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EXISTENCE OF A UNIQUE SOLUTION TO AN ELLIPTIC
PARTIAL DIFFERENTIAL EQUATION

DIANE L. DENNY

ABSTRACT. The purpose of this article is to prove the existence of a unique
classical solution to the quasilinear elliptic equation —V - (a(u)Vu) = f for
x € Q, which satisfies the condition that u(xg) = ug at a given point x¢ € €,
under the boundary condition n(x) - Vu(x) = 0 for x € 99 where n(x) is the
outward unit normal vector and where ﬁ fQ fdx = 0. The domain Q C R is
a bounded, connected, open set with a smooth boundary, and N =2 or N = 3.
The key to the proof lies in obtaining a priori estimates for the solution.

1. INTRODUCTION

In this article, we consider the existence of a unique, classical solution u(x) to
the quasilinear elliptic equation

-V (a(u)Vu) = f (1.1)

for x € , which satisfies the condition
u(x0) = uo, (1.2)
where xq is a given point in the domain §2, under the Neumann boundary condition
n(x) - Vu(x) =0 (1.3)

for x € 99, where n(x) is the outward unit normal vector, and ﬁ fodx = 0.

The domain © C RY is a bounded, connected, open set with a smooth boundary
00, and N =2or N = 3.

The purpose of this article is to prove the existence of a unique classical solution
u to 7. The proof of the existence theorem uses the method of successive
approximations in which an iteration scheme, based on solving a linearized version
of equation , will be defined and then convergence of the sequence of approx-
imating solutions to a unique solution satisfying the quasilinear equation will be
proven. The key to the proof lies in obtaining a priori estimates for w.

This article is organized as follows. The main result, Theorem [2.1] is presented
and proven in the next section. The existence of a solution to the linearized equation
used in the iteration scheme is proven in Appendix A. Appendix B presents lemmas
supporting the proof of the theorem.
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2. EXISTENCE THEOREM

We will be working with the Sobolev space H*(€2) (where s > 0 is an integer)
of real-valued functions in L?(£2) whose distribution derivatives up to order s are
in L*(Q). The norm is [[ull} = Y g<|aj<s Jo [D¥ul?dx. We are using the standard
multi-index notation. We define |F|; 7, = max{|F(u.)| : u. € Go}, where F is a
function of u and where Gy C R is a closed, bounded interval. Also, we let both
Vu and Du denote the gradient of u. And C*(£) is the set of real-valued functions
having all derivatives of order < k continuous in € (where k = integer > 0 or
k = o0). The purpose of this paper is to prove the following theorem:

Theorem 2.1. Let a be a smooth, positive function of u such that
d2a‘ < 1 |da ‘2
du2?10,G, ~ agldulo,Gy’

where the constant ag = min,,_ e a(uy) and Gy C R is a closed, bounded interval.
Let u(x0) = ug be a given value of u, where xg € Q is a given point and where the
domain Q is a bounded, connected, open set in RY, and N =2 or N = 3. Let the
boundary O be C=. Let f € H*(Q) and let ﬁ fQ fdx=0.

There exists a constant Cy which depends only on N, Q0 such that if

1 da |2
(minu*ea0 a(uy))? %’OEOHVJ[H?) < Co
then there exists a unique solution u € C?(2) to the equation
— V- (a(u)Vu)=f (2.1)
which satisfies the condition
u(xg) = ug (2.2)
under the Neumann boundary condition
n(x) - Vu(x) =0 (2.3)

for x € 9Q, where n(x) is the outward unit normal vector.

