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INFINITELY MANY SOLUTIONS FOR SUBLINEAR
FRACTIONAL SCHRODINGER-TYPE EQUATIONS WITH
GENERAL POTENTIALS
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ABSTRACT. This article concerns the fractional Schrédinger type equations
(=A)*u + V(z)u = f(z,u) inRY,

where N > 2, a € (0,1), (—A)* stands for the fractional Laplacian, V is
a positive continuous potential, f € C(RY x R,R). We establish criteria
that guarantee the existence of infinitely many solutions by using the genus
properties in critical point theory.

1. INTRODUCTION

In this article, we consider the nonlinear Schrédinger-type equation
(=A)*u + V(z)u = f(x,u) in RY, (1.1)
where N > 2, o € (0,1), (—A)“ stands for the fractional Laplacian, V' is a positive

continuous potential, f € C(RY x R,R). The fractional Laplacian (—A)® with
a € (0,1) of a function ¢ € S is defined by

F((=2))9)(&) = [*F(9)(§), Vo€ (0,1),

where S denotes the Schwartz space of rapidly decreasing C*° functions in RY, F
is the Fourier transform, i.e.,

FOE) = oy [, 2" ol

If ¢ is smooth enough, it can also be computed by the following singular integral

o(z) — ¢(y)
(~8)%0(a) = exa PV | Hyljvfdy
Here P. V. is the principal value and cy , is a normalization constant.

The fractional Schrédinger equation is a fundamental equation of fractional quan-
tum mechanics. It was discovered by Laskin [9] [I0] as a result of extending the
Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical
paths, where the Feynman path integral leads to the classical Schrédinger equation,
and the path integral over Lévy trajectories leads to the fractional Schrédinger
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equation. The study of the fractional Schrédinger equations and the correspond-
ing variational problems has received more and more interest in recent years. For
example, [8] 126 27] studied fractional elliptic problems with critical growth, [7, [11]
gave some sufficient conditions for the existence of positive solutions to fractional
elliptic equation, [2 [ [6] 19] studied the existence of ground state solutions on
RN and [I7] studied fractional Kirchhoff equations. For more results about the
fractional Schrodinger equations, we refer to [II, [12] 13| 14} 20 22].

It is well known, the main difficulty in treating problem in RV arises
from the lack of compactness of the Sobolev embeddings, which prevents from
checking directly that the energy functional associated with satisfies the C-
condition. To overcome the difficulty of the noncompact embedding, Teng [23],
Xu-Wei-Dong [25], Chen [3], Bisci-Radulescu [2I], also establish a new compact
embedding theorems for the subspace of H*(R"). Furthermore, the authors able
to guarantee the existence and multiplicity of nontrivial weak solutions of
in B ={ue H*RY) : [on [(—A)¥?u(2)?dx + [on V(z)uldz < +oo} provided
inf V > 0 and the following conditions hold:

(A1) For any M > 0, there exists ro > 0 such that

lim p({z € RN : |z —y| <7, V(z) < M}) =0,

ly|—o0

where p is the Lebesgue measure on RY.

We emphasize that in our approach, no coerciveness hypothesis (A1) and not
necessarily radially symmetric will be required on the potential V. To the best of
our knowledge, few works concerning on this case up to now. Inspired by the above
facts and aforementioned papers, the main purpose of this paper is to study the
existence of infinitely many solutions for when F(z,u) satisfies sublinear in
u at infinity. Our tool used here is the genus properties in critical point theory.
Before stating our main results, we first make some assumptions on the functions
V and f. For the potential V', we make the following assumption

(A2) V € C(RY) and Vp := inf epn V(z) > 0.

For the nonlinearity f, we suppose it satisfies the following conditions:

(A3) (1) f € C(RY x R,R) and there exist constant 1 < r < 2 and positive

function a € L7o7 (RN) such that
[f(2,0)] < a(@)|ul""", V(z,t) € RN x R.
(2) There exist a bounded open set I C R™ and three constants §,p > 0
and 6 € (1,2) such that
F(z,t) > plt|°, ¥(z,t) € I x [, 4],
where F(x,t) = fot f(x,s)ds.

