Electronic Journal of Differential Equations, Vol. 2019 (2019), No. 110, pp. 1–13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF A UNIQUE SOLUTION TO AN ELLIPTIC PARTIAL DIFFERENTIAL EQUATION

DIANE L. DENNY

ABSTRACT. The purpose of this article is to prove the existence of a unique classical solution to the quasilinear elliptic equation $-\nabla \cdot (a(u)\nabla u) = f$ for $\mathbf{x} \in \Omega$, which satisfies the condition that $u(\mathbf{x}_0) = u_0$ at a given point $\mathbf{x}_0 \in \Omega$, under the boundary condition $\mathbf{n}(\mathbf{x}) \cdot \nabla u(\mathbf{x}) = 0$ for $\mathbf{x} \in \partial\Omega$ where $\mathbf{n}(\mathbf{x})$ is the outward unit normal vector and where $\frac{1}{|\Omega|} \int_{\Omega} f d\mathbf{x} = 0$. The domain $\Omega \subset \mathbb{R}^N$ is a bounded, connected, open set with a smooth boundary, and N = 2 or N = 3. The key to the proof lies in obtaining a priori estimates for the solution.

1. INTRODUCTION

In this article, we consider the existence of a unique, classical solution $u(\mathbf{x})$ to the quasilinear elliptic equation

$$-\nabla \cdot (a(u)\nabla u) = f \tag{1.1}$$

for $\mathbf{x} \in \Omega$, which satisfies the condition

$$u(\mathbf{x}_0) = u_0,\tag{1.2}$$

where \mathbf{x}_0 is a given point in the domain Ω , under the Neumann boundary condition

$$\mathbf{n}(\mathbf{x}) \cdot \nabla u(\mathbf{x}) = 0 \tag{1.3}$$

for $\mathbf{x} \in \partial \Omega$, where $\mathbf{n}(\mathbf{x})$ is the outward unit normal vector, and $\frac{1}{|\Omega|} \int_{\Omega} f \, d\mathbf{x} = 0$. The domain $\Omega \subset \mathbb{R}^N$ is a bounded, connected, open set with a smooth boundary $\partial \Omega$, and N = 2 or N = 3.

The purpose of this article is to prove the existence of a unique classical solution u to (1.1)-(1.3). The proof of the existence theorem uses the method of successive approximations in which an iteration scheme, based on solving a linearized version of equation (1.1), will be defined and then convergence of the sequence of approximating solutions to a unique solution satisfying the quasilinear equation will be proven. The key to the proof lies in obtaining a priori estimates for u.

This article is organized as follows. The main result, Theorem 2.1, is presented and proven in the next section. The existence of a solution to the linearized equation used in the iteration scheme is proven in Appendix A. Appendix B presents lemmas supporting the proof of the theorem.

²⁰¹⁰ Mathematics Subject Classification. 35A05.

 $Key\ words\ and\ phrases.$ Existence; uniqueness; quasilinear; elliptic.

^{©2019} Texas State University.

Submitted February 24, 2018. Published September 26, 2019.

2. EXISTENCE THEOREM

We will be working with the Sobolev space $H^s(\Omega)$ (where $s \ge 0$ is an integer) of real-valued functions in $L^2(\Omega)$ whose distribution derivatives up to order s are in $L^2(\Omega)$. The norm is $||u||_s^2 = \sum_{0 \le |\alpha| \le s} \int_{\Omega} |D^{\alpha}u|^2 d\mathbf{x}$. We are using the standard multi-index notation. We define $|F|_{0,\overline{G}_0} = \max\{|F(u_*)| : u_* \in \overline{G}_0\}$, where F is a function of u and where $\overline{G}_0 \subset \mathbb{R}$ is a closed, bounded interval. Also, we let both ∇u and Du denote the gradient of u. And $C^k(\Omega)$ is the set of real-valued functions having all derivatives of order $\le k$ continuous in Ω (where $k = \text{ integer } \ge 0$ or $k = \infty$). The purpose of this paper is to prove the following theorem:

Theorem 2.1. Let a be a smooth, positive function of u such that

$$\frac{d^2a}{du^2}\Big|_{0,\overline{G}_0} \leq \frac{1}{a_0} \Big|\frac{da}{du}\Big|^2_{0,\overline{G}_0}$$

where the constant $a_0 = \min_{u_* \in \overline{G}_0} a(u_*)$ and $\overline{G}_0 \subset \mathbb{R}$ is a closed, bounded interval. Let $u(\mathbf{x}_0) = u_0$ be a given value of u, where $\mathbf{x}_0 \in \Omega$ is a given point and where the domain Ω is a bounded, connected, open set in \mathbb{R}^N , and N = 2 or N = 3. Let the boundary $\partial\Omega$ be C^{∞} . Let $f \in H^2(\Omega)$ and let $\frac{1}{|\Omega|} \int_{\Omega} f d\mathbf{x} = 0$.

There exists a constant C_0 which depends only on N, Ω such that if

$$\frac{1}{(\min_{u_*\in\overline{G}_0} a(u_*))^4} \Big| \frac{da}{du} \Big|_{0,\overline{G}_0}^2 \|\nabla f\|_0^2 \le C_0$$

then there exists a unique solution $u \in C^2(\Omega)$ to the equation

$$-\nabla \cdot (a(u)\nabla u) = f \tag{2.1}$$

which satisfies the condition

$$u(\mathbf{x}_0) = u_0 \tag{2.2}$$

under the Neumann boundary condition

$$\mathbf{n}(\mathbf{x}) \cdot \nabla u(\mathbf{x}) = 0 \tag{2.3}$$

for $\mathbf{x} \in \partial \Omega$, where $\mathbf{n}(\mathbf{x})$ is the outward unit normal vector.

Proof. We begin by using the change of variables

$$v = \left(\frac{a_0}{\|\nabla f\|_0}\right)u, \quad b(v) = \frac{1}{a_0}a\left(\frac{\|\nabla f\|_0}{a_0}v\right), \quad g = \left(\frac{1}{\|\nabla f\|_0}\right)f$$
(2.4)

where the constant $a_0 = \min_{u_* \in \overline{G}_0} a(u_*)$ and $\overline{G}_0 \subset \mathbb{R}$ is a closed, bounded interval. Under this change of variables equation (2.1) becomes

$$-\nabla \cdot (b(v)\nabla v) = g \tag{2.5}$$

And under this change of variables, (2.2), (2.3) become

$$v(\mathbf{x}_0) = v_0 = \frac{a_0}{\|\nabla f\|_0} u_0, \tag{2.6}$$

$$\mathbf{n}(\mathbf{x}) \cdot \nabla v(\mathbf{x}) = 0 \tag{2.7}$$

for $\mathbf{x} \in \partial \Omega$.

We fix bounded intervals $\overline{G}_0 \subset \mathbb{R}$ and $\overline{G}_1 \subset \mathbb{R}$ by $\overline{G}_0 = \{u_* \in \mathbb{R} : |u_* - u_0|_{L^{\infty}(\Omega)} \leq \frac{R \|\nabla f\|_0}{a_0}\}$ and $\overline{G}_1 = \{v_* \in \mathbb{R} : |v_* - v_0|_{L^{\infty}(\Omega)} \leq R\}$, where R is a constant to be defined later. We will prove that $v(\mathbf{x}) \in \overline{G}_1$ for $\mathbf{x} \in \Omega$. It follows that $u(\mathbf{x}) \in \overline{G}_0$ for $\mathbf{x} \in \Omega$.

We will construct the solution of problem (2.5), (2.6), (2.7) through an iteration scheme. To define the iteration scheme, we will let the sequence of approximate solutions be $\{v^k\}$. Set the initial iterate $v^0 = v_0$. For k = 0, 1, 2, ..., construct v^{k+1} from the previous iterate v^k by solving the linear equation

$$-\nabla \cdot (b(v^k)\nabla v^{k+1}) = g \tag{2.8}$$

which satisfies the condition

$$v^{k+1}(\mathbf{x}_0) = v_0 \tag{2.9}$$

under the Neumann boundary condition

$$\mathbf{n}(\mathbf{x}) \cdot \nabla v^{k+1}(\mathbf{x}) = 0 \tag{2.10}$$

for $\mathbf{x} \in \partial \Omega$.