Proof. We begin by using the change of variables

0= (oo o) = o510, 1= (ro)d @9

where the constant ag = min,, .z, a(u.) and Go C R is a closed, bounded interval.
Under this change of variables equation (2.1]) becomes
— V- (bw)Vv)=g (2.5)
And under this change of variables, (2.2)), (2.3) become

v(x0) =vo = (2.6)

ag w
= U0,
IV fllo

n(x) - Vo(x) =0 (2.7
for x € 09). B B B

We fix bounded intervals Gy C Rand G1 C Rby Go = {u. € R [u,—ug| () <
%f“o} and G; = {v. € R : |v, — Vol () < R}, where R is a constant to be
defined later. We will prove that v(x) € G; for x € Q. It follows that u(x) € Gp
for x € Q.
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We will construct the solution of problem ({2.5)), (2.6]), (2.7) through an iteration
scheme. To define the iteration scheme, we will let the sequence of approximate

solutions be {v¥}. Set the initial iterate v° = vg. For k = 0,1,2,..., construct
vF*+1 from the previous iterate v* by solving the linear equation
— V- (") Vo) =g (2.8)
which satisfies the condition
v (x0) = o (2.9)
under the Neumann boundary condition
n(x) - Vortl(x) = 0 (2.10)

for x € 9N).

The existence of a unique solution v**1 € C?(Q) to the linear equation for
fixed k which satisfies , is proven in Appendix A. Lemmas supporting
the proof are presented in Appendix B. We proceed now to prove convergence of
the iterates as k — oo to a unique, classical solution v of , , , which
therefore produces a unique, classical solution u = %v of , , (12.3).

We begin by proving the following proposition.

Proposition 2.2. Assume that the hypotheses of Theorem hold. Then there
exist constants Cy, Cy, Cs, and R such that the following inequalities hold for
k=1,2,3...:

IVoF]I3 < €y, (2.11)
05 < Ca, (2.12)
" — vo|pee () < R, (2.13)

1 _
IV (0" — M)} < 5|\V(vk —o" |3, (2.14)
k+1 k2 < 1 kC 2.15
ez < (D' (2.15)

where the constants Cy, C3 depend on N and 2, and where the constant Cy depends

—1
on R, vo, ao, |V flo, VS, |d(1n(dalfu)))|2’§0, |d((a(;u)) )|1,50’ N, and Q. And the

constant R depends on N and Q2. From (2.13)) it follows that v*(x) € Gy for x €
and fork=1,2,3....

Proof. The proof is by induction on k. We prove in Lemma[4.3]in Appendix B that

if v* satisfies (2.11) and (2.13)), then v¥*?! satisfies (2.11) and (2.12). See Lemma
in Appendix B for the detailed proof.

It only remains to prove inequalities (2.13)) for v**1, ([2.14) for V(v¥*! —v*) and
[2-15) for vF+1 — ok,

In the estimates below, we will let C' denote a generic constant whose value may
change from one relation to the next.

Estimate for |[vFt! — vo|pee (@)t From Lemmas and in Appendix B, we
obtain the inequality

[F ! — vl oo ) < OV WP = o)y
< O||VoFT|, (2.16)

<CyCi=R
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where the constants C' and Cy depend on £ and N. Here we used the fact that
v (x0) = vo, where vy is a constant. And we used the fact that [v* —vg| e (o) <
C||V(v**t — )|y by Lemma in Appendix B. And we used that fact that
[VoF+(2 < ||Vo*+1||2 < Oy by Lemma 4.3/in Appendix B. We define R = C/C}.
Therefore inequality of Proposition holds for v**1.

Estimate for |V(v**! — v*)||2: From subtracting successive iterates of equation

we obtain the identity
—V - (b(*)V@FH — k) = =V - (b(v®) Vo) + V - (b(vF)Vok)
=g+ V- (") = (" 1)) VoF) + V- (b(v* ) VoF)
=g+ V- (") = b(* 1)) Vo*) -
= V- (b(o) = b(F 1)) V)
From this equality, we obtain the equation
1
b(vF)
~ ¥ - (08 — bt ) vit)

We will be using a standard regularity estimate for the equation Av = h when
n- Vv =0 on the boundary 9 (see, e.g., Bourguignon and Brezis [I], Embid [4]),
namely

A(,Uk+1 _ Uk) — Vb(vk) . v(,UkJrl _ vk)

(2.17)

IVollf < Clihllg (2.18)
where the constant C depends on N and €.