The same problem is studied by Shi and Chen [2I]. The authors established
the existence of at least k distinct pairs of solutions for(|1.1)) by using the Clark
theorem. Inspired by the above-mentioned papers, we study problem (1.1) in the
different method. More precisely, the aim of this work is to prove the existence of

infinitely many solutions by using the genus properties in critical point theory. We
are now in the position to state our main results.

Theorem 1.1. Suppose that (A2) and (A3) hold. Then (1.1)) possesses at least one
nontrivial solution.
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Theorem 1.2. Suppose that (A2) and (A3) hold, and [ satisfies
fxz,—t) = —f(x,t), V(x,t) € RY x R.
Then (1.1) possesses infinitely many solutions.

The rest of this article is organized as follows. In Section 2, we state and prove
some preliminary results that will be used later. We will finish the proof of our
main result (Theorem and Theorem [1.2]) in Section 3.

2. PRELIMINARIES

In this section we recall some results on Sobolev spaces of fractional order. A
very complete introduction to fractional Sobolev spaces can be found in [5].
Consider the fractional order Sobolev space

HYRN) = {u € L*R"): / (J€*>a® + a*)d¢ < 400},
RN
where 4 = F(u). The norm is defined by
1/2
. _ 2052 1 52)d ]
ey = ([ G2 + i)
In this paper we consider its subspace:
E={ue H*R"): / V(z)u’dr < 400}

]RN
with the norm

e = ( [ Cga2 + ag+ [ vianias) "

Note that, by Plancherel’s theorem we have 4] = |ul2 and
[ 8y Pupin = [ (-8)7u(e)ds
RN RN
= [ (a(e)ae
RN
:/ |€|2*a%dE < +oo, Yu € H*(RY).
RN
Together with (A2), it follows that the norm || - || g is equivalent to the norm
1/2
ful = ([ -8y ue)Pde+ [ Viptds) "
RN RN

Throughout out this paper, we will use the norm ||u|| in E.

Lemma 2.1 ([7]). H*(RY) continuously embedded into LP(RYN) for p € [2,2%],
and compactly embedded into L} (RYN) for p € [2,27).

loc

Lemma 2.2. Assume that (A2), (A3) hold. Then the functional ¢ : E — R defined

by
_1 — A 2y (x))? r)u?|dr — x,u)dx
o =3 [ [ u@p +vea - [ Pawa @)
is well defined and of class C*(E,R) and
(' (u),v) = / [(—A)O‘/Qu(—A)a/Qv + V(gc)uv} dx — flz,u)vde.  (2.2)
RN RN
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Moreover, the critical points of ¢ in E are solutions of problem (1.1).

Proof. The functional ¢ is well defined on E. Indeed, by virtue of (A3)(1) and the
Mean Value Theorem, we have

F(x,t) < @W, Y(z,t) € RN x R. (2.3)

For any u € E, we obtain for (A2), (2.3)), and Hélder inequality that

/RN Pz, 0)|de < /RN @de
S/ a(x)|u|"dz

)
- [ P vy Pl
R

N V(x)”/2
1 2 (2.4)
,W x a(x)V(2)"" |ul"dz
|a\ 2 vr/?
VOT/Q
1
=—7zlal 2 |ull”
‘/07‘/2

and so ¢ defined by (2.1)) is well defined on E.
Next, we prove that (2.2) holds. For any A € (0, 1), one can deduce from H(f)(1)

and the Holder inequality that

max |f(z,u+ th)h|dz
RN t€[0,1]

< max |f(x,u+ th)||h|dx
RN t€[0,1]

< / a()(Jul + |B)" |hdz

< o
/

)(Jul"~" + [h["7)|hldz

(VZ =) (V2R + V)| d (2.5)
<7 (V7 =)V 2{l) + V72l da
< T/Q el M oo [V, + lal o V772 }
< T/Q [||u\|’“*1||h||+|\h||’“}
< T/2|a| [l + 1R f] < +oo.
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Thus, by (2.1), (2.5) and Lebesgue’s Dominated Convergence Theorem, we have
th) —

t—0t t

/ [(‘A)aﬂu(—A)a/zv + V(x)uv} dx
RN

F(z,u+th) — F(z,u)

— lim+ ; dx
t—0 RN (26)
:/ [(—A)Q/QU(—A)O‘/%+V(m)uv] dz
RN
— i tAh)hd
i f S R
:/ [(—A)“/Qu(—A)“/Qv—|—V(m)uv}da:— lim f(z,u)hdx
RN t—0t JrN

which implies that (2.2]) holds. Moreover, by a standard argument, it is easy to
show that the critical points of ¢ in E are solutions of problem (1.1)) (see [24]).

