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Abstract. This article formulates a new model of the phase separation of

multi-component system, which is a fourth-order quasi-linear evolution partial
differential equation. By using the acute angle principle, we obtain a weak

solution of the corresponding steady-state equations. In addition, we show

that the quasi-linear dynamic equations have at least one global weak solution,
based on the T -weakly continuous operators theory.

1. Introduction and statement of main results

Phase separation of multi-component, which consists of N (N ≥ 2) different
kinds of components, is a fundamental physical phenomenon. When the temper-
ature of the system T > Tc (Tc is the critical temperature), the concentration of
N different kinds of components is homogeneous distribution. However, the tem-
perature T < Tc, the multi-component system may lead to phase separation, i.e.,
the concentration which is homogeneous distribution undergoes changes leading to
heterogeneous spatial distribution. In the case that N = 2, it is the binary mixture
system described by the well-known Cahn-Hilliard equations [7]. There have been
many mathematical studies on the dynamics of the Cahn-Hilliard equations, see
[1, 2, 8, 10, 12, 13, 16, 17, 19, 20, 21, 25, 26, 27, 28] and the references therein.

Note that the existence, uniqueness, regularity and numerical approximate so-
lution of the version of stochastic Cahn-Hilliard equation have attracted much at-
tentions [9, 15, 30]. As we known, there are few mathematical researches for the
phase separation of multi-component systems. For the phase separation of a multi-
component alloy by the finite element method, we refer the readers to [3, 4, 5, 6].
For the phase separation of multi-component mixture with interfacial free energy,
Elliott and Luckhaus[11] studied a nonlinear multi-component diffusion equation in-
corporating uphill diffusion and capillarity effects. Moreover, Elliott and Garcke[12]
derived a model of fourth-order degenerate parabolic partial differential equations
for the phase separation in multi-component systems by considering the possibility
of a concentration dependence of the mobility matrix. It is worth pointing out that
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they also showed some properties of the model and proved a global existence result
for the degenerate system.

Based on the equilibrium phase transition dynamics theory established by Ma
and Wang [22, 23], we derive a fourth-order quasi-linear dynamic model for phase
separation of multi-component system with Ginzburg-Landau free energy. The
fourth-order quasi-linear dynamic equations can be expressed as follows

∂uk
∂t

= Di[aklij (x,u,∇u, D2u)Dj∆ul]− fk(x,u,∇u,∆u), (1.1)

with the initial-boundary value conditions

u(x, 0) = ϕ(x), (1.2)

u|∂Ω = 0, ∆u|∂Ω = 0, (1.3)

and the physical condition ∫
Ω

udx = 0, (1.4)

where Ω ⊂ Rn is a bounded open set, u = (u1, u2, . . . , um) (m ≥ 2) is the unknown
function, 1 ≤ k, l ≤ m, 1 ≤ i, j ≤ n. The boundary conditions (1.3) show that
there is no component on the boundary. And the physical condition (1.4) indicates
that the system satisfies the certain physical conservation laws.

When u is in equilibrium state, i.e., ∂u∂t = 0, the corresponding stationary equa-
tions of (1.1)–(1.4) can be expressed as

Di[aklij (x,u,∇u, D2u)Dj∆ul]− fk(x,u,∇u,∆u) = 0,

u|∂Ω = 0, ∆u|∂Ω = 0,∫
Ω

udx = 0,

(1.5)

where x ∈ Ω ⊂ Rn, u = (u1, . . . , um), 1 ≤ k, l ≤ m, 1 ≤ i, j ≤ n.
The main aim of this article is to study the existence of global weak solution for

the dynamic system (1.1)–(1.4) and the existence of weak solution for the corre-
sponding stationary equations (1.5). The main techniques are the T -weakly contin-
uous operators theory for the evolution partial differential equations established by
Ma et al [22, 23, 24] and the acute angle principle for weakly continuous operators
proposed by Ma et al [18, 23, 24], respectively.

First, we define the following two spaces, which are crucial to our theorems and
the proofs.

