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MULTI-TERM FRACTIONAL-ORDER BOUNDARY-VALUE
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ABSTRACT. In this article, we introduce a class of multi-term fractional-order
boundary-value problems involving nonlocal integral boundary conditions. Ex-
istence results for the given problem are obtained by means of standard tools
of fixed point theory. The results are illustrated with the aid of examples and
make a useful contribution to the existing literature on the topic.

1. INTRODUCTION

Fractional differential equations arise in the mathematical modeling of many
engineering and scientific disciplines such as biophysics, bio-engineering, virology,
control theory, signal and image processing, blood flow phenomena, etc. A huge
amount of mathematically and physically interesting works published in recent
years, including several excellent monographs, clearly reflects the overwhelming
interest in the topic. For details we refer the reader the texts [8, [12] 17, 19, 20] and
references cited therein.

Nonlocal boundary-value problems of fractional-order differential equations and
inclusions have received significant attention. One can witness a great deal of work
on the topic involving different kinds of boundary conditions in the literature, for
example, see [1L [3] [7, 9, [T} 18] and the references cited therein.

There is another class of differential equations containing more than one fractional-
order differential operators. Such equations appear in the modeling of the motion
of a rigid plate immersed in a Newtonian fluid. Other typical examples include
Bagley-Torvik [22] and Basset equation [I6]. Some recent results on multi-term
fractional differential equations can be found in the articles [0} 2, 4] [5] [14] 21].

In this article, we introduce and investigate the following nonlinear multi-term
fractional order boundary value problem with nonlocal integral conditions:

(p2°D° 2 4 pi°D°FY 4+ poDO)a(t) = f(t,x(t)), 0<d<1,0<t<1, (L1

2(0) =0, 2(6)=0, z(1)= A/OU w(s)ds, O<o<E<1, A\eR, (12)
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where ¢D? denote the Caputo fractional derivative of order &, f:[0,1] x R — R is
a given continuous functions, and p;,j = 0,1, 2 are real constants.

Existence results for problem — are obtained with the help of Kras-
noselskii fixed point theorem and Leray-Schauder nonlinear alternative, while the
uniqueness result is proved via Banach contraction mapping principle. These re-
sults are presented in Section 3. Some preliminary concepts and lemmas are given
in Section 2. The obtained results are well illustrated by examples.

2. PRELIMINARY CONCEPTS AND BASIC RESULT

We begin this section with some definitions [12].
Definition 2.1. The Riemann-Liouville fractional integral of order 7 > 0 for a

function h : [0,1] — R with h € L(0, 1) is defined by

I'h(u) = /Ou W;(v:;_h(v)dv, for a.e, u € [0, 1], (2.1)

where I' is the Gamma function.

Definition 2.2. The Caputo derivative of order 7 € (n — 1,n) for a function
h:]0,1] — R with h € C™[0, 1] is defined by

“D7h{u) = F(nl— T) /0 (u ﬁ(vigi)l—n dv=1""h"(u), u>0.
Property 2.3. With the given notations, the following equality holds:
I"(°D™h(u)) = h(u) —co —cru— -+ —cpu™ ', u>0,n—1<7<n, (2.2)
where ¢; (i =1,...,n — 1) are arbitrary constants.

To define the solution for problem ([1.1)-(1.2)), we consider its linear variant in
the following lemma.