By the boundary condition (2.10)), V(v**! — v*) - n = 0 on the boundary 99.
Applying (2.18)) to the equation (2.17)) yields the inequality

[k — o)
< Cllg7 V) - T8+ = 04) 4 5oV - (004) = bt~ ) Ve I
2l g T VP B IV = b))

| 17008 — bt ) v (2.19)
O3] 00) — b ) Ak

<3, 2 | Tl g ITHBIVEH = ob))2
+C f‘O)aOH(b’(v ) — b (P 1) Vot - Vot (2.20)
VDT ) T
3] b) b Byl

Vo3IV (@ = )3

'E‘OGO dv)o ,Go

3] W08 = H B o[V B IV
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)g‘o,éo % EEOHV(Uk - Uk_1)||(2)|vvk|2mo(g)
+C \%\Zf [b(v") = bW ) L (o IV0* I}
5l ZZ)OGO"V FIBIV @ =)
)b 0,Go va 0,Go [* = vt 1|LC"’(Q A
\z\ogo e T\
‘b 0.0 ffi\igo\v’“ Ca A N (2.21)

where C' depends on N, . Here we used the fact that ||Av¥|2 = ||V (Vok)|12 <
P 1 1 db db

C||Vv¥||f. And we used the facts that |m| < |5’0751 and that |22 (v, )| < |dv|0G1
and that ‘ (va)| < |45 il ’0G for v,(x) € G1, where v¥(x) € G| and v*~1(x) € G
for x € Q, s0 v, = tv*+(1—t)v*~1 € G| for any t € [0,1]. And we used the standard
Sobolev space inequality |f|zq) < C|f|ls,, where the constant C' depends on N,
Q, and where sg = [%] +1=2when N =2or N =3 (see, e.g, Embid [4], Evans
[5], Majda [8]).

Using the fact that |[Vo*||2 < Cy by the induction hypothesis, we obtain from

(2.21)) the inequality

IV~ o)l

cooli 8L, -
+CCl‘b 0,G1 CCZZ/UIQ) OGllvk k 12 Q>+COl’b‘0,G1 (Cllz‘OGlHV(U _Uk 1)”8
+CCl‘b)o ,G1 dv‘o G1|vk_ k_llsz(Q)

< O[3, e o 170 =M+ | 9 o
+CCl‘%}0G1 ZSEGIHV(U -t )H1+Ccl‘b’oc:1 zli:‘och”v(v — IR
< oo TBI%P joprn - i+ oo TP o - v
+oo TP ok — vy

o N e A e
+ oo, V08 ZZ(OGOH (o — o)

< COLG|IV (M = o")|] + CCECRIIV (0" — 0" H] + COLG|IV (0" — o]
< COFCo||[ V(W = o")|[F + COYCO|IV (0" — o H]F
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= CiCol V("' = ")[IF + CaCol V(" =" ][]

< SV = M) + IV EF — o) (222)
where we define Cy = CC’%. Here we used the fact that |%}0,§1 = 1, where
b(v) = iaz(%v) and where a9 = min, .z a(u.). And we used the facts
that % da 1EOHVfH(2J < Cy, and that ‘227(21|0,60 < % %‘5,60 by assumption from

the statement of the theorem. And we used the Sobolev space inequality |[v* —
vkt %N(Q) < OV(vE — o112 by Lemma in Appendix B, where we used the
fact that v¥=1(x¢) = v¥(xg) = vg. We now define the constant Cj to be sufficiently
small so that C4Cy < max{Cy,C5}Cy < % where C5 is a constant which is defined
in Lemma in Appendix B, and where C, C1, Cy, C5, Cy depend on N, 2, and
where we may assume that C; > 1 and C4 > 1 and C5 > 1 and C < 1.