H2 =
{

u ∈ H2(Ω,Rm) :
∫

Ω

udx = 0,u|∂Ω = 0
}
,

X2 =
{

u ∈W 3,2(Ω,Rm) ∩W 2,p2(Ω, Rm) :
∫

Ω

udx = 0,u|∂Ω = 0,∆u|∂Ω = 0
}
,

where p2 > 2.
We make the following assumptions:
(A1) aklij (x, z, ξ, η) and fk(x, z, ξ, η), 1 ≤ k, l ≤ m, 1 ≤ i, j ≤ n, satisfy the

Carathéodory conditions.
(A2) There exists a λ > 0, such that

aklij ζ
k
i ζ

l
j ≥ λ|ζ|2, for any ζ ∈ Rnm\{0}.
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(A3) fk(x, z, ξ, η)(1 ≤ k ≤ m) satisfy the structural conditions

Dηf
k(x, z, ξ, η) ≥ δ > 0,

fk(x, z, ξ, η)ηk ≥ C1|η|p2 − C2,

where δ > 0, C1, C2 ≥ 0 are constants, p2 > 2.
(A4) aklij (x, z, ξ, η) and fk(x, z, ξ, η) satisfy the increasing conditions

|aklij (x, z, ξ, η)| ≤


C(|η|

q3
2 + |ξ|

q2
2 + |z|

q1
2 + 1), n > max{6, 2p2},

µ3(|z|)(|η|
q3
2 + |ξ|

q2
2 + 1), max{4, p2} < n < max{6, 2p2},

µ4(|ξ|, |z|)(|η|
q3
2 + 1), p2 < n < max{4, p2}.

|fk(x, z, ξ, η)| ≤


C(|η|

q3
p2 + |ξ|

q2
p2 + |z|

q1
p2 + 1), n > max{6, 2p2},

µ1(|z|)(|η|
q3
p2 + |ξ|

q2
p2 + 1), max{4, p2} < n < max{6, 2p2},

µ2(|ξ|, |z|)(|η|
q3
p2 + 1), p2 < n < max{4, p2}.

where C > 0 is a constant, µi(i = 1, 2, 3, 4) are monotonically increasing
and continuous functions. q1 < max{ 2n

n−6 ,
np2
n−2p2

}, q2 < max{ np2
n−p2 ,

2n
n−4},

q3 < max{p2,
2n
n−2}.

For the stationary equations (1.5), we have the following existence result.

Theorem 1.1. Assume that (A1)–(A4) hold, then (1.5) have at least one weak
solution u ∈ X2.

For the evolution equations (1.1)–(1.4), the structural condition (A3) can be
replaced by the following condition:

(A3’) fk(x, z, ξ, η)(1 ≤ k ≤ m) satisfy the structural condition

fk(x, z, ξ, η)ηk ≥ C1|η|p2 − C2(|η|2 + |ξ|2 + |z|2)− g1(x),

where C1, C2 ≥ 0 are constants, p2 > 2, g1(x) ∈ L1(Ω).

Now, we give the existence of global weak solution for system (1.1)–(1.4).

Theorem 1.2. Let ϕ ∈ H2, and (A1), (A2), (A3’) (A4) hold. Then (1.1)–(1.4)
have at least one global weak solution

u ∈ Lploc((0,∞), X2) ∩ L∞loc((0,∞), H2).

Remark 1.3. Here we need to introduce the space mentioned in Theorem 1.2. For
a Banach space X, we let

Lp((0, T ), X) =
{
u : (0, T )→ X :

(∫ T

0

‖u‖pdt
)1/p

<∞
}
,

where p = (p1, p2, . . . , pm), pi ≥ 1 (1 ≤ i ≤ m), ‖u‖p =
∑m
i=1 |u|

pi

i , | · |i is the
semi-norm in X and ‖ · ‖X =

∑m
i=1 | · |i.

Then we can define

Lploc((0,∞), X) = {u(t) ∈ X : u ∈ Lp((0, T ), X), for any T > 0}.

Remark 1.4. According to the definition of the space Lp((0, T ), X), it is easy to
see that p = (2, p2) in Theorem 1.2.
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The rest of this paper is organized as follows. The preliminaries, the acute angle
principle for weakly continuous operators and the T -weakly continuous operators
theory for parabolic equations are given in Section 2. In Section 3, we first introduce
some basic physical quantities and then derive the fourth-order quasi-linear dynamic
equations of phase separation of multi-component system. Section 4 is devoted to
proving the main results.

