — 2" sin? x)sin(ma)dz, 1<m<N

for the unknown U, (ti+1). Tables I and I illustrate our calculations with N = 5,
1=0,1,2,3,4, and the indicated values for §. Note as in the proof of Theorem [4
[ is chosen to be the same value as § in each table. As expected, we find a smaller
L?-difference between u(x,t) and vy (z,t) for each t as § is taken closer to zero.

TABLE 1. B=4 =107

t u(z, t) uN (2, 1) lu — vnll2
0 esinx 2.719079713 sin x 0.001

0.01 2.74574sinz  2.74619sinz — 0.0000074548 sin(3z)  0.00056407
—0.00000105443 sin(5z)

0.02 2.77375sinz  2.77382sinz — 0.0000121535sin(3z)  0.0000890675
—0.00000161556 sin(5z)

0.03 2.80234sinz  2.80199sinz — 0.0000135129sin(3z)  0.000438992
—0.00000163352 sin(5)

0.04 2.83151lsinz  2.8307sinz — 0.0000109582 sin(3z) 0.00101528
—0.00000107001 sin(5z)

0.05 2.86129sinz  2.85997sinz — 0.00000372291sin(3z)  0.00165438
40.000000129345 sin(5z)

TABLE 2. 3=0 =106

t u(z, t) un(z,t) lu —vN]l2
0 esinx 2.718282626344 sinx 0.000001

0.01 2.74574sinz  2.74574sinx — 0.00000000772376 sin(3z)  0.00000000977658
—0.00000000109207 sin(5z)

0.02 2.77375sinz  2.77375sinz — 0.0000000209072 sin(3z) 0.0000000264447
—0.00000000284423 sin(5z)

0.03  2.80234sinz  2.80234sinz + 0.00000000765303 sin(3xz)  0.00000000977704
+0.00000000151195 sin(5x)

0.04 2.83151sinz  2.83151sinz + 0.0000000017265 sin(3x) 0.00000000229526
-+0.000000000610782 sin(5x)

0.05 2.86129sinz  2.86128 sin z + 0.0000000201077 sin(3x) 0.0000125332
+0.00000000322633 sin(5x)

For a future research, it is worthwhile to examine similar partial differential
equations of higher order where the function h satisfies a local Lipschitz condition
rather than global. The numerical experiments presented in this paper may also
be strengthened by directly solving the system of differential equations (5.2)).
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