After re-arranging the terms in we obtain

1 -
IVt = o)t < LIV EE =" (2.23)

Therefore inequality (2.14) of Proposition holds for V(vk*+1 — vk).
Repeatedly applying (2.23) yields for k£ > 1:

1.k
IV ! —oM)|} < (5) V(! =)
1.k
= ()" IV (2.24)
1.k
< (=
<(3)'o

where we used the fact that ||[Vol||? < ||[Vol|3 < C; by Lemma in Appendix
B, where the constant C; depends on €2 and N.
By Lemma in Appendix B,

[0 —oF |3 < OV = o) (2.25)

where we used the fact that v*+1(xg) = v*(xg) = vy. Here the constant C' depends
on N, Q.

Therefore from (2.24)—(2.25)), it follows that

[v5 = oF |3 < OV (H = o)}
1\ k
< (z) G (2.26)
1k
=(=)C
(5
where the constant C3 depends on N, .

Therefore inequality (2.15)) of Proposition [2.2/holds for v**! —v*. This completes
the proof of Proposition O

Now we complete the proof of Theorem From inequality it follows
that [[v*+! — vF|l; — 0 as k — co. From the estimate for ||v"||4 and for
|v*+1]|4, and from the standard interpolation inequality ||v**! —v¥|. < C|jvF*+! —
oF||5 R =177 where 8 = 457, and 2 < r < 4, it follows that |[v*+! —v¥||, — 0
as k — oo for 2 < r < 4. Therefore there exists v € H"(Q) such that ||v* —v|,, — 0
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as k — oo. The fact that v € H*(Q) can be deduced using boundedness in high
norm and a standard compactness argument (see, for example, Embid [4], Majda
[8]). Sobolev’s lemma implies that v € C?(12).

From Lemma in Appendix A, v¥*1 € O2(Q) is a solution of the linear equa-
tion —V - (b(v*)VuF*1) = g for each k > 0, and v¥*! satisfies the condition that
v**1(xq) = vg, and v**! satisfies the boundary condition n(x) - Vo**!(x) = 0 for
x € 0N. Tt follows that v is a classical solution of the equation —V - (b(v)Vv) = g,
and v satisfies the condition that v(xg) = vy, and v satisfies the boundary condition
n(x) - Vo(x) = 0 for x € 9Q. The uniqueness of the solution follows by a standard
proof using estimates similar to the estimates used in the proof of the contraction
inequality . Therefore, there exists a unique classical solution u = (%)v
of =V - (a(u)Vu) = f which satisfies the condition that u(xg) = ug, and satisfies
the boundary condition n(x) - Vu(x) = 0 for x € 9Q. This completes the proof of
the theorem. O

3. APPENDIX A: EXISTENCE FOR THE LINEAR EQUATION

In this section, we present the proof of the existence of a unique, classical solution

to the linear problem ([2.8)—(2.10).

Lemma 3.1. Let b be a smooth positive function of w. Let w € C?() and let
w(x) € Gy CR forx € Q. Let g € H*(Q) and let Wllfﬂgdx = 0, where the
domain Q@ C RY is a bounded, connected, open set, with N = 2 or N = 3, and
where the boundary 0S) is C>°. Then there exists a unique solution v € C?(2) of
the equation
- V- (bw)Vv)=g (3.1)
which satisfies the condition
v(Xg) = v (3:2)

where xg € () is a given point and vy is a given value, under the Neumann boundary
condition

n(x) - Vo(x) =0 (3.3)
for x € 09).

Proof. We define the zero-mean function

1

—— [ vdx 3.4
9 Ja (34)

v=0
The existence of a unique zero-mean solution 7 € C?(2) to equation with
a Neumann boundary condition n(x) - Vo(x) = 0 on the boundary 99, is a well-
known result from the standard theory of elliptic equations (see, e.g., Embid [4],
Evans [5], Gilbarg and Trudinger [6]).
It follows that the function v defined by

v(x) = v(x) 4 vo — V(x0) (3.5)

is the unique solution to equation (3.1) which satisfies the condition (3.2]) that
v(xg) = wo, and also satisfies the boundary condition (3.3 that n(x) - Vu(x) = 0
for x € 9. This completes the proof of the lemma. O
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4. APPENDIX B: A PRIORI ESTIMATES

In this section, we present lemmas supporting the proof of the theorem. We
begin by listing several standard Sobolev space inequalities.