2. Preliminaries

In this section, we introduce the acute principle for the weakly continuous op-
erators and the T -weakly continuous operators theory for the evolution equations
respectively.

2.1. Acute angle principle for weakly continuous operators. Weakly con-
tinuous operators theory is a useful tool to solve the existence of elliptic equations
[14]. Here, we mainly introduce the definition and the acute angle principle for
weakly continuous operators proposed by Ma in [23, 24].

Let X be a linear space and X1, X2 be the completion of X with the norm
‖ ·‖1, ‖ ·‖2, respectively. Let X1 be a separable Banach space and X2 be a reflexive
Banach space. X∗1 is the dual space of X1 and X ⊂ X2. There is a linear operator
L satisfying

L : X → X1 is a one-to-one and dense linear operator.

Definition 2.1. A mapping G : X2 → X∗1 is called weakly continuous. If for any
{un} ⊂ X2, un ⇀ u0 in X2, we have

lim
n→∞

〈G(un), v〉 = 〈G(u0), v〉, for any v ∈ X1.

The following lemma for weakly continuous operator is crucial to our proof.

Lemma 2.2 (Acute angle principle). Suppose that G : X2 → X∗1 is weakly contin-
uous. Let U ⊂ X2 be a bounded open set and 0 ∈ U . If

〈G(u), Lu〉 ≥ 0, for any u ∈ ∂U ∩X,

then the equation G(u) = 0 has a solution in X2.

2.2. T -weakly continuous operators theory for parabolic equations. The
T -weakly continuous operators theory was established by Ma [23], which can effec-
tively solve the global weak solutions for many nonlinear problems [22, 23, 24, 29].

Assume that the nonlinear evolution equations can be expressed as the abstract
form

du

dt
= G̃u, 0 < t <∞,

u(0) = ϕ,
(2.1)

where ϕ ∈ H, H is a Hilbert space. u : [0,∞)→ H is the unknown function.
Let Y1 and Y2 be Banach spaces, Y1, Y2 ⊂ H and Y ∗1 be the dual space of Y1.
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Basic definitions and lemmas. First, we introduce the definition of global weak
solution for the equations (2.1).

Definition 2.3. Let ϕ ∈ H. u ∈ Lploc((0,∞), Y2)∩L∞loc((0,∞), H) is called a global
weak solution of (2.1), if u satisfies the following equality:

〈u(t), v〉H =
∫ t

0

〈G̃u, v〉dτ + 〈ϕ, v〉H .

for any v ∈ Y1 ⊂ H.

Next we give the definitions of uniformly weak convergence and T -weak conti-
nuity.

Definition 2.4. Let {un} ⊂ Lp((0, T ), Y2), u0 ∈ Lp((0, T ), Y2). We say that
un ⇀ u0 in Lp((0, T ), Y2) is uniformly weakly convergent, if {un} ⊂ L∞((0, T ), H)
is bounded and satisfies

un ⇀ u0 in Lp((0, T ), Y2),

lim
n→∞

∫ T

0

|〈un − u0, v〉H |2dt = 0, for any v ∈ H.

Definition 2.5. A mapping G̃ : Y2 × (0,∞) → Y ∗1 is called T -weakly continuous.
If for any p = (p1, p2, . . . , pm), 0 < T < ∞ and un ⇀ u0 is uniformly weakly
convergent in Lp((0, T ), Y2), we have

lim
n→∞

∫ T

0

〈G̃un, v〉dt =
∫ T

0

〈G̃u0, v〉dt, for any v ∈ Y1.

The following two elementary lemmas will be used later. Their proofs can be
found in [23] .

Lemma 2.6. Let Ω ⊂ Rn be a bounded set, {un} ⊂ Lp((0, T ),W s,p(Ω))(s ≥
1, p ≥ 2) be a bounded sequence and {un} is uniformly weakly convergent to u0 ∈
Lp((0, T ),W s,p(Ω)). Then for any |α| ≤ s− 1, we have

Dαun → Dαu0 in L2((0, T )× Ω).

