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CRITICAL SECOND-ORDER ELLIPTIC EQUATION WITH ZERO
DIRICHLET BOUNDARY CONDITION IN FOUR DIMENSIONS
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Communicated by Mokhtar Kirane

ABSTRACT. We are concerned with the nonlinear critical problem —Au =
K(z)u?, u > 0in Q, u = 0 on 89, where 2 is a bounded domain of R*. Under
the assumption that K is strictly decreasing in the outward normal direction
on 9N and degenerate at its critical points for an order 3 € (1,4), we provide
a complete description of the lack of compactness of the associated variational
problem and we prove an existence result of Bahri-Coron type.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

In this article, we study the following nonlinear elliptic partial differential equa-
tion with zero Dirichlet boundary condition

—Au = K(x)u% in Q
u>0 in (1.1)
u=0 on 01,

where K is a given function on a bounded domain €2 of R?,n > 3. Our goal is to
establish optimal conditions on the function K ensuring existence of solutions of
().

In some sense, is related to the well-known scalar curvature problem on
an n-dimensional closed manifold (M™, go), n > 3. The latter consists in finding a
new metric g conformally equivalent to go with prescribed scalar curvature K (z)
on M™. See, for example, [1| [, [6] 9, [10] [14] 15| [16] 17, 25].

Equation has a underlying variational problem whose solutions correspond
to the positive critical points of the Euler-Lagrange functional J (defined in section
2). Since the Sobolev embedding H}(Q) — L () is not compact, the functional
J violates the Palais-Smale condition in the sense that there exist non-compact
sequences along which the functional is bounded while its gradient goes to zero.
This fact generates loss of compactness and blow-up phenomenon, [3].

By a direct integration, we can see that max,cq K(x) > 0 is a a necessary
condition to solve problem . When K =1, the problem is called the Yamabe
problem. In this case Pohozaev proved that has no solution if €2 is star-shaped,
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see [23]. In contrast, Bahri-Coron [5] established the existence of solution if 2 has
non trivial topology. Dancer [I8], gave examples of contractible domains on which
a solution of the Yamabe problem exists. When K # 1, there are a few results
concerning . For example, in [8, 12, 27] existence results were provided for
in dimensions n > 4, under the following two conditions:

(A1) 25 (2) < 0 for all z € 9. Here, v is the outward normal vector on €.
(A2) K is a C*-positive Morse function such that

_AK(y) w 0 e
SK(y) +8H(y,y) #0, when VK(y) =0, if n =4 (1.2)

AK(y) #0, when VK(y) =0, if n > 5.

Here, H(-,-) is the regular part of the Green function of the Laplacian with
Dirichlet boundary condition, that is for each = € €,

G((E,y) = |(E—y‘2_n—H({Ij,y) in Q2
AH(z,-)=0 inQ (1.3)
G(z,-) =0 on 0Q.

Noting that the non-degeneracy condition (A2) excludes some interesting class of
functions K, we will assume here a more general hypothesis, namely the g-flatness
condition:

(A3) K is a Cl-positive function such that, for each critical point y of K, there
exists a real number 3 so that
K(z) = K(y) + Z brl(z —y)x|® + R(xz —y), for x close to y,
k=1

where by =: by, (y) # 0 for k =1,...,n, and R(z) is C' near 0 with
lim |R(2)||]2| " =0, lim |[VR(z)||2]'~" = 0.
z—0 z—0

Let us point out that the non-degeneracy condition (A2) is a particular case of the
B-flatness condition (A3) (in suitable coordinates), when 5 = 2.

Remark 1.1. As an example of function K satisfying condition (A1) and the non-
degeneracy condition, or more generally, the S-flatness condition (A3), we have
K :B* - R, K(z) = 1 — ||z||?, where B* is the unit ball of R*. We can see
that the unit outward normal vector v, at any 2 € OB* is equal to 2. Therefore,
8%]((:5) =-2<z,x>=—2<0ondB* Moreover, Ogs is a non-degenerate critical
point of K. To obtain a more general situation, let for v > 0 and small, 1(t) a
cut-off function defined by ¢(t) = 1 if |t| < v, ¥(t) = 0 if |[t| > 2 and ¢’/ (¢) < 0 if
v < |t| < 2v. Define for 3 > 1, K : B* — R as

4

K(a) = ¢(lz)(1 = D lzal®) + (1 = ¢(llz])(1 = [|=]?).
k=1
It satisfies conditions (A1) and (A3). Observe that for 5 # 2, K does not satisfies
(A2).

Recall that (A3) was used widely as a standard assumption to guarantee the
existence of solution to the scalar curvature problem on closed manifolds; see, for
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example, [T, 2 13} 19, 20, 21]. However all the existence results (in the non-
perturbative setting), concern the case where the §-flatness orders of K at all its
critical points are in (1,n — 2] or in [n — 2,n). The aim of this paper is to consider
the refined flatness-condition (A3) in the mixed case; that is when the order of
flatness at some critical points of K lie in (1,n — 2] and at other critical points lie
in [n — 2,n). For the sake of clarity, we consider the four dimensional case in the
current paper.

To state our main result, we need to introduce some notation, and state the
assumptions that we will use. Let

K:={yeQ:VK(y) =0}

the set of the critical points of K in Q. To say y satisfies the condition (A3), we
adopt the notation y € (f);. Let

Ko :={y e (f);:B8(y)
Kez={ye(f);:8
Kso:={y € (f

We will assume the following:

(A5) For each y € Ko, Zizl bi(y) # 0.
(A6) For each y € Ko,

1Y k)
12 K(y)

=2},
)g : Bly) <2},
)

B

+ H(y,y) # 0.

Let
4
Kiy={yeKaa: =) bily) >0},
k=1

4
i Zk:l br(y)
12 K(y)
For each p-tuple, p > 1, of distinct points 7, := (2i,, .. -, Ziys Yissr» - - Yiy )5
0 < s < p, such that z; € K,y € Ksg for all j = 1,...,s for all
k=s+1,...,p, we define a p x p symmetric matrix M(7,) = (m;;) by

1 Sk b))

K;::{yEICQ:— + H(y,y) > 0}.

H(zi;,2i;)

- + if1<j<s
12 2 K(z:.) =J =2
m; = H(yiwzg;{)(zij)) J . . (14)
TRz, ifs+1<j<p,
and, for k # j,
S SR < k< s,
(K(z,ijt>K<zik;)
G(Yi,Yi . .
miy = e if s+ 1<k, j <, (1.5)
(K (v K (i)
G(zi;,Yiy, . .
) if1<j<s s+1<k<p.
(K(zi))K(vs,))

Let p(7,) be the least eigenvalue of M(7,),Vp > 1.
(A7) Assume that p(7,) # 0 for each distinct points z;,,...,2, € K7,
Yispry - 7yip € ’C>2'
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We denote the following two sets
Cso = {Tp = (Zigs e Zigy Yinyrr - ¥ip )y > Land 0 < s <p oz, €Ky,
Yin €EKsoVi=1,...,8, Vk=s+1,....p, 2zi, # Zip Yi, # Yir-Vj # k
and p(7,) > 0};
Coo = {Tp = (Zigs oo Zigy Yivsrr - ¥iy)s P> 1and 0 < s <psit
zi; € IC;LQ,Vj =1,...,s, and (yi, .-, ¥i,) € 622}.

In the above definitions, it is to be understood that if s = 0, we omit the points
zi;; and if s = p, we omit the points y;, .
We define an index i : Coo — Z by
p ~
i(yilv cee ayip) = 5p -1- Zz(yu)a
j=1

where 4(y;;) == #{1 <k <4:bp(y;;) < 0}. Now, let us state our main result.

Theorem 1.2. Let Q C R*, be a smooth bounded domain, and 0 < K € Cl(Q)
satisfying assumptions (A1), (A4)—(A8) and (S3) with 8 € (1,4). If

Z (71)1’(7',0) 7£ 13

TpECo
then problem (L.1|) has a solution.