Lemma 2.4. Let pg, p1,p2 be positive constants such that pi% — 4pops > 0 and y €
C(0,1) N L(0,1). Then the solution of the linear multi-term fractional differential
equation

(p2° D2 4 p1 oD 4 pocDO)a(t) = y(t), 0<d<1,0<t<1, (2.3)
supplemented with the boundary conditions (1.2)) is given by
x(t)

tors s — )1
pz(mzl—ml){/o /0 (I)(t)(r(é))y(u)duds

§ s (s—u)éfl

+p1(t) A @(g)wy(u)duds (2.4)
1 rs s— )51

smo[ [ [ @<1>(F(5))y(u>duds

o s (gma(o—s) _ ema(o—s) _ s — )1
_)\/0/0<( ma 2 m 1))( r(a)) y(u) duds| }.
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where
D(k) = em2(h=s) _ gmilk—s) o — t,1,&,

_ —p1—\/pT — 4pops _—p1+\/pT — 4pop2
= mo = )

m b
' 2p2 2p2
w401(t) — w302(t) w1 0(t) — wa01 (¢)
pl(t) = , pQ(t) — ,
H1 I
my(1 — e™2t) — my(1 — g™t
o1(t) = ( ) ( )’
mi1mso
02(t) = p2(ma — ml)(em2t _ emlt)7
1 — ¢m1é) — 1 — ¢m2§ 2.5
H1 = wiwg — wawsz # 0, w1:m2( e™®) —my( e )7 (2.5)
mimso

wa = pa(my —my) (™ — ™),
w3 = (m2(1 — ™ — Ao+ A/my(e™7 — 1))
=i (1= €™ = 2o+ A/ma(e"27 = 1)) ) /(mym3),
wi = pa(ma = my) (€™ + A /m (1= ™))
— (€™ + \/ma(1 — emza))).

Proof. Applying the operator I° on (2.3 and using Property (2.3, we get

t _86—1
<WM+mD+mmw=A‘ﬂ@§

where ¢; is an arbitrary constant. By the method of variation of parameters, the
solution of (2.6)) can be written as

1 ¢ S (s —u)t
x(t) = o™t + ¢ emzt—i/ em1(t=s) / ~———y(u)du +c; )ds
(t)=c 3 = | (0 OB 1)

' (s —u)t
*mmiwnlymmmﬂ(lﬁgywwwqﬁa

where m1 and mqy are given by (2.5). Using x(0) = 0 in (2.7)), we get

1 — emit) — 1 — emat
2(t) = &1 [mz( et —mi(l—e )} +62(em1t_6m2t)
p2m1m2(m2 - ml)

' $(s—wu)t
o e [ 8 g
(2.8)

which together with the conditions z(¢) = 0 and z(1) = X ] #(s)ds yields the
following system of equations in the unknown constants c¢; and cs:

y(s)ds + ¢1, (2.6)

(2.7)

clwy + cowo = V7, (29)
C1W3 + Ccowy = ‘/2 (210)

where
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— )1
Vo = // (s 1; y(u) duds

(emilr=s) _ ema(o—s) _ s )il
_ )\/0 /0 - D _( 1)} ( ) y(u) duds.

mo I‘((S)
Solving system (2.9))-(2.10) and using (2.5]), we find that
Viwg — Vaws Vowi — Viws
(g =—"-—/"-, g= —-——7-—.
H1 H1

Substituting the value of ¢; and ¢y in (2.8), we obtain the solution (2.4). The
converse of the lemma follows by direct computation. This completes the proof. [

Remark 2.5. (i) When p;2 — 4pgps = 0 the solution of ([2.3) equipped with con-

dition is
p2 // S_U5 1 y(u) duds
+Fxalt / / S_rZs))é () duds o

+ ot // (s—w l(u)duds

_/\/ m(o — s)e™ " 9)— m("_s)+1>(S—U)‘5_1y(u)duds}},

m? INE))
where
U(k) = (k—s)e™F™) k=t1¢,
Y
2py
Tw3U2 t T4V, t (=hX%] t — W1V t
() = (t) ()’ Yalt) = (t) ()’
M2 H2
mte™ —e™ + 1 m
Ul(t) = 2 ) UQ(t) = the tv
m (2.12)
méemE — e™ + 1 me
w = 3 , W2 = P2§e

m
m2e™ — me™ +m — moe™’ + 2™’ — 2 — mo
ms3

m2e™ — Amoe™? 4+ Ae™% — A

Wy = P2 m2 )

po = w14 — waws 7 0;