Lemma 2.7. Let Ω ⊂ Rn be an open set, the function f : Ω × RN → R1 satisfy
the Carathéodory conditions and

|f(x, ξ)| ≤ C
N∑
i=1

|ξi|pi/p + b(x),

where C > 0 is a constant and pi, p > 1, b(x) ∈ Lp(Ω).
If {uik} ⊂ Lpi(Ω) (1 ≤ i ≤ N) is bounded and {uik} converges to {ui} by

measure in Ω0 for any bounded subregion Ω0 ⊂ Ω, then for any v ∈ Lp
′
(Ω), we

have

lim
k→∞

∫
Ω

f(x, u1k
, . . . , uNk

)v dx =
∫

Ω

f(x, u1, . . . , uN )v dx,

where p′ satisfies 1
p′ + 1

p = 1.
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Existence of a global weak solution for nonlinear parabolic equations.
First, we introduce the following function spaces

Y ⊂ Y2 ⊂ Y1 ⊂ H,
Y2 ⊂ H2 ⊂ H1 ⊂ H,

where Y is a linear space, Y1, Y2 are Banach spaces, H,H1 and H2 are Hilbert
spaces. We remark that all inclusion relations are dense embedding.

Moreover, suppose that there exists an operator L satisfying the following con-
ditions

L : Y → Y1 is a one-to-one and dense linear operator,

〈Lu, v〉H = 〈u, v〉H2 , for any u, v ∈ Y.
(2.2)

In addition, there exists a sequence {ek}∞k=1 ⊂ Y such that

Lek = ρkek, k = 1, 2, . . . , (2.3)

where ρk 6= 0, {ek}∞k=1 is the common orthogonal basis of H.
Here we also assume that G̃ : Y2× (0,∞)→ Y ∗1 satisfies the following inequality,

〈G̃u, Lu〉 ≤ −C1‖u‖pY2
+ C2‖u‖2H2

+ f(t), (2.4)

where p = (p1, p2, . . . , pm), pi > 1 (1 ≤ i ≤ m), ‖u‖pY2
=
∑m
i=1 |u|

pi

i , | · |i is the
semi-norm in Y2, ‖u‖Y2 =

∑m
i=1 |u|i, C1, C2 > 0 are constants, f ∈ L1

loc(0,∞).
Then we give the following existence result of global weak solutions for the

nonlinear parabolic equations (2.1).

Lemma 2.8. Assume that (2.2)–(2.4) hold. If G̃ : Y2 × (0,∞) → Y ∗1 is T -weakly
continuous, then problem (2.1) has a global weak solution

u ∈ Lploc((0,∞), Y2) ∩ L∞loc((0,∞), H2)

for any ϕ ∈ H2.

3. Dynamic equations of phase separation of multi-component system

In this section, we devote to deriving the new dynamic model (1.1)–(1.4) of phase
separation of multi-component system by using the equilibrium phase transition
dynamics theory founded by Ma and Wang[22].

3.1. Basic physical quantities. Let Σ be a multi-component system mixed by
m+ 1 different kinds of components A1, . . . , Am+1 (m ≥ 2). uk (1 ≤ k ≤ m+ 1) is
the molar density of Ak, i.e.,

uk(x) = the molar number of Ak in unit volume at x ∈ Ω.

Note that u1, . . . , um+1 satisfy the relation

u1 + u2 + · · ·+ um+1 = constant.

It is worth noticing that the order parameter u contains only m independent vari-
ables, i.e., u = (u1, u2, . . . , um). In fact u = (u1, u2, . . . , um) is the unknown
function.

Based on the physical experiments, this system is also related to the tempera-
ture T and the container volume |Ω|. Hence, we regard T and |Ω| as the control
parameters. More generally, the control parameter can be expressed as

κ = (T, |Ω|, ω1, . . . , ωm),
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where ωk is the proportion of Ak in the multi-component system.

3.2. A new dynamic model. In this subsection, we are focused on obtaining the
dynamic equations (1.1) for the order parameter u.