Lemma 4.1 (Standard Sobolev Space Inequalities).

(a) Let h(w) be a smooth function of w, where w(X) is a continuous function
and where w(x) € G; C R forx € Q C RY and w € H™1(Q) N L>(Q). Then for
r =0,

IVl < || @+ ulis) IVull, (4.1)
where |F|, &z, = max{|dw] (wy)| : ws € Gl,O < j <r}, and where C' depends on T,
N, and .
(b) If f € H™(Q), g € H"(Q), and r = min{m,n,m + n — so} > 0, where
QC RN and sg = [§]+ 1, then fg € H"(Q) and
1£gllr < ClflImliglln (4.2)

Here C is a constant which depends on m, n, N, €.
(c) If f € H*(Q) where Q C RN and so = [§]+1, then

[flLe ) < Cll flls (4.3)

Here C is a constant which depends on N, §2.
(d) If f € H*(Q), where Q C RN and r = fm + (1 — B)n, with 0 < 3 < 1 and
m < n, then

1£1l- < CIUFNRIFIL 7 (4.4)

Here C is a constant which depends on m, n, N, €.

These inequalities are well-known. Their proofs may be found, for example, in
[7,19]. These inequalities also appear in [2, [4].

Lemma 4.2. Let f, g be H"() functions on a bounded domain @ C RN, where
N=2orN=3andr >2. Andlet f(x0) = g(x0) at a point xo € Q. Then f —g
satisfies the following inequalities:

I1f = gll§ < CIIV(f - 9)IIF,
If=gll; <CIV(f = 9)lf-y, 7>2
|f _9|L°°(Q) < C’||V(f—g)||f
If =gl <CIV(F =97,
Here C is a constant which depends on N, €.

Proof. A proof of the inequality (4.5 appears in [3]. We now use inequality (4.5)
to prove the remaining inequalities (4.6))—(4.8]).
From (4.5) we obtain the following inequality for r > 2:

1f = gllF < If = gl + CIV(F = )74
<CIIVIF = DIF +CIVEF = l7 < CIVIF =97

for » > 2. This completes the proof of (4.6)).
From (4.6)) with » = 2, we obtain

If—glie <Clf—gll3 <CIV(f - 93 (4.10)

/\/\/\/\
ot
n N S >
~— N N

(4.9)
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where the constant C' depends on N, €. Here we used the Sobolev lemma to obtain
|f = glee@) < CIf = gllmeo(a), where so = [§]+1=2for N =2o0r N =3 (see,
e.g., [4 8]). This completes the proof of .

The inequality for ||f — g||? follows immediately from applying with
r = 2 and using the fact that || f — g||? < ||f — g]I3. O

Lemma 4.3. Let b be a smooth positive function of w defined by
1 V£l
b(w) = —a(———
() = —-a( ),
where ag = min, 7 a(u.) and Go C R is a closed, bounded interval. Let w €
C?(Q) and g € H?*(Q), where Iﬁl‘fggdx = 0 and where g = (m)f The
domain Q C RY is a bounded, connected, open set, with N = 2 or N = 3, and

the boundary 0 is C*®. Let w(x) € Gy for x € , where G; C R is a closed,
bounded interval, and let |w — ’UO|LO€(Q) < R where vy and R are constants. Let

[Vw||3 < Cy, where the constant Cy depends on N, Q. Let (M) @|2— < C
2 > Vi1, 1 p ’ . aé dulo,Gy = 0,

where Cy is sufficiently small so that max{Cy, C5}Cpy < L where the constants Cy,