The existence of a unique solution $v^{k+1} \in C^2(\Omega)$ to the linear equation (2.8) for fixed k which satisfies (2.9), (2.10) is proven in Appendix A. Lemmas supporting the proof are presented in Appendix B. We proceed now to prove convergence of the iterates as $k \to \infty$ to a unique, classical solution v of (2.5), (2.6), (2.7), which therefore produces a unique, classical solution $u = \frac{\|\nabla f\|_0}{a_0} v$ of (2.1), (2.2), (2.3).

We begin by proving the following proposition.

Proposition 2.2. Assume that the hypotheses of Theorem 2.1 hold. Then there exist constants C_1 , C_2 , C_3 , and R such that the following inequalities hold for k = 1, 2, 3...:

$$\|\nabla v^k\|_2^2 \le C_1, \tag{2.11}$$

$$\|v^k\|_4^2 \le C_2,\tag{2.12}$$

$$|v^k - v_0|_{L^{\infty}(\Omega)} \le R, \tag{2.13}$$

$$\|\nabla(v^{k+1} - v^k)\|_1^2 \le \frac{1}{5} \|\nabla(v^k - v^{k-1})\|_1^2, \qquad (2.14)$$

$$\|v^{k+1} - v^k\|_2^2 \le \left(\frac{1}{5}\right)^k C_3,\tag{2.15}$$

where the constants C_1 , C_3 depend on N and Ω , and where the constant C_2 depends on R, v_0 , a_0 , $\|\nabla f\|_0$, $\|\nabla f\|_1$, $\left|\frac{d(\ln(a(u)))}{du}\right|_{2,\overline{G}_0}$, $\left|\frac{d((a(u))^{-1})}{du}\right|_{1,\overline{G}_0}$, N, and Ω . And the constant R depends on N and Ω . From (2.13) it follows that $v^k(\mathbf{x}) \in \overline{G}_1$ for $\mathbf{x} \in \Omega$ and for $k = 1, 2, 3 \dots$

Proof. The proof is by induction on k. We prove in Lemma 4.3 in Appendix B that if v^k satisfies (2.11) and (2.13), then v^{k+1} satisfies (2.11) and (2.12). See Lemma 4.3 in Appendix B for the detailed proof.

It only remains to prove inequalities (2.13) for v^{k+1} , (2.14) for $\nabla(v^{k+1} - v^k)$ and (2.15) for $v^{k+1} - v^k$.

In the estimates below, we will let C denote a generic constant whose value may change from one relation to the next.

Estimate for $|v^{k+1} - v_0|_{L^{\infty}(\Omega)}$: From Lemmas 4.2 and 4.3 in Appendix B, we obtain the inequality

$$|v^{k+1} - v_0|_{L^{\infty}(\Omega)} \leq C \|\nabla(v^{k+1} - v_0)\|_1$$

$$\leq C \|\nabla v^{k+1}\|_2$$

$$\leq C \sqrt{C_1} = R$$

(2.16)

D. L. DENNY

where the constants C and C_1 depend on Ω and N. Here we used the fact that $v^{k+1}(\mathbf{x}_0) = v_0$, where v_0 is a constant. And we used the fact that $|v^{k+1} - v_0|_{L^{\infty}(\Omega)} \leq C \|\nabla (v^{k+1} - v_0)\|_1$ by Lemma 4.2 in Appendix B. And we used that fact that $\|\nabla v^{k+1}\|_1^2 \leq \|\nabla v^{k+1}\|_2^2 \leq C_1$ by Lemma 4.3 in Appendix B. We define $R = C\sqrt{C_1}$. Therefore inequality (2.13) of Proposition 2.2 holds for v^{k+1} .

Estimate for $\|\nabla(v^{k+1} - v^k)\|_1^2$: From subtracting successive iterates of equation (2.8) we obtain the identity

$$\begin{aligned} -\nabla \cdot (b(v^k)\nabla(v^{k+1} - v^k)) &= -\nabla \cdot (b(v^k)\nabla v^{k+1}) + \nabla \cdot (b(v^k)\nabla v^k) \\ &= g + \nabla \cdot ((b(v^k) - b(v^{k-1}))\nabla v^k) + \nabla \cdot (b(v^{k-1})\nabla v^k) \\ &= g + \nabla \cdot ((b(v^k) - b(v^{k-1}))\nabla v^k) - g \\ &= \nabla \cdot ((b(v^k) - b(v^{k-1}))\nabla v^k) \end{aligned}$$