Our method is based on a revisited version of the celebrated critical points at
infinity theory which goes back to Bahri [3]. To be able to prove Theorem [1.2| we
will present, in section 2 of this paper, some preliminary results that prepare the
field to apply Bahri’s approach. In section 3, we will provide a complete description
of the loss of compactness of the problem. We will first prove that under the
assumption (A1), the boundary 92 does not effect the existence of critical points
at infinity. We will then show that under condition (A3), 8 € (1,4), the critical
points at infinity of the associated variational problem correspond to the element
of Coo.

In the previous contributions, two cases were addressed. In the first situation,
the strong interaction of the bubbles forces all blow up points to be single (this
appears in the case n — 2 < 8 < n). In the second case, the interaction of two
different bubbles are negligible with respect to the self-interactions (this appears
in the case 1 < 8 < n — 2). The main novelty of this current study, is that we
develop a self-contained approach enabling us to establish existence results when
both phenomenons occur 1 < § < n. Lastly in section 4, we will prove the existence
result of this paper.

2. VARIATIONAL STRUCTURE AND LACK OF COMPACTNESS

Problem (|1.1)) enjoys a variational structure. Indeed, solutions of (L.1)) corre-
spond to positive critical points of the functional

I(u) = %/Q|Vu|2 - i/QK|u|4 (2.1)



EJDE-2018/60 CRITICAL SECOND-ORDER PDE 5

defined on Hg (). Let
Y= {u € Hy(Q), s.t |Jul? :/ VuPP=1}, St:={ueX,u>0}.
Q

Instead of working with the functional I defined above, it is more convenient here
to work with the functional

ul?
(u) = M (2.2)

(fo Kl

defined on . One can easily verify that if u is a critical point of J in ¥T, then
J(u)u is a solution of (L.1)).

As mentioned previously, the variational viewpoint is delicate since the functional
J does not satisfy the Palais-Smale condition (P-S) in short). This means that there
exist sequences along which J is bounded, its gradient goes to zero and which are
not convergent. The analysis of the sequences failing (P-S) condition can be realized
following the work [3]. For a € Q, A > 0, let

A
Sa N A — 2.3
@) = VB e 23

the family of solutions of the following problem
—Au=u? u>0 inR" (2.4)

Let P be the projection from H'(Q) onto Hg(f2); that is, u := Pf is the unique
solution of
Au=Af in Q, u=0 on 09Q. (2.5)

Now we define the set of potential critical points at infinity associated to the func-
tional J. Let, for € > 0, p € N*,

V(p,a):{uEZ"’:HaiGQ,)\i>1/5,ai>Ofor1§i§p,

P
with |lu — Z a; Pdg,; »,

i

<eg, gy <& Vi#]g,

i=1
1 a2K(al)
Aidi > =, | ——+ —1 Vi,j=1,..., },
i €|Oéj2-K<(lj) | <eVi,j p

where d; = d(a;,00) and ¢;; = (;\7 + i‘% + XNidjla; — aj|2)71. If w is a function in
V(p,e), one can find an optimal representation of u following [B]; namely we have
the following result.

Proposition 2.1. For any p € N*, there is ¢, > 0 such that if ¢ < ¢, and
u € V(p,e), then the minimization problem

p
min{ [|u — ZaiPéai,,\i ca; > 0,) > 0,0, € Q} (2.6)
i=1

has a unique solution (&, a, ) (up to permutation). Thus, we can write u uniquely
as follows (we drop the bar):

P
u = ZaiP(SahM + v, (2.7)

i=1
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where v satisfies

0Pé; 0PS¢,
8)\1 ’ é)ai '
Here, P§; := Pé,, , and (-,-) denotes the scalar product defined on H{(£2) by

<u,v>:/QVqu.

From now on, we will say that v € (1)) if v satisfies .

The failure of the (P-S) condition can be described following the ideas developed
in [3, 22 26]. Such a description is by now standard and reads as follows: let 9.J
be the gradient of J.

(v,¢;) =0, fori=1,...,p, where ¢; := Pd,,

(2.8)

Proposition 2.2. Let (uj); C It be a sequence such that 0J tends to zero and
J(u;) is bounded. Then there exists an integer p € N*, a sequence €; >0, ¢; — 0,
and an extracted subsequence of u;’s, again denoted by u;, such that u; € V(p,¢;).

Now arguing as in [4], we have the following Morse lemma which permits us
to get the v-contribution by showing that it can be neglected with respect to the
concentration phenomenon.

Proposition 2.3. There is a Ct-map which to each (a;, a;, \;) such that
D @iPba, n, € V(p,e) associates v := 0(cv,a;,\;) such that v is unique and
satisfies

P p
J(>" @iPsu, +7) = min {J(i; ;P 5, + ) }

Vi
i=1 veVo

Moreover, there exists a change of variables v—v +— V', such that J reads in V(p, )

as
p p
J(Y @iPoan, +0) = I (D aiPbux, +0) + VI
=1 =1

The following proposition gives precise estimate of ©.

Proposition 2.4 ([I1]). Let u=Y""_, &;Pd,, », € V(p,€), and let v be defined in
proposition[2.3. Then we have the following estimate: there exists ¢ > 0 independent
of u such that

p . \3/4
||17|| — O(Z |V_KA'(G7,)| + i + Uog)‘l) + Zsij (10g€71)1/2
i=1 '

i a3 -y R
X ' 7 (2.9)
* Z O d)? )
Following Bahri [3], we introduce the following definition.

Definition 2.5. A critical point at infinity of J in 3% is a limit of a flow-line u(s)
of the equation

ou

u(0) = ug € =1

such that u(s) remains in V' (p,e(s)), for s > so.
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Note that (s) tends to zero when s — +oc. Using proposition u(s) can be
written as

Zaz P5 ai(s), i (s) —H)( )

Denoting by a; := lim a;(s) and a; = lim a;(s), we denote by

P
(@1,...,ap)oo O Z i Péa, oo
i=1
such a critical point at infinity.

3. CHARACTERIZATION OF THE CRITICAL POINTS AT INFINITY

In this section, we study the concentration phenomenon of the variational struc-
ture of the problem through the flow-lines of a suitable decreasing pseudo gradient
of J. This leads to the characterization of the critical points at infinity of the
problem. To reach this goal, we need first to study the asymptotic behavior of the
gradient of J.

3.1. Expansion of the gradient of the functional.

Proposition 3.1. For e small enough and u =Y _"_, a;P5; € V(p,e), we have the
following expansion: (1)

8P6, H(GJZ ai) 861“ H(ai CL')
i) 1 = 647’ ———— — (Nt + ——
(0. (). X3 )y = 64 J(w)[-a v ;%O\ T o )
Fo( 4 e+ TP+ )
+ €ij + €pi T ~ g )
i#£j k#j k=1 (Akdk>

(2) If a; € B(z;,,p), with z;, € (f)5, and p is a positive constant small enough so
that (A8) holds in B(zji,élp), then the above estimate can be improved. Let C > 0
and 0 > 0 two positive constants large enough and small enough, respectively.