According to the Ginzburg-Landau mean field theory, the free energy of a m+1-
components system(see[22]) can be expressed as

H(u, κ) =
∫

Ω

[1
2

m∑
k=1

µk|∇uk|2 + g(u, κ)
]
dx, (3.1)

where µk = µk(κ) ≥ 0 is the physical parameter. g(u, κ) is a polynomial on u,
which can be given by

g(u, κ) =
∑

1≤|γ|≤2r

aγu
γ1
1 u

γ2
2 . . . uγm

m , γ = (γ1, γ2, . . . γm). (3.2)

Based on the equilibrium phase transition dynamics theory (see[22]), the follow-
ing dynamic equations can be deduced from (3.1)–(3.2):

∂uk
∂t

= −βk∇ ·
[ m∑
l=1

Lkl∇(µl∆ul − gl(u, κ))
]

+∇ ·
( m∑
l=1

Lkl∇φl(u, κ)
)
,

(3.3)

where βk > 0, Lkl = Lkl(u, Du) (1 ≤ k, l ≤ m) is positive and symmetric, and
gl(u, κ) = ∂

∂ul
g(u, κ). φl is independent of ul and satisfies∫

Ω

m∑
k,l=1

Lkl∇(µk∆uk − gk) · ∇φldx = 0, (3.4)

where gk(u, κ) = ∂
∂uk

g(u, κ).
In this paper, we consider the more general case that the equations (3.3) are

quasi-linear. Meanwhile, we take φl(u, κ) = 0 in (3.3) and (3.4), which has no ma-
terial impact to the main characteristics of this physical system. Furthermore, we
supplement with the initial-boundary conditions (1.2)–(1.3) and the physical con-
servation laws condition (1.4). Therefore, we obtain the modified dynamic model
(1.1)–(1.4), which is a fourth-order quasi-linear evolution partial differential equa-
tions.

4. Proofs of main results

4.1. Proof of Theorem 1.1. Now we will apply Lemma 2.2 and Lemma 2.7 to
prove the existence of a weak solution for the steady state equations (1.5). We will
prove Theorem 1.1 in three steps.
Step 1. Define the operator G. Let

X =
{

u ∈ C∞(Ω,Rm) :
∫

Ω

udx = 0,u|∂Ω = 0,∆u|∂Ω = 0
}
,

X1 = {u ∈ C∞(Ω,Rm) : u|∂Ω = 0},

X2 =
{

u ∈W 3,2(Ω,Rm) ∩W 2,p2(Ω,Rm) :
∫

Ω

udx = 0,u|∂Ω = 0,∆u|∂Ω = 0
}
.
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According to the general definition of weak solution, we define the operator G :
X2 → X∗1 by the inner product from

〈Gu,v〉 =
∫

Ω

[aklij (x,u,∇u, D2u)Dj∆ulDivk + fk(x,u,∇u,∆u)vk]dx,

where v = (v1, v2, . . . , vm) ∈ X1, X∗1 is the dual space of X1. From (A4), it is easy
to show that the operator G is a bounded operator.
Step 2. Check the conditions for the acute angle principle. Let L = ∆ : X → X1.
The conditions (A2) and (A3) imply that

〈Gu,∆u〉 =
∫

Ω

[aklij (x,u,∇u, D2u)Dj∆ulDi∆uk + fk(x,u,∇u,∆u)∆uk]dx

≥ λ
∫

Ω

|∇(∆u)|2dx+ C1

∫
Ω

|∆u|p2dx− C2.

(4.1)
By (4.1), it is clear that

〈Gu,∆u〉 ≥ 0, for any u ∈ X2 and ‖u‖X2 is large enough,

which implies that the operator G : X2 → X∗1 satisfies the condition of Lemma 2.2.

Step 3. Verify the weak continuity of the operator G. Let {un} ⊂ X2, un ⇀ u0

in X2. Based on the Definition 2.1, we only need to prove that the following limit
holds

lim
n→∞

∫
Ω

[aklij (x,un,∇un, D2un)Dj∆unlDivk + fk(x,un,∇un,∆un)vk]dx

=
∫

Ω

[aklij (x,u0,∇u0, D
2u0)Dj∆u0lDivk + fk(x,u0,∇u0,∆u0)vk]dx.

(4.2)

for any v ∈ X1.
We should divide (4.2) into the following two parts.

lim
n→∞

∫
Ω

fk(x,un,∇un,∆un)vkdx =
∫

Ω

fk(x,u0,∇u0,∆u0)vkdx, (4.3)

lim
n→∞

∫
Ω

aklij (x,un,∇un, D2un)Dj∆unlDivkdx

=
∫

Ω

aklij (x,u0,∇u0, D
2u0)Dj∆u0lDivkdx.