From this equality, we obtain the equation

$$\Delta(v^{k+1} - v^k) = -\frac{1}{b(v^k)} \nabla b(v^k) \cdot \nabla(v^{k+1} - v^k) -\frac{1}{b(v^k)} \nabla \cdot ((b(v^k) - b(v^{k-1})) \nabla v^k)$$
(2.17)

We will be using a standard regularity estimate for the equation $\Delta v = h$ when $\mathbf{n} \cdot \nabla v = 0$ on the boundary $\partial \Omega$ (see, e.g., Bourguignon and Brezis [1], Embid [4]), namely

$$\|\nabla v\|_1^2 \le C \|h\|_0^2 \tag{2.18}$$

where the constant C depends on N and Ω .

By the boundary condition (2.10), $\nabla(v^{k+1} - v^k) \cdot \mathbf{n} = 0$ on the boundary $\partial\Omega$. Applying (2.18) to the equation (2.17) yields the inequality

$$\begin{split} \|\nabla(v^{k+1} - v^{k})\|_{1}^{2} \\ &\leq C \|\frac{1}{b(v^{k})}\nabla b(v^{k}) \cdot \nabla(v^{k+1} - v^{k}) + \frac{1}{b(v^{k})}\nabla \cdot ((b(v^{k}) - b(v^{k-1}))\nabla v^{k})\|_{0}^{2} \\ &\leq C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \left|\frac{db}{dv}\right|_{0,\overline{G}_{0}}^{2} \|\nabla v^{k}\|_{L^{\infty}(\Omega)}^{2} \|\nabla(v^{k+1} - v^{k})\|_{0}^{2} \\ &+ C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|\nabla(b(v^{k}) - b(v^{k-1})) \cdot \nabla v^{k}\|_{0}^{2} \\ &\leq C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|(b(v^{k}) - b(v^{k-1}))\Delta v^{k}\|_{0}^{2} \\ &\leq C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|(b'(v^{k}) - b'(v^{k-1}))\nabla v^{k} \cdot \nabla v^{k} \\ &+ C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|(b'(v^{k}) - b'(v^{k-1}))\nabla v^{k} \cdot \nabla v^{k} \\ &+ C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|(b'(v^{k}) - b(v^{k-1}))\|_{L^{\infty}(\Omega)}^{2} \|\Delta v^{k}\|_{0}^{2} \\ &\leq C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|b(v^{k}) - b(v^{k-1})\|_{L^{\infty}(\Omega)}^{2} \|\Delta v^{k}\|_{0}^{2} \\ &\leq C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|b(v^{k}) - b(v^{k-1})\|_{L^{\infty}(\Omega)}^{2} \|\nabla v^{k}\|_{0}^{2} \\ &\leq C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|b(v^{k}) - b'(v^{k-1})\|_{L^{\infty}(\Omega)}^{2} \|\nabla v^{k}\|_{0}^{2} \\ &\leq C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|b(v^{k}) - b'(v^{k-1})\|_{L^{\infty}(\Omega)}^{2} \|\nabla v^{k}\|_{0}^{2} \\ &\leq C \left|\frac{1}{b}\right|_{0,\overline{G}_{0}}^{2} \|b'(v^{k}) - b'(v^{k-1})\|_{L^{\infty}(\Omega)}^{2} \|\nabla v^{k}\|_{0}^{2} \\ \end{aligned}$$

 $+C\Big|\frac{1}{b}\Big|$

 $+ C \Big| \frac{1}{1}$

$$+ C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{0}}^{2} \Big| \frac{db}{dv} \Big|_{0,\overline{G}_{0}}^{2} \| \nabla (v^{k} - v^{k-1}) \|_{0}^{2} | \nabla v^{k} \|_{L^{\infty}(\Omega)}^{2} \\
+ C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{0}}^{2} |b(v^{k}) - b(v^{k-1})|_{L^{\infty}(\Omega)}^{2} \| \nabla v^{k} \|_{1}^{2} \\
\leq C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{0}}^{2} \Big| \frac{db}{dv} \Big|_{0,\overline{G}_{0}}^{2} \| \nabla v^{k} \|_{2}^{2} \| \nabla (v^{k+1} - v^{k}) \|_{0}^{2} \\
+ C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{0}}^{2} \Big| \frac{d^{2}b}{dv^{2}} \Big|_{0,\overline{G}_{0}}^{2} \| v^{k} - v^{k-1} \|_{L^{\infty}(\Omega)}^{2} \| \nabla v^{k} \|_{2}^{2} \| \nabla v^{k} \|_{0}^{2} \\
+ C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{0}}^{2} \Big| \frac{db}{dv} \Big|_{0,\overline{G}_{0}}^{2} \| \nabla (v^{k} - v^{k-1}) \|_{0}^{2} \| \nabla v^{k} \|_{2}^{2} \\$$