Next, we prove that ¢’ is continuous on E. According to (2.1)), it suffices to show
that

J'(u) = flx,u)dx.
RN

is continuous. Let u, — u in E, then u, — u in L?(RY), since the imbedding
E — H*(RM) — L%RY) is continuous. Thus,

un () — u(x), ae. xRV, (2.7)
We claim that

lim | f(@, un(@)) = flz,u(@))|*dz = 0. (2.8)

n—-+oo RN

Otherwise, there exists a constant ¢ > 0 and a subsequence {u,, }?° ; such that
/ | f (2, tn, (2)) — f(x,u(w))|2dx >e, Vk > 1. (2.9)
RN

Since u, — u in L? (RN ), passing to a subsequence if necessary, it can be assumed
that

= i |y, — ul3 < o0,
Set w(w) = (g2 fun, (2) = u(:v)k |?1/ ?, 2 € RV. Then w € L2(RY). Therefore,
/RN | (@, Uy (2)) = f(,u(2))| da
<2 [ (e @) + 15 ) )
2 [ 1ol) [l (O + )P

2/ |a(x)|2[|unk (z) —u(z) + u(x)|2(r—1) + |u(x)|2(r_1)]dx
R

N

IA

IN

2/ |a (@) [(Jtn, (2) — u(@)] + Ju(@)])>= + |u(z) P~V de
RN
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<20 [ jal)R [l + fula) 2+ fua) ) de
<o [ el [lu@P Y + fua) V] do
< 4r|a2| ) [Hw ‘2(7” 1)},,i 4 Hu |2(r 1)‘7}&
= 4l [[[w@) ;" + uly" V| de
< 4’“|a\2 [Hw S ) }daz < 400.
Then by ( . ) and Lebesgue’s Dominated Convergence Theorem, we have
lim |f(x,unk (z)) = f(z, u(x))|2dx =0,

k——+o0 RN

which contradicts with (2.7). Hence (2.8) holds. Applying (2.2), (2.8) and the
Holder inequality, we have

() = (), )]

_‘/RN (s un(2)) = f (2, u() ()|

< [ 1@ n(a)) = fou@)o()lds

< ([ 1) - fuenpas) ([ o)

< ([t o) ~ sGautoPas) / R
=V;/2(/RN|f(w7un(x))—f( oppas) ([ violtar)”

VO}/Z( / 1 un@) — G uta) P ol

— 0, asn — +oo.

This shows that J’ is continuous, and so ¢’ is continuous. The proof is completed.
O

Lemma 2.3 ([I5]). Let X be a real Banach space and ¢ € C1(X,R) satisfies the
(PS)-condition. If ¢ is bounded from blow, then ¢ = inf,cx @(u) is a critical value
of .

To find multiplicity of nontrivial critical points of ¢, the following “genus” prop-
erties are needed in our argument. Let X be a Banach space, ¢ € C1(X,R) and
c e R. Set

Y={AC X\ {0}:Aisclosed in X and symmetric with respect to0},
Kf={ueX:pu)=c, ¢'(u) =0} and ¢° ={u € X : p(u) < c}.

Definition 2.4 ([18]). For A € 3, we say genus of A is n denoted by v(A) = n
if there is an odd map ¢ € C(A,R"\{0}) and n is the smallest integer with this
property.
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Definition 2.5 ([16]). Let X be a Banach space with X* being its topological
dual and ¢ € C1(X). We say that ¢ satisfies the Palais — Smale condition at level
¢ € R (PS.-condition for short), if any sequence {z,}>2; C X, such that
o(wn) = ¢, ¢(wa) = 0in X,
has a strongly subsequence. If this is true at every level ¢ € R, then we simply say
that ¢ satisfies the Palais — Smale condition (PS-condition for short).
The notion of genus generalizes the concept of dimension of a linear space.

Lemma 2.6 ([16, Proposition 4.2.15]). If X is a Banach space and U is a bounded
symmetric neighborhood of the origin in X, then v(0U) = dimX.