(4.4)

By the compact embedding theorem, it is easy to check the following relations

(un, Dun, D2un)→ (u0, Du0, D
2u0) in


Lq1 × Lq2 × Lq3 ,
C0 × Lq2 × Lq3 ,
C0 × C0 × Lq3 ,

(4.5)

where q1 < max{ 2n
n−6 ,

np2
n−2p2

}, q2 < max{ np2
n−p2 ,

2n
n−4}, q3 < max{p2,

2n
n−2}. Combin-

ing (A4), (4.5) and Lemma 2.7, it is easy to see that (4.3) is valid.
Notice that (4.4) is equivalent to

lim
n→∞

∫
Ω

[aklij (x,un,∇un, D2un)Dj∆unl

− aklij (x,u0,∇u0, D
2u0)Dj∆u0l]Divkdx = 0.

(4.6)
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Moreover, the left part of (4.6) can be rewritten as

lim
n→∞

∫
Ω

[aklij (x,un,∇un, D2un)Dj∆unl

− aklij (x,u0,∇u0, D
2u0)Dj∆u0l]Divkdx

= lim
n→∞

{∫
Ω

[aklij (x,un,∇un, D2un)− aklij (x,u0,∇u0, D
2u0)]Dj∆unlDivkdx

+
∫

Ω

aklij (x,u0,∇u0, D
2u0)[Dj∆unl −Dj∆u0l]Divkdx

}
.

(4.7)
Analogously, under the assumption (A4), we get following equality basing on (4.5)
and Lemma 2.7,

lim
n→∞

∫
Ω

[aklij (x,un,∇un, D2un)

− aklij (x,u0,∇u0, D
2u0)]Dj∆unlDivkdx = 0.

(4.8)

For the second term on the right hand of (4.7), it is not difficult to derive the
following result from un ⇀ u0 in X2,

lim
n→∞

∫
Ω

aklij (x,u0,∇u0, D
2u0)[Dj∆unl −Dj∆u0l]Divkdx = 0. (4.9)

Obviously, (4.8) and (4.9) infer that (4.4) holds true. Then the weak continuity of
the operator G : X2 → X∗1 is obtained.

Therefore, we can immediately get that problem (1.5) has a weak solution by
using Lemma 2.2.

4.2. Proof of Theorem 1.2. We now apply Lemma 2.8 to prove the system (1.1)–
(1.4) has a global weak solution. The proof is divided into three steps.

Step 1. Define the operator G̃. Let

X =
{

u ∈ C∞(Ω,Rm) :
∫

Ω

udx = 0,u|∂Ω = 0,∆u|∂Ω = 0
}
,

X1 = {u ∈ C∞(Ω,Rm) : u|∂Ω = 0},

X2 =
{

u ∈W 3,2(Ω,Rm) ∩W 2,p2(Ω, Rm) :
∫

Ω

udx = 0,u|∂Ω = 0,∆u|∂Ω = 0
}
,

H =
{

u ∈ L2(Ω,Rm) :
∫

Ω

udx = 0
}
,

H1 =
{

u ∈ H1(Ω,Rm) :
∫

Ω

udx = 0,u|∂Ω = 0
}
,

H2 =
{

u ∈ H2(Ω,Rm) :
∫

Ω

udx = 0,u|∂Ω = 0
}
.

According to the Definition 2.3, we define the operator G̃ : X2 × (0,∞) → X∗1 by
the inner product form

〈G̃u,v〉 =
∫

Ω

[−aklij (x,u,∇u, D2u)Dj∆ulDivk − fk(x,u,∇u,∆u)vk]dx,

where v ∈ X1. By assumption (A4), it is easy to check that the G̃ is a bounded
operator.
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Step 2. Check conditions (2.2)–(2.4). Let L = ∆ : X → X1. It is obvious that
(2.2) and (2.3) are valid. It follows from assumptions (A2) and (A3’) that

〈G̃u,∆u〉

=
∫

Ω

[−aklij (x,u,∇u, D2u)Dj∆ulDi∆uk − fk(x,u,∇u,∆u)∆uk]dx

≤ −λ
∫

Ω

|∇(∆u)|2dx− C1

∫
Ω

|∆u|p2dx

+ C2

∫
Ω

(|∆u|2 + |∇u|2 + |u|2)dx+
∫

Ω

g1(x)dx,

(4.10)

which implies that (2.4) holds true.