(a) If B8 > 2, then

OPh, L Hlew) <~ 0% Hlene)
K(a;
x (1+0(1)) + (if Nilai — z;,| > C)O(w)

p
IOICEDIEEDI )

oy Py
(b) If B =2, then

(0J (u), A

647T2J(u){oziH((;\12’ai)+ 1121% 1)X2}(1+ o(1))

1
(Z e+ e+ ; 7()\kdk)3)7

i#] k#j
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(c) If B <2, then

0P¢; al, a;) agl H(a;, a;
<8J007Ar“‘>Hé::64W2J@Q[4—i a0 | Hlaiag),
7&
4

O\ Ai;

+ (lf/\Z|CL,L — Zji‘ S 5)C3QZ

1b]
5)40+4m

+%#6§Amu—%ch)(§L)
+ (ifAila; — z;,] > C) o (|VI§\E )‘)

—&-O(ZEU—FZE‘W (11)3)7

i#] k#j

_2 [ Py,
GB=5 | T, s W
7 Jes (g2 + 1)
Proof. Claim (1) is immediate from [12] (see [12, Proposition 3.4]). Claim (2)(a)

is proved in [I1] (see [1I, Proposition 3.1]). Concerning claim (2)(b) and (2)(c),
regarding the estimates used to prove claim (1), we need to estimate the quantity

5. 00;
3\, —L
/QK(x)éz Y o, dx. (3.1)

If B <2, let § >0 a fixed constant small enough.
If Xila; — zj,| <6, let B; := B(a;, p), then, by the condition (A3), we obtain

3 i
/K o d

where

06; 1
} /B ) = K)oy o) 2)
1-yP?) 1
b / |y'+/\i(ai*2‘i)'|ﬁ(7dy+ :
1 jzl Blo.phs) J VERN (|y|2 + 1)5 ()\B)
Now, by elementary calculations, for ¢ small enough, we obtain
(1-1yP) m

ly; + Nia; — 2;,);1° ——% dy = ——c5 + o(1). (3.3)

/«m>j (lyl2 +1)° 2 M)

Combining (3.2)) and (3.3)), we obtain

/ K(x)éf’/y% dx = —321° 032
Q O\

If \jla; —z;,| > 6, let M > 0 a fixed constant large enough, B; j := B(ai, W)
for 1<k <n,and B, := B(zji,Qp), then

/QK(Z‘)(S?)\igf\i da::/Bz;v [K(z) — K(a;)] 63\ gf\ dm—&—o()\t@). (3.4)

1 b (1+0( ).

i
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By (A3), we obtain

00;
K(z) — K(a;)]|83Ni—d
[, K@ - K@lsin gy de
d6;
_Zbk/ 50— (a5 — )i P8EA 5 (35)
09; la; — 2;,[P~1
~l(a —muﬂ/&_ iy o+ )
Now, observe that
00;
R R e N Y
Bz; \Bik
! 1 (3.6)
=0( (Iai = 25 )l” + (@i — 2)&l?)8} dz) = O(5)-
B, \Bi,k /\z
In addition, by elementary calculations, we obtain
/ |(ai—zj.)k—(ai—x)k|ﬁ6?)\ia x—|(ai—zj.)k|ﬁ/ 5?)\18 dx
B; i ' a)\z ¢ Bi 6/\1'
B B (3.7)
- O(Iai - ij-|’6*1)
A '
Combining (3.4)), (3.5, (3.6) and , we have
d6; |ai —Z'il’g_l . 1
/QK(x)af v, = o( ) + (< Mo =2 < ©)0(35).
We notice from condition (A3) that, for p small enough,
§|x — Zj, A=l < |VK(z)| < 2|z — zjl.|ﬁ_1, Vx € B, .
Then we can write
o(VE ()] , 1
This completes the proof of claim (2)(c).
B = 2, then the estimate of (3.1) is immediate from (3.2), and we obtain
a5; 8 5251
K(z)63 i de = ——m? =I5~ (1 1).
/Q ()05 N\ o, dx 37 ¥ (14 0(1))
This completes the proof of claim (2)(b). O
Proposition 3.2. For ¢ small enough and uw = Y ©_ «; Pé; € V(p,e), we have:
(1)
1 8P51 1 VK(GZ) (67 8H(al ai)
_ = 64 2 3 2 S )
(07 (), 3 5, 1my = 647 YOI N TN o

1 Oeyj 1 0H(a;,a; )
‘§ (A s ‘AjAgTj)]““(l))
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(253/24'21):()%;)3) +O<)\j|ai —aj|€5/2).
k=1

(2) If a; € B(zj,,p), where p is a positive constant small enough so that (A3)
holds in B(zji,élp), then the above estimate can be improved. Let C a positive
constant large enough.

(a) If B # 2. We distinguish two cases. If \jla; — z;,| < C, we obtain

1 9P, by Yk
0J(u —256J3 (u)o / Yk + Ni(a; — 2w ——— dy
(020005 gy = 2507wt T [ okt N = 5 s

1 1
+(fB<2)o (A )+ (if 8> 2)o(53)
P
3/2 1 1 65”
+od_ay +> gy Zl
o 1 (Akdk ( )\ 8a )
If Xil(ai — 25,)k| > C, we obtain
1 OP; 1672 4 3 |(a; — 25,k P71
(0J(w), -5y = ——3—J (WalbwBsen[(a: — 23] == —
. 1 a; — 2. |F71
(i 5> 2)o(5y) +o(|Aifj)
P
3/2 1 86”
+0(Z€kj + ()\kdk (Z\ )
k#j k=1
Here, (a;)x,k € {1,...,4}, denotes the k" component of a; in some local
coordinates system.
(b) If 3 =2. Then
10Ps;, 167,  JVEK(a;) 1
<3J(u),)\—i 9. )H1 = _TJ () Y (1+0(1)) +0()\2)
fo(Y R Z +O(ZI s )y,
s \; Oa;

Proof. Claim (1) is immediate from [I2]. Concerning claim (2)(a), arguing as in the
proof of [I1l proposition 3.2], claim (2)(a) is proved under the following estimates:
let C a positive constant large enough and a; € B (zj,”p), where p is a positive
constant small enough so that (A3) holds in B(z;,,4p).

If \;|(a; — z;,)k| > C, then

31 06
/K l)\ D) dz
]|(az‘*2j7)k|ﬁ !
g

|ai — Zj; p-1 (38)
el

= —sgn[( = 2j; )k

1
3 bk+0(>\ﬁ+

If A\j|a; — zj,| < C, we obtain

1 96
/K Z)\(?)dm
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Yk 1, Jai—z 7
f64—/ lyk + Nia; — 2j,)k|® dy +o ( +7>
e YT
The proof of claim (2)(b) is immediate from estimate (3.8). The proof is complete.

(]

3.2. Critical points at infinity. This subsection is devoted to the characteriza-
tion of the critical points at infinity , associated to the problem , in V(p,e),
p > 1. This characterization is obtained through the construction of a suitable
pseudo-gradient at infinity for which the Palais-Smale condition is satisfied along the
decreasing flow lines as long as these flow lines do not enter in the neighborhood of
finite number of critical points y;,, j = 1,...,p, of K such that (y;,,...,¥:,) € Cx

Now, we introduce the following main result.

Theorem 3.3. There exists a pseudo-gradient W so that the following holds. There
is a constant ¢ > 0 independent of u =Y "_ a;Pdq,x, € V(p, g) so that (i)

<8J(u),W(u)> < _C<§:[m§\@i)| + % + ]+ Z 3/2).

(i)

<6J(u+v),W(u)+a(aaZ>\)(W)> g_c(z[wnlﬁ - +Z 1),

i

(i4i) The minimal distance to the boundary, d;(t) := d(a;(t), 0Q), only increases if
it is small enough.

(iv) |W] is bounded. Furthermore, the only case where the mazimum of the \;’s is
not bounded is when each point a; is close to a critical point y;; with y;, # vy, for
each j #k, and (yi,,---,¥i,) € Coo

Before giving the proof of theorem we need to state three results which deal
with three specific cases of theorem The proof of these results will be given
later. Let dg > 0 and ry > 0 be two constants small enough such that

oK
a—(x) < —cg, Vr € Qg ={xeQ:d(z ) <2y},
v
where ¢y > 0 is a fixed constant, for all y € K5 all z € KoUK 2, and z & B(y, 2r9).
Then, we have the following propositions.