Lemma 2.7 ([I8]). Let ¢ be an even C' functional on X and satisfy the (PS)-
condition. For anyn € N, set

So={AeX:y(4) >n}and ¢, = inf sup p(u).
A€Xn yea

(a) If X, # 0 and ¢, € R, then ¢, is a critical value of ;
(b) If There exists | € N such that ¢, = ¢j11 = -+ = Can = ¢ < 400, then
Y(KE) >n+1.

3. PROOFS OF MAIN RESULTS

Proof of Theorem[1.1. We first prove that ¢ is bounded from below. By (A3)(1),
one yields

|F(,1)

t
d
—‘F(x,O) +/0 £F(x,s)ds‘

:‘ /Ot f(a:,s)ds‘

t (3.1)
< [V s)as
0
<Xy < afaypr
for all z € RN and all t € R.
Hence, from (2.4)) and , we obtain
1
o(u) :7/ [|(—A)°‘/2u(x)|2 + V(a;)zﬁ]dx 7/ F(z,u)dz
2 RN RN
1 T
>gll = [ a@pulds (32)
1 1 B}
I

0
Since 1 < r < 2, implies that p(u) — +0oo as |Ju| — +oo. Hence ¢ is bounded
from below.
Next, we prove that ¢ satisfies the (P.S)-condition. Suppose that {up}tnen C F
is a sequence such that

o(up) — cand ¢’ (u,) — 0, asn — +oo.
Then by (3.2), there exist constants Cy, C; > 0 such that
[unle < Colluy]l < Ci, Vn € N. (3.3)
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So we may assume, going if necessary to a subsequence, that
U, — ug weakly in F.

From the choice of the function a € L=+ (RY), for any given number ¢ > 0, we can
choose R. > 0 such that

2—r

<Awm mgﬂﬁnm)z <e. (3.4)

Since the embedding F — LIOC(RN) is compact, u, — ug in F implies u,, — ug in
L% (RY), and hence,

loc

lim U, — ug|?dz = 0. (3.5)

n—-+4o0o |$|SR5

Let B. = {z € RY : |z| < R.} and B¢ = RV \ B.. By (3.5)), there exists ng € N
such that

|un — ug|r2(p.y < €, for n > ng. (3.6)

Next, we prove that
/ [f (z,un) — f(z,u0)](un —uo)dx — 0, as n — +oo.
RN

Indeed, by hypothesis (A3)(1), we have

/RN |f (2, un) — f(z,u0)||un — uo|de

< [ a@lhual" + ol ey = wolde

(L IIJ’ r—1 _ _
/N — V= [Jun|"h + |uo|" ) |un — ugldz
R

V 2
VTl/a@WiWV4+MWW%fWM (3.7)
]RN
[ etV fual el — wolds

/ (V"2 [unl ™+ ol — ol ]

= VQ_T[I]_ + 12]
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On the one hand, using the Holder inequality and (3.6)), we have

r—1
b= [ o)V F el + Juol" s — uolda
Be
<lal, gz o [V a7 2,

+‘V 2 |u0|T 1‘LT T(B. )]|Un_U0|L2(BE)

r—1 r—1
5\a|L2 ’(B)[{V T |y | }L, 1(B)—F|V = || |L, T (B. )]
<5\a|L2 - &™) “V |t |~ 1|Lr ) +|V z |U0\r g
=clal 2 [lunl"™ + Jluo "]
L2=r (RN)
Cl r—1 r—1
< el o [+ ol

for all n > ng.

On the other hand, using the Hélder inequality and (3.4)), we have

r—1
b= / a(@)V = [Jun "7 4 Juo] " un — uolda

€

- |a| 27 (Be |:| 21 (Be
L2=r (B¢) Lr=1(Bg)
r—1 1
+ |V 2 |u0|T |LT 1(3§):||Un*uO|L2(B§)
T r—1
= |a|L%(BC “ 7 Junl L7 (RY)

+ VT oY 2y RNJ|un—u0|L2<RN)

< Coellun — uoll ||V 7" fun|" | VT oY

L 1(RN
< Coellun — uol| [lunll"™" + lluoll" "]

< 2C0¢[lun" + lluol"]

<2005[(g )"+ o]l ]

for allm € N.
Since ¢ is arbitrary, it follows from (3.7)), (3.8) and (3.9) that

[ 7€) = w0}~ uo)de =0 as = +oc,

In view of the definition of weak convergence, we have

<80/(Un) - cp'(uo),un —ug) — 0, asn— +oo.