(ii) When p12 — 4pgp2 < 0 the solution of (2.3) equipped with condition (1.2) is

— )
pb // zw’™ y(u) duds
2

§ s—u)‘s L
wn [ [ ot m) y(u) duds

+T2(t)[/01/0 (1 6 " y(u) duds

)
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- ﬁ / (b + be= 7% cosb(o — s)
0

—ae= "= ginb(o — s)) (SI‘(?;lZJ(U) du ds} },

where
Q(k) = e " sinb(k —s) Kk =1t1,¢,
/4 — 2
mie=—axbi, a= p—l, p= VPOP2 TP ,
2p2 2p2
t) — t t) — t
n(t) = qsv2(t) — qav ( )’ a(t) = g2v1(t) — qava( )’
3 M3
b+ be~ % cos bt — ae” % sin bt Cat
v (t) = pr— , va(t) = pabe™ ' sin bt
b — be~% cos b¢ — ae ™ sin b¢ et (2.13)
Q= 2P . G2 = pabe” “CsinbE,
qs = o [b —be “cosb—ae “sinb — bro + L(a —ae” %7 cosbo
a? + b2 a? + b2
a

+ be” % sinbo) + (b — be™* cosbo — ae™? sin bg)} )

a? +b?
A

qa = p2b {6_“ sinb — m(b — be™ % cosbo — ae” 7 sin ba)} )

13 = q1qa — 293 # 0.

3. EXISTENCE AND UNIQUENESS RESULTS

Denote by C = C([0,1],R) the Banach space of all continuous functions from
[0,1] — R endowed with the norm defined by |z| = sup{|z(¢)| : t € [0,1]}. By
Lemma we can transform problem (L.I)-(1.2) into a fixed point problem as
follows:

(i) For p12 — 4pgpa > 0, we introduce an operator J : C — C given by

(Jz)(t) = s m27m1) / / w)°'” 1f(u,x(u))ducls
+pa(t /05/0 D¢ 8}(1?)5 1f(u,x(u))duds
+p2(t)[/01/0 <I>(1)S_F(“5)_1f(u,x(u))duds (3.1)
(e oy e o
—A/O S -
1

u)®~

x Wf( o(u >>duds}}

such that
x=Jx. (3.2)

(ii) For p12 — 4pgps = 0, we have an operator equation

x = Hz, (3.3)
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where the operator H : C — C is defined by

" /)/) S_u6 =W o) duds

S—U

)6 1
+ xa1(t / / T0) ————f(u,z(u)) duds (3.4)

+ xalt /(/ (s —w) 1ﬂMAMMM@

- /\/ S r:2_ S 1) - }(?)5_1 fu,z(u)) du dé‘} }

(Ha

(iii) For p12 — 4popa < 0, we have the fixed point problem:
x = Kz, (3.5)

where the operator K : C — C is defined by

t ps s_ué—l
WWF;//WMF&MMWM%

6—1

+7i(t / / (s }(l;)) f(u,z(u)) duds
+ 72(t / / (s =™ —— f(u,z(u)) duds (3.6)
T EZre e /0 (b + beia(a %) cos b(o — S)QE*G(U*S) sinb(o — 5))

(s — u)‘s’l

X Té)f(u,x(u)) du ds} }

Now we set

= = a
p1 tgl[gf]lp()l, P2 = tm[oflpz()l

— 1 _ ,mit 1— mot

€= trglémi]‘mg emt) —mq (1 —e™?Y)|,

a= 1 {5—1—5 p1(ma(1 —e™®) —mq(1 — e™2%))
pgmlmg(mz — ml)I‘(5 + 1)