$$+ C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{0}}^{2} \Big| \frac{db}{dv} \Big|_{0,\overline{G}_{0}}^{2} |v^{k} - v^{k-1}|_{L^{\infty}(\Omega)}^{2} \| \nabla v^{k} \|_{1}^{2}$$

$$(2.21)$$

where C depends on N, Ω . Here we used the fact that $\|\Delta v^k\|_0^2 = \|\nabla \cdot (\nabla v^k)\|_0^2 \leq C \|\nabla v^k\|_1^2$. And we used the facts that $\left|\frac{1}{b(v_*)}\right| \leq \left|\frac{1}{b}\right|_{0,\overline{G}_1}$ and that $\left|\frac{db}{dv}(v_*)\right| \leq \left|\frac{db}{dv}\right|_{0,\overline{G}_1}$ and that $\left|\frac{d^2b}{dv^2}(v_*)\right| \leq \left|\frac{d^2b}{dv^2}\right|_{0,\overline{G}_1}$ for $v_*(\mathbf{x}) \in \overline{G}_1$, where $v^k(\mathbf{x}) \in \overline{G}_1$ and $v^{k-1}(\mathbf{x}) \in \overline{G}_1$ for $\mathbf{x} \in \Omega$, so $v_* = tv^k + (1-t)v^{k-1} \in \overline{G}_1$ for any $t \in [0,1]$. And we used the standard Sobolev space inequality $|f|_{L^{\infty}(\Omega)} \leq C ||f||_{s_0}$, where the constant C depends on N, Ω , and where $s_0 = [\frac{N}{2}] + 1 = 2$ when N = 2 or N = 3 (see, e.g, Embid [4], Evans [5], Majda [8]).

Using the fact that $\|\nabla v^k\|_2^2 \leq C_1$ by the induction hypothesis, we obtain from (2.21) the inequality