6’
d%a 1 |da|?
Cs depend on N, Q. And let ‘W 03, = a @|0,§o'
Let v € C?(Q) be the solution from Lemma of
- V- (bw)Vv)=g (4.11)
which satisfies the condition
v(xg) = v (4.12)

where xg € Q is a given point and vy is a given constant, under the Neumann
boundary condition

n(x) - Vo(x) =0 (4.13)
for x € 09).
Then Vv and v satisfy the inequalities
[Voll3 < C, loll < Co (4.14)

where the constant C1 depends on N and ) and where the constant Cy depends on
n(a(u a(u)) !
R7 Vo, @o, ||Vf||0} ||Vf||1, |W o) ) ’ N} and ().

|2}607 | du ‘1,60
Proof. In the estimates below, we will let C' denote a generic constant whose value
may change from one relation to the next.

Estimate for ||Vv||3: We write equation (4.11)) equivalently as

1
Av = =V (In(b(w))) - Vv — mg (4.15)
We will be using the standard regularity estimate for the equation Av = h, when
n- Vv = 0 on the boundary 99 (see, e.g., Bourguignon and Brezis [I], Embid [4])

IVoll? < CllRl7-, (4.16)
where r > 1 and where the constant C' depends on 7, N, and €.
In the following estimate, we will use the notation f, = D“f. Applying
to the equation and letting r = 2, and using the Sobolev space inequalities
in Lemma [£.] yields

V0|2 < C|V(n(b(w))) - Vv + @gn%
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=C 30 D" (Vnw)) - T+ s ) I

0<al<1

< OV (In(b(w))) - Vol|§ +C Y 1D (V(In(b(w))) - V)3

lal=1
1 [eY 2
+C] <w)9”0+02|31”D (5 a9
< CIV (n(b(w)) >|%oo<g Ivoli?
+C 3 (T () - Vol + V(b)) - VoalF)

lee|=1

+CJg], Mol +0 3 (Igrmyself + ||(@)agu3)
la=1

db |2 db

2 2
‘5’07G1 d,w OG ‘V'LU'LOO Q)||VU||0+C Z || )%Vw)aHO\VMLw(Q)
e Z ‘b’o a. dw 0, ‘vw‘m(mHWaHﬁC’b‘ & gl
1 14 db 12
S T
db |?
‘b’o,cl oz, Veli=@l Vel
12 db |? 2 2
+0|Z_1 o N o N TN 1 £ 0
14
+0 3 [5G, Pl o P2
|a|=1 ’
12 | d%
+C Y 3,5l 5em 5 e BP0 < oy V0l o
|a|=1 ’
12 (dbp?
0 2 3loz, dwloz, Vi ﬂ)HWaHoJFC‘b‘ gll3

lo]=1

+c\b| f||v9||o+c\b]

[VwlLeo o) l91l6

0,G1 dw 0,G1
3oz 5l IVwlBIvol?
3] |5, 5 IFwlRvels
O3] 5], 5 IVwlBIvwlBIvol3
vl [ welivelivas
velill d—\07@||w||§uwn% 3| Ival?
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db |2
\giwl e N A % ||2Hv9||o
db 14
<ca| S| o IVl oo 2| e+ eS| vl
d? b )
+0cH| ||Vv||2+ocl\d ] _ Vel + vl
+001‘d ’ _ ||V9||o
db |2 5| db |4 d?b |2 db |2
< - -
- C(Cl dw 10,G, . dw‘o,é1 +C dw? 0G1)HVUH2+C+001 dw10,G1
IV | da > 2 ( IV £l
< — _
< oo a Malo, + €3 as ) 0G0
2 (IVAIGY | d%a IWNO
+Cl( ag ) du? 10,G )||VU||2+C+CC( ao ) du‘oco
IVFI3 2 2( IV £l
<
_C(C ( a% ) du OEO+01( ag ) du OGO)Hv H2
IV£II5 | da
+o+ea (=) T,
< (CC1Cy + CCECY) || VY| 4+ C + CC1C
< CC*Co|| V|2 + C + CC2Cy
= C5Co|| V|3 + C + C5Co
1 1
<glIvelz+C+¢ (4.17)