(3.7)
+ p2[(ma(l —e™) —mq (1 —e™))

o’
mimeso

(i (mao — ™27 + 1) = m3(mio — 7 + 1)),

3

] = o — 3
! p2m1m2(m2 — ml)F(5 + 1)
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also we set
o n S — t
vk = gy el
1
B 1 ~ m o ,m 1 o> m§ _ mé 1
p2m2F(5+1){( + X2)|me e + 1]+ & Xa|mée e™ +1
Ao® %y (3.8)
2677 = 1) = mo(e™ + 1)},
m|
_ |me™ —e™ + 1|
h=p pom®T (5 +1)
and
~ " =~ t
n il e g
1
= 1+ 72)|b—be™* cosb — ae™*sinb
= T ETGT) \F P becosh e sind
+ €971 |b — be ™€ cos b — ae” % sin bE| + LJZ_ Z; (3.9)

x |2ab — (a® + b*)bo — 2abe™* cosbo + (a® — b*)e™*7 sin ba|},

|b —be % cosb — ae *sin b

pob(a? + b2)I'(6+ 1)
Now we discus the existence and uniqueness of solutions for the problem —
by using the standard fixed point theorems. We give the details for the case
where p;? — 4pgps > 0, while the details for other two cases p12 — 4pope = 0 and
p12 — 4pops < 0 can be completed in a similar manner.

Our first result is based on Krasnoselskii’s fixed point theorem, which is stated
below.

"M==

Theorem 3.1 ([I3]). Let Y be a bounded, closed, convex, and nonempty subset
of a Banach space X. Let Ay, As be the operators such that (i) Ajx + Ay € M
whenever x,y € Y; (it) Ay is compact and continuous; and (iii) Az is a contraction
mapping. Then there exists w € Y such that w = Ajw + Aqw.

Theorem 3.2. Let f : [0,1] x R — R be a continuous function satisfying the
conditions:

(A1) |f(t,x) — f(t,y)| < llx —y| for allt € [0,1], z,y €R, £ > 0;
(A2) |f(t,z)] < 6(t), for all (t,x) € [0,1] x R and 6 € C([0,1],RT).
Then problem — with p? — 4pope > 0, has at least one solution on [0,1] if
log < 1, (3.10)
where o s given by .
Proof. Setting sup,¢(o 17 [0(t)| = [|0]], we can fix

16l
r >
~ pamima(mg —mq)T'(6 + 1)

{e+EPma(1 = e™) 4 my(1 - 29

o’|A|

2 _ _,mao 1 (311)
TP i mae — 77 1)

£ o [(ma(1 = ™) — (1= &™) ¢

—m3(myo — ™7 4 1))} },
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and consider B, = {z € C : ||z|| < r}. Introduce the operators [J; and J5 defined
on B, as follows:

(Jhx)(t) = N p— / / f(u, z(u)) duds, (3.12)
(Joz)(t) = (m2 ) P1 / / 6 f(u, x(u)) duds
+ p2(t) ‘I’(l)if(u’m(u» du ds
95 win

mg(a s) _ mi(oc—s) _ 1
YL >_ ( )
0 Jo mi

x S‘Fg“;))f( o(u ))duds]}

Observe that J = J1 + J2. For z,y € B,., we have

|71z + T2yl

= S [(J2)(t) + (T29) (D)

§p2(m2_m1 t:]i(l)pl // 6 |f(u,x(u))|duds
+lpa(t I// = () duds
+1pa(0) / [ e B ) duas
+\>\|/ / (o= - >_<em1<:>—1>)

S—U

xww y(u >|duds}}

9]l 5/t (t—s) (t—s)
< sup 4t M2 8) — m1tT8) ) dg
p2(ma —m1)I'(0 + 1) 4eo, 1]{ 0 ( )