Proposition 3.4. [I1] In the set

P
Vi(p,e) == {u= ZaiPcSi € V(p,e): d(a;,00) < 2do,Vi=1,...,p},
i=1
there exists a pseudo-gradient Wy so that the following holds: There is a constant
¢ > 0 independent of u € Vi(p,€) so that

(0 (w), Wi () < _C(Z[; +Z 1),

i#]
Proposition 3.5. Let §:= max{f§(z) /z € K<2}. In the set

P
‘72(p,5) = {u = ZaiP(Si € V(p,e), d(a;,00) > dy, and

i=1
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a; € U.ex_,B(z,10), Vi=1,... ,p},

there exists a pseudo-gradient Wy so that the following holds: There is a constant
¢ > 0 independent of u € Va(p,€) so that

(0 (), Wa(u)) < _C(Z QLI o+ Tew)

i#]
Proposition 3.6. In the set

P
Vs(p,e) = {u = ZaiPéi € V(p,e), d(a;,0Q) > do, and

i=1
a; € U.ex_,B(z,2r0), Vi=1,... ,p},

there exists a pseudo-gradient W3 so that the following holds: There is a constant
¢ > 0 independent of u € Vs3(p,€) so that

0100, Wata) < (3 (VKN Ly,

Al i#j

Proof of Theorem[3.3 We divide the set {1,...,p} into three subsets. The first
contains the indices of the points near the boundary 92, the second contains the
indices of the points near the critical points that belong to K2, and the third
contains the indices of the points far away both 9Q and K<o. Letu = >"_| a;Pd; €
V(p,e). Let us define

B:={1<i<p:d; >2dy},
B ::Bu{igB:El(il,...,ir) with iy =4, i, € B

and |a;, , —a;,| < — do ,Vk < 7‘}

By(u) == {1,... 7P}\Bl =: By,
B':={i€ B;:a; € U,ex_,B(z,10)},
B|(u) := B'U {z € B\B': (i, ... ,i,,) with i, =i, i, € B’

and |a;,_, — a;,| <20 Wk < r} =B,
B(u) := B\ B, = BQ.

We have the following two observations:
(1) d; :=d(a;,00) < 2dy for all i € Bs.

(2) The advantage of B] and B is that if i € BY,j € B}, and k € Bs, then

d d
a;i—ap] > 2 la; —ag] > =, a;—aj| > —
P P

Thanks to propositions[3.4] [3-5and 3.6} and in order to complete the construction of
the pseudo-gradient W suggested in theorem [3.3] it only remains to focus attention
at the two following subsets of V(p, ¢).
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Subset 1.

Vi(p,e) :={u= ZaiPéi € V(p,e): Bi(u) # 0, B5(u) # 0 and Bs(u) = 0}.

i=1
Let
D
U= Z%‘P(Si =:u1 + ug € Vp(p,e),

i=1

where uy, := ZieB;(u) a; Pé;, 1 < k < 2. Observe that

uy € Va(card(BY),e) and uy € Va(card(B)), ).

We distinguish three cases.

Case 1.1: uy € Vi (card(B}),e) and uy € Vi (card(Bb),e). In this case, we let

Vi= Wzl (u1) and Vu := Wi (uz) the pseudo gradients defined in lemma m and
lemma [3.11] respectively. Define

Woz(u) == Vi + Va.
From the observation (2), we obtain, for each i € Bf and j € Bj,

iy = 0()\;” + ;?). (3.9)
Thus, by using lemmas [3.7] and we obtain

P
7 |VK (a;)| 1
(@70, W) < (o [F5 55 + 5] + e,
i=1 i#]
Notice that in this case all the Ais ;1 < ¢ < p, increase and go to +oo along the
flow-lines generated by Wa,.

Case 1.2: uy & Vj(card(B}),e). Without loss of generality, we assume A\; <
- < Ap. uy has to satisfy u; € Vi(card(Bj}),e),i = 2or3. Thus we define
Zy := Wi(uy),i = 20r 3, the corresponding vector field. Using (3.9)), we derive

@1,z <o S [VEE L 1 > 2)

; Bi,
i€B| ¢ A7 i#j,i,jE€B, (3.10)
1 .
+o(D )
ieB, "
Now, let 41 := min(B}), and we denote
Ji = {Zl} U {Z <1: )‘j < M)\j_l,Vi <j< Zl} =: {io, e ,il}.
Observe that
A = O()\j),Vi < ig,Vj > ip. (311)

Let

u = Z azP(SZ

1<t0
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Observe that @ € Vi(ip — 1,€). Thus we define Zy := Wy(@) the corresponding
vector field. Using proposMonE7 we derive from the observations (3.11)) and .

01w,z < oL+ S+ 3 <)

i<io i#£4,1,5<io
» (3.12)

+0(Z %)4‘0( Z £ij)-

i=1"" i#4,i<i0,j>i0,j€ B}

Combining (3.10) and -, we obtain
07(w), 21+ Z) < — (3 [M + L] n Z{W N L]

2
ieB] Ai )‘f“ Ai Ai

oD et ) %) (3.13)

17,1, <do i#5,1,5€B]

TS FETRD SR

i=1 " 1#5,i<i0,j >10,j € B}

1<10

Observe that )\% appears in the upper bound (3.13]), and then we can make appear
1
all the %’s, i € Bh,i > iy. We need to add some other terms. For this, we define

iy OPdg, £,

i€BY,i>io
Arguing as in the proof of lemma (see the estimate of Z} in lemma [3.9)), we
derive under the observation and (3.11)

(0 (w), Zs ( 3 072 3 az-j)

i€BY,i>ig 'L JEBYiF#]
14
YOS SR S SRS N
)\Blz )\? )\ kr
1€B] Vi i€ B, k#r
From (3.11)), (3.14) becomes
<aJ(u),23>g—c( DY sij)
i€BY,i>io jEBY, i
(3.15)

Combining (3.9), (3.11) and (3.15]), we derive, for M; > 0 a fixed constant large
enough,

(0J(u), Zy + Zo + M, Z3)

1 1 VK
S—C<Z F—FZW—F Z | +Zf3kr)

ieBy "t ieB| N ie{1,io—1}UB Ai k#r (3.16)
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To finish the construction in this case, we need to add another vector field. For
this, let X;, i € B}, i > g, the vector field defined in lemma Let

ng =71+ 2o+ M1 Z3 + Z Yl

i€BY,i>io
Arguing as in the proof of lemma [3.10} we obtain

(0J (), WE) < —C(Z % +> L > w - Zskr). (3.17)

ﬁji
i€eBy, "t ieB] Ai i=1 k#r

Case 1.3: uy ¢ Vi (card(Bj),e). Arguing as in the proof in the case 1.2, with
the simple change of the role: we consider B} instead of Bj. We construct a vector

field W§3 with the same properties as that of W223; that is Wé% does not increase
the maximum of the \js and we have the following: there is a constant ¢ > 0
independent of u € Vj(p, e) so that

(0] (w), W) < —C(Z% +Z|VK/\7§C”)| +Z€kr). (3.18)

=1 ktr
The vector field S; required in the subset V;(p, ) will be defined by convex combi-
nation of Wiy, Wi and W3,.
Subset 2:
P
Ve(p,e) :i={u= ZaiP(Si € V(p,e), s.t Ba(u) # 0}.
i=1

Arguing as in the proof in case 1.2, with the simple change of the role: we consider
B; instead of Bj. We construct a vector field Sy with the same properties as that

of ng; that is Sp does not increase the maximum of the Ajs and we have the
following: there is a constant ¢ > 0 independent of u € V,(p, ) so that

(0J(u), Sy) < _C<Z % +> (/\_;)3 +) W + Zei?). (3.19)
i=1 7% jeBy VUt v

i=1 k#r

Now, we define the pseudo-gradient W as a convex combination of Wy, W3, S7 and
Sy. The construction of W is completed, and it satisfies claim (i) of theorem 3.3
Arguing as in [, appendix 2], claim (ii) follows from (i) and proposition The
conditions (iii) and (iv) are satisfied by the definition of the vector field W. O

Proposition[3.5 Let n > 0 a fixed constant small enough such that |y; — y;| > ,
Vi # j. We divide the set Va(p,e) into three sets:

P
Vi(pe)i= {u=>"aiPs; € Va(p.2),a; € Blys,, ) with
i=1

4
Ys. # yi Vi £k and = 3 be(ys) > 0% = 1,...p ),
k=1
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P
‘/22(]),5) = {U = ZOQP(SZ S ‘/2(p,5) ta; € B(y_]un)avz = 1a" - D,
=1

4

vi # Y Vi # kand i, i — Y bilyi,) < 0,Vk = 1,...,q},
k=1

P
V23(p35) = {'LL = Zalpaz S ‘/2(27; 5),0@' S B(yﬁaﬂ)aVZ = 17‘ Ry 2

=1

and 3 # K : y;, :yjk}.
O

We will define the pseudo-gradient depending on the sets 172"(]), g),i=1-3, to
which u belongs.