where we define C5 = CC?. Here we used the facts that b(w) = ia(”vf“‘)w)

ao
and that (%) 37‘0,50

max{Cy,C5}Cy < % where Cj is a constant which was defined in the proof of
Proposition 2.2] and where Cy, C5, Cy depend on N, Q. And we may assume
that C; > 1 and Cy > 1 and Cs > 1 and Cy < 1. And we used the facts that

< Cy, where Cj is sufficiently small so that C5Cy <

1 1 db b d*b d*b
| < lilog, and that |G (w.)| < |55, and that |75 (w.)] < [z,
because w,(x) € Gy for x € . And we used the facts that ’%|0§1 = 1 by the

definition of the function b in (2.4), and that ||VgHg = 1 We also used the fact
that |[Vwl||3 < C;. And we used the fact that |du2 ’0 G, S ao |O e
Poincaré’s inequality to obtain ||g||2 < C||Vglo since g is a zero-mean function,

where the constant C' depends on N, Q. And we used the Sobolev space inequality
\f|LOO(Q) < C||fI13,, where sg = [¥]4+1=2when N=2or N =3.

Re-arranging terms in (4.17)) yields

. We also used

1
[Voll3 < gC +=C (4.18)

where the constants C, C7 depend on N, €.
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Estimate for |Vv||3: If r = 3 in (4.16), then after using the Sobolev space
inequalities in Lemma we obtain from equation (4.15]) the estimate

HVvﬁfSCﬂVUnUKwD)~Vv+faljm@

< ClIV(Imb) 3IVels + Cll5 e )II Sllgll3

< CIIV(In(b(w »mﬂku+00|()m+wmv((>)n)m%

1 2
< C‘M (1 + |w] oo ) [Vl 3 Voll3

- dw 2,G1
+Ch‘7KWHb+ﬂ—————ﬂ471+mhmeWMHMb
b(w))) |2
< cof| OV (14 o — vl + ol + €| 1901915
+cc)4—————¢4,1+hu—muwgywmnnvml

< ccp| MW (14 Rt uol)* + iVl

d((b —1y2

o0

dw 1,

IVFlo 1 dap? o ISR
— 2 14+ R+ [wl)* + |0

o) du b2, o)™+ Ol G 2

—1 d vV 7l?

P s, (L T o
5 0

_ g U1 dntaa) 1Ol ]2

aq IV A1
+0Cy ’7‘ _ (L R+ o)V I3 (4.19)

o (U R o)Vl

_001’

+cngme

2
] 7(1+R+|Uo|)4+

where C C: are constants which depend on N, €. Here, we used the facts that
b(w) = ;- La( Hvaf”" ), and that }%|0 G, = Lyandthat g = mf from the definition
of the functions b, g in (2.4). And we used the inequality |Vv||3 < C; from (4.18).

We also used the facts that [w —vo|L= (o) < R and that ||[Vwl||3 < C;. And we used
Poincaré’s inequality to obtain ||| < |lgll§ + CVgl? < C|IVgll§ + ClIVgli <

C||Vg||3, since g is a zero-mean function.

Estimate for ||[v||%: From (4.19) and by Lemma it follows that

[l = llo = vo + woll3
< 2[[v = vol[§ + 2[lvoll3
< CV(v =)l + 2Jvo[*|€2]
= C||Vol3 + 2[vo[?|€2]
< CO%IIVfH%‘d(ln(a(U))) ’2 1, CIQUIVSIR

1+ R
P N N e L N
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d((a(u)) ") 2 2 2 2
+ 00T (U B )PV} + 2ol

where ||[v —vp]|3 < C||V (v —v)]|2 by Lemma and where we used the fact that
v(X0) = v, where vy is a constant. This completes the proof. O
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