+ &1 ()] / (cmate=s) — eme=)as
0

1
a0l [ (e - em =9}
0

T e L]

ma my
< 191 {5+ﬁ1§6(m2(1—emlé)—ml(l—emﬁ))
~ pamima(mg —m1)T(5 + 1)
+ p2[(ma(l —e™) —mq(1—e™))
ity

mims

(m?(mgo — ™2 + 1) —mg(mla—emlg—kl))]} <,
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where we used (3.11)). Thus Jix + Joy € B,. Using the assumption (A1) together
with (3.10]), we show that J> is a contraction as follows:

| T2z — Ty
= sup [(Jox)(t) — (J2y)(1)]
tel0,1]
51
= palmz —m) Pz(m2—m1) tzl[épl Ipr(t |/ / 5
X | f (u, 2 »y(u))| duds

s—u‘S 1
T Jpal®) / / BT () — Fu, y(u))| duds

(em2(o—5) _ emi(o—s) _ s — )81
+\A|// 1)_( - 1))( 1“(5))

< | (u, w(w) - f(w(u >|duds}}

<t s (el [ * (ermae=n) _ emie=n)
= p2(ma —m1) yejo]

+ |pa(t) // ’"2(1 s) — m1(15>ds

+ [Ao? /0 (( VI Clle i 1))d8}}Hw—yH

ma mi
/

< p2m1m2(m2 — m1)I‘(6 + 1) {ﬁ1§5(m2(1 — emlé) _ ml(l _ eng))

o’ |Al

+ p2[(ma(1 —e™) —my(1 —e™)) + mim

(ml(mga e +1)

—m3(mo — ™ +1)] bz~ y]
= lan[lz —yl|.
Note that continuity of f implies that the operator [J; is continuous. Also, J; is
uniformly bounded on B, as
16]le
pamima(mg —m)T(6 + 1)

[Tzl = sup [(Jrz)(t)] <
t

Now we prove compactness of operator J1. We define sup, ,)e0,1)x 5, |f(t, )| =
f. Thus, for 0 < t; <ty < 1, we have

[(Jh@)(t ) (Jrz)(t
tl s—u)!
p2 mo —my) ’/ / @(t2) — )} ( F((S)) fu,z(u))duds

+/tt/0 Q(tz)_r(Tf(u,x(u))duds‘
= pamima(ims im1>r<5 n 1>{(t5 £5) (ma(1 - em2 (2=

—mao(1 — eml(“_tl))> + t<15 (ml (eM2t2 — gm2liy gy, (emite emltl))}




10 A. ALSAEDI, N. ALGHAMDI, R. P. AGARWAL, S. K. NTOUYAS, B. AHMAD EJDE-2018/87

—>0, as i1 —>t2,

and is independent of x. Thus, J; is relatively compact on B,. Hence, by the
Arzeld-Ascoli Theorem, J; is compact on B,.. Thus all the assumption of Theorem
(3.1) are satisfied. So by the conclusion of Theorem [3.1] the problem (L.]] .
has at least one solution [0, 1]. The proof is complete.

Remark 3.3. In the above theorem we can interchange the roles of the operators
J1 and J5 to obtain a second result by replacing (3.10)) by the following condition:
le

< 1.
pgmlmg(mg — ml)F(J —+ ].)

Now we apply Banach’s contraction mapping principle to prove existence and
uniqueness of solutions for the problem (|1.1))-(1.2).

Theorem 3.4. Assume that f : [0,1] x R — R is a continuous function such that
(A1) is satisfied. Then there exists a unique solution for the problem (1.1))-(1.2) on
[0,1] if £ < 1/, where « is given by (3.7)).