Lemma 3.7. In ‘721 (p,€), there exists a pseudo-gradient ng so that the following
holds: There is a constant ¢ > 0 independent of u € Vi (p,e) so that

Y |VK (a;)| 1
=1 ) iF£j
Proof. In this region, We have, for i # k, |a; — ag| > ¢, then
1 1
Eik = O(Tfa‘i + 7)@% )7
466% 1 1

)\z (9)\74 = O(€ik) = O(W + )\i“c )a (320)
1 Ogjy, 1 1 .
3 Ba. =O0(egi) = 0()\@]‘1_ + )\i—m), since 8}, B;, < 2.

Let ¥ be a positive cut-off function defined by

1 ift<
py =t =G
0, ift>2C

where C' is a positive constant large enough. We define, for each i =1,...,p,

T =3 [1= WO = ) besem (o = w3 e] -
=1 7 7

4
1 0P¢;
+) U (Nil(ai =y, )kl)
k=1

bk/\iia(ai)k

(3.21)

8 / v + Niai — yj, )kl 2 5 dy
R4 (ly[+1)
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Using proposition [3.2] and (3.33]), we obtain

4 ), Bi 1
(3 1= v g
k=1 A
+124:\If(x|(a»—ya>kl)bi(/ \yk+%<a'—y*)klﬂ“yikdyf)
)\i-ji k=1 " R4 " (|y|2 + 1)5
P
[VE(ag)| | 1
+o(> vy +Z€jé)
=1 0 J#L
VK (a;
< —c([1 = w(niltai = yiw))] 'AM
1 Uk 2
+ —— Y (\il(a; — yy, / v+ Nilas = gy )| T dy
g YO =D ([ ot o= s ) )
P
VK (ar)] | 1
+O(Z )\é + Aﬁjf +Z€j£)’
=1 1 J#e

(3.22)
where k; denotes the index such that |(a; — y;,)k,| = maxi<p<a |(a; — yj, )kl

If O(\il(a; — yj,)r,| < 1/2, then |VK(a;)|/A; appears in the upper bound of
[B:22), and so 1/A)7 since 1/M% = o(|VK (a;)|/\s).
If U(\|(a; — yj, )| > 1/2. Let § > 0 a fixed constant small enough, and ® a

positive cut-off function defined by ®(¢) = 1 if t < § and ®(t) = 0 if ¢t > 25. We
distinguish two subcases:

Subcase 1: ®(\;|a; — yj,

) < 1/2. Observe that , in this subcase, we have

. Y 2
([ oo rstas = el P dy) > s
Rt (lyl* +1)

where ¢; > 0 is a fixed constant depend only on §. Thus, we can make appear ——
T

in the upper bound of (3.22)), and so W, since )\ﬁ% ~ VK (i)

i

i

)

Subcase 2: <I>()\i|ai - Yj,

)21/2. For each i =1,...,p let

! oPs;
Y = 0@( - ;bk(yji))& o,

Using proposition we obtain

1 " |VK(a 1 ,
(0J(u),Yi) < —c—5- +0(Z| /\( ol | G-+ eieBig). (3.23)
)\i.l P Y )\e ¢ oy
Observe that, in this subcase, we have LI;@”” = o(%) Thus, we can make
7 A i

appear Wli(i‘“)‘ in the upper bound of (3.23). We define
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Combining (3.20), (3.22) and (3.23)), we obtain

0700, W4 () < —(30 [V + ] )

i=1 i#j

This completes the proof. 0

Observe that the variation of the Ajs occurs only under the condition \;|a; —y;,| <
dfor 1 <i<p,ford >0 a fixed constant small enough. In this case all the \)s

increase and go to 400 along the flow-lines generated by W;

Lemma 3.8. In ‘722(1975), there exists a pseudo-gradient W; so that the following
holds: There is a constant ¢ > 0 independent of u € Vi (p,e) so that

((“)J(u%Wf) < _C(Z[|VI§\ @)l ‘ } + ZE”)

7=

Proof. Without loss of generality, we assume a; € B(y,,,n), with — Zi:l bi(y;,) <
0fori=1,...,q. We define

q q
Zl = ZTZ —+ Z@()\Jaz — yji )K
i=1 i=1

where @ is the cut-off function defined above. Arguing as in the proof of lemma

we obtain
\VK a)| |VK a) 1

Let M >0 bea ﬁxed constant large enough. We deﬁne

y 1 . .
I .= {1 <1 <p, S.t/\f“ < Mmln{)\f“‘, k= 1,...,q}}.

Observe that all the f s i ¢ I, appear in the upper bound - We need to
add some other terms. For this, let u =}, ; a;Pd;. Observe that u € V2 (4, e),
where £ := card([). Define

ZQ = W21 (Tj),
where Wzl is the pseudo-gradient defined in lemma From (3.20) and lemma
we obtain

(0 (w), Z2) < —e( Y S0 WK ol 1_) +o(zp: Wﬁﬂ + A;“ ). (325)

Bj
el Z )\l !

Now, we define
W22 ::Z1+ZQ+ Z Tz
i>q,i¢1
Combining (3.20)), (3.22), (3.24) and (3.25)),we obtain

(0700, W) < —o(30 [V o =]+ Y e),

i=1

This completes the proof. (I
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Lemma 3.9. In ‘723(p,6), there exists a pseudo-gradient WS so that the following
holds: There is a constant ¢ > 0 independent of u € V3 (p,e) so that

(07 (u), Wi (u)) < —C(Z[% iﬁ} +>e)-
i=1 v A i#]

Proof. We order the concentrations A;’s in such a way: )\f'“ < e < )\57”. Let
My > 0 and C' > 0 two fixed constants large enough. We set

Il :{1§Z§p)\z|alfy]7

> C},
L= {1}u{2<i<p: X < MAPE, V1<k<i)
We define
1 OP6,, .,
Z3 = b —_—
3 Z k- Sgn y]z) ]>\z 8(az)k )

el

ngfMle)\aP(sa’l 1Z>\8P5a“ |

iZI 1€l

<a |(a; —

where m; > 0 is a fixed constant small enough and |(a; — 2j, )k, | =
2j,)k|- From proposition we obtain

1 p

02002 < e (OB (3 )
! k=1
0 3 S+ o)

i#j i€l " i#j

Observe that
1 aEij
)\1' 8ai
VK (a;)| ~ |a; — yji|ﬁ“71, Vie I.

=o(ey;), V1<i<p, Vjel,

Then

P

(0J(u), Zs(u)) < —c Y ST |VK )l ( > sz—j) +0(Z )\%jk +Zem)~

el i#j,0€l,j€1> k=1 i£]

From the definition of I;, we can make appear the quantity > in the last

i€l 53'1
A

upper bound, and we obtain

o102 2 (5 T 5~ L)

i€l i€ly

+O( 3 aij)+o(z gjk—st”)

i#ji€0, € k=1 A it

(3.26)
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Now, from proposition we obtain

iy O%ij
(0. (u). Z(w)) < My (32 O(— NP )

igls N i@Is,it]
ol A 85”
—m (Z )\/3,1 - > ) (3.27)
i€l i€12,i#£]
p
1 VK(a;
ro(3 o+ R+ ).
i—1 Ay ¢ k#r
Observe that
Og;s Oe;s .,
20\, a)\z QJAJ 8)\J < —cgiy, Vi,
861‘]‘ . . . .
g < —cgiy,V1<i<p, Vjelyi#j,

O\
1 1

— = 0\—F% ), VZ%I
N2 ( Afh) 2

Thus, for m; small enough, the estimate (3.27) becomes

(8](u),Z§(u)>§—c(M1 Z gij +m Z Eij)

i€12,i75j 4,J€l2,i#]

\VK (3.28)
a;)
ol g+ 3 )

i=1
Combining (3.26)) and - we obtain

VK(a;

©3(0), Za() + Z3u)) < —e( S IE + ol )
i€l k#j
(3.29)

We need to add other terms. For this, we distinguish two cases:

Case 1: I; NI, # (). In this case, we can make appear %“ in the last upper
>\1

bound, and so all the —— s 1 <7 <p, and the WK/\ii‘“)l/s,i ¢ I,. We obtain

7,

(0 (u), Zs(u) + Zy(u)) < ‘C(Z |Vf§§ai)l Z N Z%)

,6’
i=1 ¢ im1 A k#j

The vector field Wz&s = Z3 + Z} satisfies lemma

Case 2: I; NI = (. In this case, we recall that, for each i € I, the point
a; is close to a critical point y;, of K. If we suppose that there exist i,k € I
such that a;,ar € B(y,n), for n > 0 small enough and y a critical point of K,
then A;|la; — agx| < 2C (we assume that A; < Ag). This implies e;, > A/ Ak,
which is a contradiction with the fact that A; and A are of the same order. Thus,
for u = >, ; @;Pé;, we have a; € B(y;,,n) and ar € B(y;,,n) with y;, # y;,
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fori,k € I5,i # k. Therefore u € Vi((,¢), where i = 1 or 2 and ¢ = card(I3). Let
Z!Y the corresponding vector field in Vi (¢,¢) (i = 1 or 2). We have

(0 (w), Z5 (w))

S_C< Z Ew‘*‘z/\gg) ( Z Eij)-f—o(i 1) (3-30)

L - A
1#5,5,5€12 i€l 1€12,j¢1> i

Observe that 1 / )\ﬁ“ appears in the upper bound 3.30} then we can make appear
all the terms T 1<i<p,and ), 1 |VK @)l We define
PV

W333 Z3 +ZS/ +Z3//.
Combining (3.29) and , we obtain
—~ VK (a;)]
(070, W) < —o( 3 VEL) gh 1+ 3 ew).

i=1 i#£]

The vector field WS, required in lemma [3.9| will be a convex combination of WB?’
and W333. The vector field W, requ1red in proposwlon Wlll be defined by a
convex combination of the vector fields Wi (u), W2(u) and W2 (u). O

Proof of Proposition[3.6, Letn > 0 a fixed constant small enough with |y; —y;| > 2n
for i # j. We divide the set V3(p, ) into five sets:

p
V31<P75) = {u = ZO‘ZP(Sz S ‘/})(p’é;‘) ta; € B(yjun)ayjl € K:;r UK:>27

i=1

Vi = 13"'7pa with Yj; 7& Yji Vi 7é k? p(yjla"'ayj,;) > O}a

P
‘/32(1,)76) = {U = ZO[ZP(L S V3(p7 8) ca; € B(yjmn)7y]l € ]C;r U IC>2a

=1

Vi=1,...,p, with y;, # y;., Vi #k, p(yj,,...,y5,) < O},

p
V33(p,5) = {u = ZQZP&- € Va(p,e) : a; € B(y;,,1m),y5 € Ka UKso,
i=1
Vi=1,...,p, with Yi; 75 Yins Vi #£ k, Elyjk € Ko,
L300 belys)

st — —== 2 4 H(y, ,ya)<0},
0 Ky, Wt

p
Vi'(p,e) == {u = a;Ps; € Va(p,e)  a; € B(y;,, ), yj, € Ka UKo,

i=1

Vizl,...,pandzli%k:yji:yjk},

P
‘/35(1)76) = {U = Zaipa’i S V3(p7 6) : Ela’i g UyE)CQU)C>2 B(yﬂ?)}

=1

We will define the pseudo-gradient depending on the sets Vi(p,e),i = 1 — 5, to
which u belongs. (I
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Lemma 3.10. In 1732(p, g), there exists a pseudo-gradient W; so that the following
holds: There is a constant ¢ > 0 independent of u € VZ(p,e) so that

(0 (u), W2) < —¢ (Z v 'W(T‘“+Zs”)

i#£j

Proof. Let p be the least eigenvalue of M. Then there exists an eigenvector e =
(e1,...,ep) associated to p such that |le]| = 1 with e; > 0,Vi = 1,...,p. Indeed,
let e = (e1,...,ep) an eigenvector associated to p, with ||e|| = 1. By elementary
calculation, we obtain, since m;; < 0 for all i # j, we have

e; >0,Vi=1,...,p, or e <0,Vi=1,...,p. (3.31)
Let v > 0 such that for any z € B(e,v) := {y € SP7! /||y —e|]| < ~} we have
ToeMz < (1/2)p. Two cases may occur:

Case 1: |A|7!'A € B(e,v). In this region, we have for any i # j, |a; — a;| > ¢, and
therefore

= e (140(1)=———(1+0(1 32
)‘1 8)\1 6]( +0( )) )\i)\j‘ai_aj|2( +O( ))7 (33 )
1 aéi
y 8a? 0(5i]) (3.33)
We define
P
P
—Zai/\iil
P o\
From proposition and (3.32]), we obtain
(0] (u), W3?)
P 4
H( awaz 1> e be(yy,) G(a;,ay)
a2 2 - 2 1 2ik=1 i) Y J
= —647°J (u [Z Z o; B K(ai))\? Za]al)\l By }
i€ VE
1 L VK (a;)]
— s — s | > .
+0(§ )\22) +;(1f Nilai — yj,| > C)o( N )

Observe that, since u € V(p,e), we have J(u)a; K (a;)'/? = (1 + o(1)). Thus we
derive that

(07 (w), W3?)
_c[ AMA (1 +0(1)) + 2 (if Aslas = 5| = C)o(D w>
=1 i=1 i
< —¢( : )+ Z(if Ailai =y = C)o(@) (3.34)

M@

+Z€” —I—Z if Nila; —y;,| > C) (Z|VKCL1>

i#]

=
> %\H

[

where M is the matrix defined by (1.4) and (1.5, and A :=T (/\1—1, e i)
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Case 2: |A|7'A ¢ B(e,v). In this case, we define

5 0P6;
222 Z|A|O‘z% PN

where

o |A|62 - Al . yZ(O) o—
%= @ Ty YO Ale =)

and y(t) = (1 — t)A + t|A]e. Define A(t) = y(t)/||y(t)||. Using proposition we

derive

(0 (u), W3*)
‘A||:Za % i) awaz - Z 171 1 Zk lék y_]l ZO[] i az;‘a])]
1€KC2 Jj#i
i#£] i=1 v
c T
—JmﬂAP[Awmmwﬂ
S| P VK (a;
+o0 (;)\%) zZ: 1f/\i\ai—yji|20)o<%),
(3.35)
since |a; — a;| > ¢ for i # j. We claim that
8615( A(t)MA(t)) < —c, for t near 0, (3.36)
where ¢ > 0 is a constant independent of [A| 1A € (B(e,7))°. Indeed,
T (1-t)? 2
ARYMA(t) = p+ POIE [T AMA — p|A?]. (3.37)
Equation implies
0
RAUNOIIND)
= S0 PAMA — pIAP][-(1 = lAl(e,A) ~ 1P (339
1—t)|Al*
- (Hy(>)|:4|[A|4( AMA — p|A| )(*|A|(67A)) + 0(1)}

By using the observation , we derive that there exists ¢ > 0 (¢ independent
of [A|7*A € (B(e,v)) ) such that

TAMA — p|A]? > c|A%. (3.39)
Also, observe that
|A|(e,A) > a|A|?, where o := inf{e;, 1 < i < p}. (3.40)
Combining (3.38)), (3.39) and (3.40), the claim follows.
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Now, by combining (3.35)) and (3.36]), we obtain
(8. (u), W22

p

< - Z 2+Zem —f—Zlf)\|az yg|>C) (\Vfi\(azﬂ)

=1 l i#£] *

We define /VIV/??Q” as a convex combination of W??Z and /1/17??22. Combining ([3.34) and
(3.41)), we obtain

<8J(u) ’W2222>

s Z 2 + ZEU Z lf )‘i|ai _yjil > C)O(m)

i=1 l i#£j =1 v

(3.41)

(3.42)

Let ¥ a positive cut-off function defined by ¥(¢) =1, if ¢t < Cand U(t) =0, if ¢t >