Step 3. Verify the condition for the T -weak continuity of the operator G̃. Let
{un} ⊂ Lp((0, T ), X2) ∩ L∞((0, T ), H2), un ⇀ u0 in Lp((0, T ), X2) be uniformly
weakly convergent. By definition 2.5, we only need to show the following limit
holds,

lim
n→∞

∫ t

0

∫
Ω

[−aklij (x,un,∇un, D2un)Dj∆unlDivk

− fk(x,un,∇un,∆un)vk] dx dτ

=
∫ t

0

∫
Ω

[−aklij (x,u0,∇u0, D
2u0)Dj∆u0lDivk

− fk(x,u0,∇u0,∆u0)vk] dx dτ.

(4.11)

Obviously, (4.11) can be divided into the following two parts.

lim
n→∞

∫ t

0

∫
Ω

fk(x,un,∇un,∆un)vk dx dτ

=
∫ t

0

∫
Ω

fk(x,u0,∇u0,∆u0)vk dx dτ.
(4.12)

lim
n→∞

∫ t

0

∫
Ω

aklij (x,un,∇un, D2un)Dj∆unlDivk dx dτ

=
∫ t

0

∫
Ω

aklij (x,u0,∇u0, D
2u0)Dj∆u0lDivk dx dτ.

(4.13)

Owing to {un} ⊂ Lp((0, T ), X2) ∩ L∞((0, T ), H2), un ⇀ u0 in Lp((0, T ), X2) is
uniformly weakly convergent, we can derive the following convergence properties
by using the Lemma 2.6,

un → u0 in L2((0, T )× Ω),

Dun → Du0 in L2((0, T )× Ω),

D2un → D2u0 in L2((0, T )× Ω),

(4.14)

which infer that {un}, {Dun} and {D2un} converge to u0, Du0 and D2u0 by
measure in Ω × (0, T ), respectively. Then, together the assumption (A4) with
Lemma 2.7, we see that (4.12) holds.
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Note that (4.13) is equivalent to

lim
n→∞

∫ t

0

∫
Ω

[aklij (x,un,∇un, D2un)Dj∆unl

− aklij (x,u0,∇u0, D
2u0)Dj∆u0l]Divk dx dτ = 0.

(4.15)

Furthermore, the left part of (4.15) can be rewritten as

lim
n→∞

∫ t

0

∫
Ω

[aklij (x,un,∇un, D2un)Dj∆unl

− aklij (x,u0,∇u0, D
2u0)Dj∆u0l]Divk dx dτ

= lim
n→∞

{∫ t

0

∫
Ω

[aklij (x,un,∇un, D2un)

− aklij (x,u0,∇u0, D
2u0)]Dj∆unlDivk dx dτ

+
∫ t

0

∫
Ω

aklij (x,u0,∇u0, D
2u0)[Dj∆unl −Dj∆u0l]Divk dx dτ

}
.

(4.16)

Combining assumption (A4), (4.14) and Lemma 2.7, it is clear that

lim
n→∞

∫ t

0

∫
Ω

[aklij (x,un,∇un, D2un)

− aklij (x,u0,∇u0, D
2u0)]Dj∆unlDivk dx dτ = 0.

(4.17)

Because un ⇀ u0 in Lp((0, T ), X2) which is uniformly weakly convergent, it is
easy to see that the following limit holds

lim
n→∞

∫ t

0

∫
Ω

aklij (x,u0,∇u0, D
2u0)[Dj∆unl −Dj∆u0l]Divk dx dτ = 0. (4.18)

Note that (4.17) and (4.18) imply that (4.13) holds. Hence, G : X2×(0,∞)→ X∗1
is T -weakly continuous.

Consequently, from Lemma 2.8, we can easily obtain that problem (1.1)–(1.4)
has one global weak solution

u ∈ Lploc((0,∞), X2) ∩ L∞loc((0,∞), H2).
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