Proof. Let us define sup,¢jo 11 [ f(¢,0)| = M and select 7 > 2L to show that J By C
By, where Br = {z € C : ||z|| < 7} and J is defined by (3.1). Using the condition
(A1), we have

|f(t,2)] = |f(t,x) = f(£,0) + f(&,0)] < |f(t,2) — f(£,0)] + [ f(z,0)]
<tz + M < €F + M.
Then, for x € By, we obtain
1T (@)l
= sup |J(x)(t)|

te[0,1]

1 5—1
= PQ(mz —mq) ti%pl] / / (5 sy | (wx(u)[ duds
— )Pl
+ |p1(t |/ / (s —u) | f(u,z(u))| duds

T 1pa(d) / / <I>(1)F(51|f(u,x(U))lduds
+|/\|// e S)_l) (eml(z)_1))(3}&);_1|f(u,y(u))duds}}

)

LM {/t (emzms) 7em1<tfs>>(57d5

p2(ma —m1) te(0,1] L@+1)

+1p1()] /§ ( ma(§—s) m1(675)> s° d
e —e ———ds
A A T +1)

+loalo) / (emm - em9) s

omalo—s) _ emi(o—s) _ &0
+|>\|/ D 1)) : )ds]}

mq 1IN +1
(oF + M)
pgmlmg(m2 ) (5 + 1)

(3.14)

{E + 21E0 (ma(1 — ™) —my (1 — e™2%))
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+ p2[(ma(1 —e™) —mi(1 —e™?))
a’| A
mimeso
={r+M)a<T,
which clearly shows that Jx € B; for any x € Br. Thus JB7 C Br. Now, for
x,y € C and for each ¢ € [0, 1], we have
[(Tz) = (Tl
1 (s —u) o-1
< sup / | o0 S 1wt = )] duds

Pz(mz —myq) t€[0,1]

(s —u)~t
o (0) / / S 2(w) — (u, y(uw))] duds

(m (a0 — 727 +1) — m3(mio — e™7 + 1))}

T lpa(®) / / ¢<1>}T)_|f<u,x<u>>—f(wy(u)ﬂduds

mz(o' s) 1) (eml(g*s)fl) (sfu)‘s*l
LU AC )T

X |f (u, x(u) — f(u,y(u))muds]}
/ t 59
< - g emz(tfs) o eml(tfs) 5 4
B pz(mz—m1)teE%]{/o ( )F(6+1)
£ s
t ma(é=s) _ omi(6=s)\_ % 4
! [ (e ) s

1 é
mao(l—s) _ _ mi(1—s) 87
+|P2()\{/ (e € )F(5+1)ds

m2(a s) 71) (eml(afs) 71) $0
() b

p2m1m2(m2 — ml) (5 I 1) {5 + ﬁlf‘s(mQ(l — eWLlE) _ m1<1 _ emgg))

+ pa[(ma(1 — ™) —my (1 —e™))
o’ |\l

e (mi (o — €27 1) = m3(mio — ™7 + D)) e~y

= Loz =yl

where « is given by and depends only on the parameters involved in the
problem. In view of the condition ¢ < 1/, it follows that 7 is a contraction. Thus,
by the contraction mapping principle (Banach fixed point theorem), the problem
and has a unique solution on [0, 1]. This completes the proof. O

The next existence result is based on Leray-Schauder nonlinear alternative.

Theorem 3.5 (Nonlinear alternative for single valued maps [10]). Let C be a
closed, convex subset of a Banach space E and U be an open subset of C' with
0 € U. Suppose that F : U — C is a continuous, compact (that is, F(U) is a
relatively compact subset of C) map. Then either (i) F has a fived point in U, or
(i7) there is a u € OU (the boundary of U in C) and € € (0,1) such that u = eFu.
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] xR — R be a continuous function satisfying the

Theorem 3.6. Let f : [0,1] x

conditions:
(A3) There exist a function g € C([0,1],RT), and a nondecreasing function 1 :

RY — R such that |f(t,y)| < g(t)¢(|lyl) for all (t,y) € [0,1] x R;

(A4) There ezists a constant K > 0 such that
K

lgll¢(K)ex

Then the problem (L.1)-(1.2) has at least one solution on [0, 1].