2C, where C is a positive constant large enough. To make appear » -, M,
we define, for each i =1,...,p,
4
— 1 9P¢;
X=3 (1= W (hales = g5 )el) o s (o1 = e 35
Using proposition and ([3.33)), we obtain
4 =1
_ B - o [(@i — yj,)x] %
@I, %) = —e3 [ = Nl — 5 )el) [ B 5
P
|VK((IZ‘ 1
+ O(Z i + F)
i=1 ‘ ¢ (3.43)
K (a;
< —C|:]. - \II()‘Z‘(GZ - yjl)kl ):| W/\i)‘
7

2

O(i IVfi(ai)l +A12)

where k; denotes the index such that |(a; — yj, )k, | = maxi<g<a [(a; — y;,)x]. Com-

bining (3.42)) and -, we obtain

(0.7 (), T3 + ZX

< o3+ Y+ [ e )TN gy

i=1 Z ]
P
|V K (ai)|
+ O(Z Y )
i=1 ‘
If ¥ < 1/2, then |VK(a;)|/\i appears in the upper bound of (3.44). However, if
¥ > 1/2, then we have WK(‘“)' < c>\2, and so we can make appear |VK (a;)|/ A

from 1/A\?. The vector ﬁeld required in lemma will be defined by W?? =
w3222 4 50 X, O
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Lemma 3.11. In 1731 (p,€), there exists a pseudo-gradient W§ so that the following
holds: There is a constant ¢ > 0 independent of u € Vi(p,e) so that

(03,7 (Z w5,

i#j
Proof. Let § > 0 a fixed constant small enough, and denote «;, := ﬁﬁ’ﬂji > 2.
Ji
We distinguish two cases:
Case 1: max;<ij<p{\; " |a; —yj;,|} < 8. In this case, we define
»
OP¢
Yy = A —t
1 ; Qi A\ 3>\1

Arguing as in the proof of the estimate (3.34)), and using the fact p(y;,,...,y;,) > 0,
we obtain

(0J(u), Y1)
= Z 2 +Z5z] Z lf)\i‘ai—yji| >C)O<zp:|v‘[§\(al)) (345)
=1 i#£j 1 — ;

Observe that [VK (a;)|/Ai = 0(1/A?) for 1 < i < p. Thus, from (3.45), we obtain

P
(0J(u), Y1) < Zig 'VK @)l +Y i) (3.46)

Ai i#j

} > 6. Let

iy :=min{l <i<p: A7 a; -y

s
Case 2: maxi<i<p{; "'|a; — yj,

} > 6}
Without loss of generality, we suppose A; < --- < A,. Let M > 0 a fixed constant
large enough. We set

1
I:= {Zl} U {7, <1 /\j—l > M)\J,VZ <j< il} =: {io, - ,il}. (347)
Let
U= Z aiP(Si.
1<to
Then @ has to satisfy the case 1, or u € ‘732(2'0 ,€). Then, we define Z;(u) the

corresponding vector field, and we obtain
|VK(al 1
(0 (), Z1) C(Z TR 3 am) vo( AiAj)' (3.48)
1<ig 1#£4,1,<io 1<ig,j=to
Observe that A; = o(\;) for all i < ig and all j > 4p. Thus (3.48) becomes
|VK(aZ
O (u), Z1) —c(Z TR Y oe ) (3.49)
1<ig 1#7,1,<io

Now, let T;, the vector field defined in (3.21)). By the same argument used in the
proof of lemma [3.7} we obtain

(0J(u),Ti,) < —c(%2 + W\M) +o(> %). (3.50)

e i=1
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Observe that all the terms /\12, 10 < i < p, appear in the upper bound (3.50].

Combining ({3.49)) and ( , we obtain

<6J(u), Zl 4+ TZ1>

‘1 VK (a; VK (a;,
S_C(Z)\frz )\Ea)l | A(a N Z %)

S ) (3.51)
\VK ai)l IVK(%)I
SO S )
i<ig " i#5,1<i,5<p

Now, arguing as in the proof of lemma [3.10} we obtain

(@J(u), Zy+Ti, + Y X5) <7<Z)\2 M+ > sij). (3.52)

i>ig i i£5,1<i,j<p

The vector field Wil := Z, + T;, + Y isi, Xi satisfies lemma The vector
field WB} required in lemma will be defined by convex combination of Y7 and
W 0

Observe that the variation of the maximum of the A;’s occurs only under the
condition )\;-X“ la; —y;,| <dfor 1 <i<pandd >0 afixed constant small enough.

In this case all the A;’s increase and go to +oco along the flow-lines generated by
Wi,

Lemma 3.12. In 1733(]9,5), there exists a pseudo-gradient Wé” so that the following
holds: There is a constant ¢ > 0 independent of u € V33 (p, ) so that

<8J() <_(Z)\2+|VKCL1 "‘Zw)

i#]
Proof. Without loss of generality, we can assume that a; € B(y;,,7), yi, € K2 with

1 Zk 1 (sz)

H(yi;, Y, Vi=1,...,
T R + H (yi,,yi,) <0,V q

We define
z dPs;
— Oéi)\ii
2Ny,
Using proposition and the fact |a; — a;| > ¢ for all ¢ # j, we obtain
@i, a;) "1
@I *C(Z A St o)

*C(Z X2 +Z£la) +o( Z)\lz)

J#i
Let M > 0 a fixed constant large enough. We define

(3.53)

1
I = {lgigp:/\igﬁmin{/\k,kzl,...,q}}.
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Observe that all the 55’s, i & I’, appear in the upper bound (3.53). We need to

add some other terms. For this, let w = >, @; Pd;. @ has to satisfy u € ‘75(8, €)
for i =1 or 2, where £ := card(I’). Thus, we define the corresponding vector field

Z} = Wi(u), fori=1or?2.

‘We obtain
, VK (a;)|
(07 (), Z5) <~ (Y | A( ot > )
iel’ v jFi,jeT’
» VE (ar) ) (3.54)
i=1 ¢ v JALIELD g

Now, we define
Wii=MZ+ 2+ > X,
g
where M; > 0 is a fixed constant large enough. Combining (3.43)), (3.53)and (3.54),
and the fact |a; — a;| > ¢, Vi # j, we obtain

(07 (u), W (w)) < —c(fj['vﬁi‘“ ey

Bj
=1 )‘ i i#£]

This completes the proof. (Il

Lemma 3.13. In 17234(}7,5), there exists a pseudo-gradient Wg‘ so that the following
holds: There is a constant ¢ > 0 independent of u € Vi(p, ) so that

<8J(u), _C(Z )\2 |VK az +Z 1])
i#]
Proof. For each critical point y; of K, we set By := {1 < j <p:a; € Blyg,n)}
Without loss of generality, we can assume ¥, ...,y, are the critical points such
that card(Bg) > 2 for all k = 1,...,q. Let x be a smooth cut-off function such
that x > 0,x =0if t <+, and x = 1 if ¢ > 1, where « is a small constant. Set

X(Aj) =2 isjien, X(Aj/Ai). Define

q .
J

k=1 jEBy

Using proposition we derive that
(0.7 (u), Wy

q a0 4
’LL) Z Z an()\j) [@W - ( if y, € ’CQ)O‘J 112W

k=1j€By
PTG+ B o S Yo
i#£j = | 1
q .
+3 3 (it Aa -y, ZC)O(WKTEGZ)')-

k=1 i€ B}, X(Ai)#0
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For j € By, with k < g, if X(};) # 0, then there exists ¢ € By such that )\_
oA\ 1) or )\_ = 0(gj;) (fornsmall enough). Furthermore, for j € By, if i ¢ Bk or
i € By, with v < A\;/\; < 1/7, then we have ), a)\” = —£;;(1 4+ 0(1)). In the case
where ¢ € By, and A\;/A; < v, we have X();) —x(A\;) > 1 and \; a;)\” < =) gi\“.
Thus

Oij P _ —ei;(1+0(1))

85"
X( j) oN; — ]8)\j

o T XA

Thus we derive that

DI <=y Y (Y +o(zezk+zv M)

k=1 jEBk,X(X\;)#0 i#j i£k i=1
P
1
S IND SRC TS SEVERI) SRR 95y
k=1j€Bik,x(\;)#0 7 i#] i#k i=1 "

> > (i la—yl 2 O)O(WKTE‘“)')

k=14€ By, X(A;)£0

Observe that {j € By, x(\;) = 0} contains at most one index. Thus we obtain

@), Wiy <—e(d > $+ DD +0(Zm+2)

k=1 jeBr,x(A\;)#0 7 i#jjeUi_, Bk i#k i=1

q
. VK a;
+y > (it Aas — ZC)O(|A7(,)‘)~
k=1 i€ By, x(7i)#0 ‘
(3.55)
This upper bound does not contains all the indices. We need to add some terms.
Let
Xip =inf{N\;,i=1,...,p}.
Two cases may occur:
Case 1: If 4 G U{_, By with x(X\i,) 7é 0, then we can make appear in the last

upper bound and therefore all the /\2, and so g, 1 < i,k < p.