Lr T—1 (]RN)):|

T—1 ]RN):|

(3.8)

(3.10)

(3.11)
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Note that
<‘pl(un) - SOI(UO)y Un — U0>

_ /RN (120272 = w0)* + V() (. — w0)?]

(3.12)
— [ @) = £ )] — o)
RN
=l =l = | | [FGe0) = Fla o)) = o)
From (3.10)), (3.11) and (3.12)) it follows that
|ttr, — upl| — 0, asn — +o0, (3.13)

which implies that u, — ug in E. Therefore ¢ satisfies the (PS)-condition. Then
by Lemma we see that ¢ = inf,c g ¢(u) is a critical value of ¢, i.e., there exists
a critical point ug € E such that p(ug) = c.

Finally, we prove that ug # 0. Taking ¢ € [H§(I) N E]\ {0} with ||¢|| = 1, then
by (A3)(2), for t € (0,1), we have

1 a 2
o(t0) =5 [ [ICA120o)f + v@loP|ds - [ Fto)is
RN RN
1
5261~ [ Fato)do
I
<1t2 - /p|t¢|9dx
2 I
1
S — tep/ |9|% daz.
2 I
Since 1 < 0 < 2, it follows (3.14) that ¢(t¢) < 0 for ¢ > 0 small enough. Hence ¢ =

©(ug) < 0. Therefore ug is a nontrivial critical point of ¢ with p(ug) = inf,cr ¢(u)
and is a nontrivial solution of problem (|1.1)). The proof is completed. O

(3.14)

Proof of Theorem[I.3. From the proof of Theorem we know that ¢ is bounded
below and satisfies the (PS)-condition. It is clear from F(z,—t) = F(x,t) that ¢
is even and ¢(0) = 0. In order to apply Lemma we prove now that for any
n € N, there exists K C H*(R"™) compact, and symmetric with y(K) = n such
that

sup ¢(u) < 0.
ueK

For any n € N, we take n disjoint open sets I; such that U_,I, C I. For
i =1,2,...,n, we choose u; € (H§y(I;) N E)\ {0} and |u;|l9 = 1. Let E, =
span{uy, us, ..., Uy, }. Because E, is a finite dimensional subspace of E, all norm
are equivalent and so we can find 0 < C5 < 1 such that

1
Csllul| < ulp < EHuH, Vu € E,. (3.15)
From (A3)(2), and use (3.15) again we see that for any u € E,,, we have
J(u) :/ F(x,u)dx:/F(x,u)dx
RN I

(3.16)
> / () Pdz = plulf > pCE .
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Set .
I(u) = / - [|(—A)a/2u(x)\2 + V(x)uﬂ dz.
]RN 2
Then from (2.4) and (3.16)), it follows that for every u € E,,,
0/2 —r /2
pOS (1) < JT(w) < Vo™ Plal 2 [T(w)]%. (3.17)

We consider the compact set

1,0 25 1,0 25
= {u cE,: (1)279 (,OCg) =7 T(u) < (5)279 (ng) 3 e}.
Hence, for every u € KC, we have

p(u) =I(u) = J(u)

S(LY/Q(J(U))Q/" — J(u)

pCY
—(pég)” "I (@) - I (3.18)
<(sg)" 705 (o08)"" = 1)
—— 3w <5 (1) 7 (p00) ™ <o

Because E,, is isomorphic in R™, we can identify IC with a ring K’ in RV such that
OB1(0) = S" = {y € R |y| = 1} € K’ C R™\ {0},
By lemma Lemma [2.6] we conclude that
v(K) =n. (3.19)

Let ¢, = infacx, sup,cq ¢(u). Then from and the fact that ¢ is bounded
below on E, we have —oco < ¢, < 0, that is, for any n € N, ¢, is a real negative
number. By Lemma [2.7] ¢ admits infinitely many nontrivial critical points, and so
problem possesses infinitely many nontrivial negative energy solutions. The
proof is completed. ([l
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