Proof. Consider the operator J : C — C defined by (3.1). We show that J maps
bounded sets into bounded sets in C = C([0,1],R). For a positive number (, let
B; ={x €C:|z|| < ¢} be a bounded set in C. Then we have

1T (@)
= sup |J(z)(t)|

te(0,1]
5—1

<; sup {/Ot/osq>(t)<s‘r(“5))f(u,x(u))|duds

= pa(ma —m1) yejo]

> 1.

)6—1

o) [ [ 0@ T ) s

o—1

+ lpa(®) / / @(1)}T|f<u,x<u>>|duds

(e 21)_ (e Z1)y (s =)
r@)

+|)\|/ / e 5

S

||g||’l/}( ) /t mo(t—s) my (t—s)
< 2 _ 1 -
sup { ; (e e )I’((S 1)d5

= p2(m2 —ma) yepo

6—1

[F(w, 2(w))| duds] }

6

¢ (£—s) m1(§—s)
t mao(§—s) _ —s ds
o] [ (e D)

s9

+ [p2(t)] [/1 (6”2(1_3) - eml(l—S))7F(6+ 1)ds
s

ema(o—s) _ emi(o—s) _ s
+|A|/ 24 - 1)>r(5+1)d‘9}}

= p2m1m2(7|7|”bg2||q—p(771)1)F(5 +1 {e+7E (ma(1 — ™) —my (1 — ™))
+ p2l(ma(l —e™) —my (1 —e™?))

1
)‘ mo mi1o
TR o — a7 +1) = mmar — ™+ D)},
which yields
gl (<) ~ 5 mi1€ mag
< _ 1§) _ _ 2
ol S e SFE TN A (mall = ™) — (1= 7))

+ p2[(ma(1 —e™) —ma (1 —e™?))

6|)\| (m (m o — m2cr+1) m (m o — m10+1))]}
mims 1 2 2 1 .

_|_
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Next we show that J maps bounded sets into equicontinuous sets of C. Let

t1,t2 € [0,1] with t1 < t2 and y € B¢, where B¢ is a bounded set of C. Then we
obtain

(79 = 710

e (e ]// )}Wf(u,x(u))duds
" / A <I>(tz)l“f(u7w(u))dud8‘

o) -l [ 0@ T vt avas
#loate) = el [ [ o0 gt s

+|)\|/ / (ematr” S)_l) L ml(a ! _D)(S }&>)6_1|f(u7y(u))duds}}

mi

1 _ pma(ta—t1)
: p2m1m2(m2 m)T(0 + 1){<t1 tz) (m1(1 em2{t2=t1))
_ m2(1 - em1(t2—t1))> + ttls (ml (em2t2 _ em2t1) _ m2(em1t2 _ emltl))
+ o1 (t2) — pr(8)IE2 (ma(1 — ™€) — my (1 — e™26))
+ |p2(t2) — p2(t1)|[(ma(l — ™) —mi(1 —e™?))
o’ |\
mimso

(m3(mag — ™27 +1) — mi(mio — ™ + 1))},

which tends to zero independently of x € B as to—t; — 0. As J satisfies the above
assumptions, therefore it follows by the Arzela-Ascoli theorem that J : C — C is
completely continuous.

The result will follow from the Leray-Schauder nonlinear alternative once it is
shown that the set of all solutions to the equation z = 9 Jz is bounded for ¢ € [0, 1].
For that, let 2 be a solution of x = 9 Jx for ¢ € [0,1]. Then, for ¢ € [0, 1], we have

()]
= [0T (1)

< ! sup / / 8_% 1\f(u,a:(u))|duds

p2(ma —m1) 4epo 1]

Lol // 0, )| du s

ol [ / ‘I’(l);(é—l|f(u,x(u))|duds
+I>\|/ / e S)_l) _ e _1))(8 }é))5_1|f(u7m(u))duds}}

mi

)

llglly(ll=[) /t (t—s) (t—s) s
< Y su emalt=s) _omilt=s)) __~____gq
p2(ma —mq) tG[OI,)l] { ( ) r@+1)
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5
+|pa(t I/ mZ(f ) —em S)) (6+1)ds
§

+|p2<>|[/ (emti) = om0y s

emalo—s) _ emi(o—s) _ &0
+|>\|/ D 1)) : )ds]}

mi T'(0+1
ol s . e
= 1-— 1s) — 1— 2
paams — TG T L+ A (mal = €™ E) —ma(1 - em=9)

+ p2[(ma(l —e™) —ma (1 —e™?))