>\2 ,
Case 2: ig € {2 € Ul_Bi,x(A\i) =0} U (U{_, Bg)°. In this case, we define
= ({i € Upoy B, X(Ag) = 03 U (Ui, B)) N{L <0 < p, Aif Xy < 1/}

It is easy to see that for i,j € D,i # j, we have a; € B(yx,,n) and a; € B(yx;,n)4

with kl 7£ kj. Let
Uy = ZaiP(S(ai’)\i).
ieD
Then u; has to satisfy one of the three above cases, that is, u; € vg(card(D),s)
for i = 1 — 3. Thus we can apply the associated vector field which we will denote
W444 and we have the following estimate:

—~ VK ’
<6J(u)7W§144 < Z)\2 ‘ (2:) + Z Ezj

i€D i#j,4,J€D

+O< Z Erk-l-z/\z)

r&D,keD €D

(3.56)
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Observe that for k € D and r ¢ D, we have either r € UJ_; By, X(\;) # 0 (in this
case we have ey, in the upper bound (3.55))) or no, and in this last case we observe
that a; € B(y;,,n) for i =r, k with j, # ji. Thus

c c 1
Ekr < m < )\7;; :0()\7220)
We get the same observation for A; 2i ¢ D. Now we define
Y, = CW“ + W444
where C is a positive constant large enough. Combining (3.55) and -, we

obtain
(00 (u), Ya) < — Z 3 e) +OZ|VK @)

AS i)

We define W§444 as a convex combination of W4 and Y5. Then the vector field
W 4444 + Z X,

satisfies the claim of lemma [B.13] O

Lemma 3.14. In \735(1),{—:), there exists a pseudo-gradient Wé’ so that the following
holds: There is a constant ¢ > 0 independent of u € Vi (p,€) so that

(0.7 (u), W (Zv |VKal +Z€”)

i#]

Proof. Without loss of generality, we suppose A; < --- < A,. We denote by i; the
index satisfying a;, & Uy ()—0B(y,n) and a; € B(y;;,n), Vi < iy. Let

1<t

Observe that @ € Vi (i1 —1,¢) for i = 1—4. Then we define Z} (@) the corresponding
vector field and we have

<8J(u)7Z4’(u) —C(Z /\2 m-l- Z Eij>+0< Z 52]"‘2 )\2>
i<iy v i#£4,1,5<i1 i<i1,j>01 >4

Let now

1 VK ((17, ) ap(gal i ; 8P5a. s
Z - 1 17 1 _ M 21)\1 79 7.7
YT N, IVK(a;,)|  Oas, > O\

1>

where Mj3 > 0 is a fixed constant large enough. From propositions [3.1] and [3.2] we

obtain, since VK (a;,) > ¢ > 0,
(0J(u), Zy(u)) < (Z Ajlai, — aJ\Em) — Mjsc Z Eij-
Jj#i 1241,j71

= O(Eilj),Vj 75 ’il. Thus

Observe that \jla;, — a;|e?

i1]

0(w), Zo(w) < = +0(Y i) = Mae Y. =y

J#i 121,74
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We choose M3 large enough so that O(Ej#l Eilj) is absorbed by Msc ) s, s €ij-
We deduce
1
01w, Zu(w) < —e(—+ D eu). (3.57)
Y i)
Also 1/);, makes appear ) ., 1/A; in the upper bound of (3.57). Taking M a
positive constant large enough, and let

Wi(u)=MZy+ Z),.
Thus we derive

(0 (u), W2 (u)) < fc<z Wi& + % + Zsij).

i=1 i£j
The claim of lemma [3.14] follows. O

The vector field W3, required in propgsition will be defined by a convex
combination of the vector fields W3 (u), W2 (u), W3 (u) , Wi (u) and W3 (u).

Corollary 3.15. Let n = 4. Assume that K satisfies the condition (A3). Under
assumptions (A1), (A5)—(AT), the critical points at infinity of J in V(p,e),p > 1,

correspond to
zp: -
——F P4,
172" C(yi;,00)
j=1 (K(il/zj)) ’

where (Yi,, ..., Yi,) € Coo. Moreover, such a critical point at infinity has an index

equal to 5p —1 =30, i(yi,)-

Proof. Using theorem the only region where the )\;’s are unbounded is the
one where each a; is close to a critical point y;, where y;, # v;,, for ¢ # k, and
(Yjrs-- -+ Yj,) € Coo. Let y;, € K UKsg forall 1 <i < s, and y;, € KZ, for all
s+ 1 <i < p. In this region, arguing as in [4, Appendix 2 |, we can find a change
of variables

((Il,...,ap,)\l,...,)\p)H (51,...,EP,X1,...,XP) = (E,X)

such that
1/2 <p 2

p
S o ~
J QiPba, x, +7) = 4 = L1+ AN}
(; ) ( f=10‘?K(ai))l/2

=: Si/2\11(a1, .. .,ap,&'){l + A(X)},

(3.58)

where A(X) is some quantity satisfying
AN =o0(1), for \; > A, 1<i<p,
with A uniform on a; € B(yj,, p) and Sy := [5, 05 1 (z)dx. Now, denoting by

p p
hy (Z aiPo; 5) = Z iP5, ) 5.0
=1

i=1
the 1-parameter group generated by the pseudo gradient W in this region. Taking
into account the construction of W, we derive that, for ¢ large enough, \;(¢)|a;(t) —
yj;| < fori=1,...,pwith y;, € KL, UKJ, and ()\i(t))a“ la;(t) — y;,| <9 for
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i=1,...,pwith y;, € K52, where 6 > 0 is a fixed constant small enough. Thus we
obtain

P 4
~ br(y;.
AN() = [- M +7 AMA], (3.59)
1=s+1 >‘i 7
where M := M(y;,,...,y;,) is the matrix defined by (1.4) and (L.5), and 7A :=
(<,...,<%). This proves that we have a critical point at infinity. Now, by

A1 ’ I
combining (3.58)) and (3.59), we derive that the index of such critical point at
infinity is equal to the index of the critical point of

p 2
i=1 %

—\1/2°
(b o K (@)
Observe that the function ¥ admits for the variables ajs an absolute degenerate

maximum with one dimensional nullity space. Then the index of such critical point
at infinity is equal to 5p—1—>""_, i(y;,). The result of corollary follows. O

\Il(al,...,ap,&'l,...,&'p) =

4. PROOF OF THE MAIN RESULT

Proof of theorem[I.3 Assume that J has no critical points in . It follows from
corollary that the only critical points at infinity of J are

p
1
(Tp)oo = E Pé(yj,oo)v p > 17
= ()"

where 7, := (y1,...,Yp) € Coo. Such a critical point at infinity has an index equal
tobp—1— Z§=1 i(y;) =:i(7p). By using the deformation lemma of [7], we obtain
»t o~ Ur,eCoe Wu((rp)oo ), (4.1)

where W, ((7,)s) denotes the unstable manifold of the critical point at infinity
(Tp)oo and =~ denotes the retract by deformation. Applying now the Euler-Poincaré
characteristic x on the both sides of (4.1)) and using the fact that X7 is a contractible

space, we obtain
1= Y (—1)ilm).

TpECo
This contradicts the assumption of our theorem This completes the proof of
our existence result. O
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