Kby
m1|m|2 (ml(mga e +1) — mQ(mla —e™ 4 1))]}
= [lglle(=l)e,
which implies
[Edl
<
gl (flz])e

In view of (A4), there is no solution z such that ||z|| # K. Let us set
U={zeC:|z|| < K}.

The operator J : U — C is continuous and completely continuous. From the choice
of U, there is no u € U such that u = 9 (u) for some ¢ € (0,1). Consequently,
by the nonlinear alternative of Leray-Schauder type [10], we deduce that J has a
fixed point w € U which is a solution of the problem —. This completes
the proof. (Il

Example 3.7. Consider the boundary-value problem

(°D%? 4+ 3°D%?% 4 2°DY ) (t) = cosx + tan~! t), 0<t<1, (3.15)

Nerwit

1/5
z(0)=0, =2(1/3)=0, =z(1)= /0 x(s)ds. (3.16)

Here, § = 1/2, 0 =3/5, £ =1/3, po =1, p1 =3, pp =2, A =1, A is a positive
constant and

1,r) = —— cosz +tan~tt).
f(t,2) t2+49( )

Clearly the constants po, p1, and pg satisfy the condition of Lemma and

|f(t7$) - f(t7y)| < A|:L‘ - y|/77
where £ = A/7. Using the given values, we find o = 0.44269 and oy ~ 0.21725, It is
easy to check that |f(t,z)| < ; 521729 =0(t) and Loy < 1 when A < 32.22094. As
all the condition of Theorem [3 atlsﬁed the problem ([3.15| - has at least

one solution on [0, 1]. On the other hand, fo < 1 whenever A < 15.81242 and thus
there exists a unique solution for the problem (3.15)-(3.16) on [0,1] by Theorem
3.4

Example 3.8. Consider the boundary-value problem

J/?

1+ |z

1
(°D%? 4+ 3°D%?% 4 2°DY/?)x(t) = 4 sin (277) + 0<t<l1, (3.17)
78
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1/5
z(0)=0, =2(1/3)=0, =z(1)= /0 x(s)ds. (3.18)

Here, § =1/2, 0 =3/5, £ =1/3, p3 —4papo =1 >0, A =1, and

F(t,2) = = sin (2n2) + —2
r) = — S1n i —_—
’ A 1+ |x|?

Clearly

Fta) < |5 sin2me) + B0 < Liep
X — S1n ™ S E—— — ||
=y I+ 22 =2 ’

where g(t) = 1, p(Jlo]) = Ll + 1.

Then by using the condition (A4), we find that K > 0.56853 (we have used
a = 0.44269). Thus, the conclusion of Theorem applies to problem (3.17)-
B13).
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ADDENDUM POSTED BY THE EDITOR ON MAY 2, 2018

A reader informed us that the second part of Lemma 2.4 is incorrect:

“The converse of the lemma follows by direct computation” is not
valid since solutions of (2.4) are found in the space C[0,1] and it
has to be shown that such a solution of (2.4) is (2 + §)-Caputo
differentiable for all ¢ € (0,1) (or almost all).

The authors should (probably) use the alternative definition of
Caputo differential operator as given in K. Diethelm, The analysis
of fractional differential equations. Lecture Notes in Mathematics,
2004. Springer-Verlag, Berlin, 2010.

The fifth author tried to prove the part needed, but instead decided to write
“The converse of Lemma 2.4 remains an open problem under the current definition
of fractional derivative”

End of addendum.
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