$$\begin{split} |\nabla(v^{k+1} - v^k)||_1^2 \\ &\leq CC_1 \left| \frac{1}{b} \right|_{0,\overline{G}_1}^2 \left| \frac{db}{dv} \right|_{0,\overline{G}_1}^2 \|\nabla(v^{k+1} - v^k)\|_0^2 \\ &+ CC_1^2 \left| \frac{1}{b} \right|_{0,\overline{G}_1}^2 \left| \frac{d^2b}{dv^2} \right|_{0,\overline{G}_1}^2 |v^k - v^{k-1}|_{L^{\infty}(\Omega)}^2 + CC_1 \left| \frac{1}{b} \right|_{0,\overline{G}_1}^2 \left| \frac{db}{dv} \right|_{0,\overline{G}_1}^2 \|\nabla(v^k - v^{k-1})\|_0^2 \\ &+ CC_1 \left| \frac{1}{b} \right|_{0,\overline{G}_1}^2 \left| \frac{db}{dv} \right|_{0,\overline{G}_1}^2 \|v^k - v^{k-1}|_{L^{\infty}(\Omega)}^2 \\ &\leq CC_1 \left| \frac{1}{b} \right|_{0,\overline{G}_1}^2 \left| \frac{db}{dv} \right|_{0,\overline{G}_1}^2 \|\nabla(v^{k+1} - v^k)\|_1^2 + CC_1^2 \left| \frac{1}{b} \right|_{0,\overline{G}_1}^2 \left| \frac{d^2b}{dv^2} \right|_{0,\overline{G}_1}^2 \|\nabla(v^k - v^{k-1})\|_1^2 \\ &+ CC_1 \left| \frac{1}{b} \right|_{0,\overline{G}_1}^2 \left| \frac{db}{dv} \right|_{0,\overline{G}_1}^2 \|\nabla(v^k - v^{k-1})\|_1^2 + CC_1^2 \left| \frac{1}{b} \right|_{0,\overline{G}_1}^2 \left| \frac{d^2b}{dv^2} \right|_{0,\overline{G}_1}^2 \|\nabla(v^k - v^{k-1})\|_1^2 \\ &\leq CC_1 \left| \frac{\|\nabla f\|_0^2}{a_0^4} \right| \frac{da}{du} \right|_{0,\overline{G}_0}^2 \|\nabla(v^{k+1} - v^k)\|_1^2 + CC_1^2 \left| \frac{\|\nabla f\|_0^4}{a_0^6} \right| \frac{d^2a}{du^2} \right|_{0,\overline{G}_0}^2 \|\nabla(v^k - v^{k-1})\|_1^2 \\ &+ CC_1 \left| \frac{\|\nabla f\|_0^2}{a_0^4} \right| \frac{da}{du} \right|_{0,\overline{G}_0}^2 \|\nabla(v^k - v^{k-1})\|_1^2 \\ &\leq CC_1 \left| \frac{\|\nabla f\|_0^2}{a_0^4} \right| \frac{da}{du} \right|_{0,\overline{G}_0}^2 \|\nabla(v^k - v^{k-1})\|_1^2 \\ &+ CC_1 \frac{\|\nabla f\|_0^2}{a_0^4} \left| \frac{da}{du} \right|_{0,\overline{G}_0}^2 \|\nabla(v^k - v^{k-1})\|_1^2 \\ &\leq CC_1 \frac{\|\nabla f\|_0^2}{a_0^4} \left| \frac{da}{du} \right|_{0,\overline{G}_0}^2 \|\nabla(v^k - v^{k-1})\|_1^2 \\ &\leq CC_1 C_0 \|\nabla(v^{k+1} - v^k)\|_1^2 + CC_1^2 C_0^2 \|\nabla(v^k - v^{k-1})\|_1^2 + CC_1 C_0 \|\nabla(v^k - v^{k-1})\|_1^2 \end{aligned}$$

D. L. DENNY

EJDE-2019/110

$$= C_4 C_0 \|\nabla (v^{k+1} - v^k)\|_1^2 + C_4 C_0 \|\nabla (v^k - v^{k-1})\|_1^2$$

$$\leq \frac{1}{6} \|\nabla (v^{k+1} - v^k)\|_1^2 + \frac{1}{6} \|\nabla (v^k - v^{k-1})\|_1^2$$
(2.22)

where we define $C_4 = CC_1^2$. Here we used the fact that $\left|\frac{1}{b}\right|_{0,\overline{G}_1} = 1$, where $b(v) = \frac{1}{a_0}a(\frac{\|\nabla f\|_0}{a_0}v)$ and where $a_0 = \min_{u_*\in\overline{G}_0}a(u_*)$. And we used the facts that $\frac{1}{a_0}\left|\frac{da}{du}\right|^2_{1,\overline{G}_0}\|\nabla f\|_0^2 \leq C_0$, and that $\left|\frac{d^2a}{du^2}\right|_{0,\overline{G}_0} \leq \frac{1}{a_0}\left|\frac{da}{du}\right|^2_{0,\overline{G}_0}$ by assumption from the statement of the theorem. And we used the Sobolev space inequality $|v^k - v^{k-1}|^2_{L^{\infty}(\Omega)} \leq C \|\nabla (v^k - v^{k-1})\|_1^2$ by Lemma 4.2 in Appendix B, where we used the fact that $v^{k-1}(\mathbf{x}_0) = v^k(\mathbf{x}_0) = v_0$. We now define the constant C_0 to be sufficiently small so that $C_4C_0 \leq \max\{C_4, C_5\}C_0 \leq \frac{1}{6}$ where C_5 is a constant which is defined in Lemma 4.3 in Appendix B, and where C, C_1, C_4, C_5, C_0 depend on N, Ω , and where we may assume that $C_1 > 1$ and $C_4 > 1$ and $C_5 > 1$ and $C_0 < 1$.

After re-arranging the terms in (2.22) we obtain

$$\|\nabla(v^{k+1} - v^k)\|_1^2 \le \frac{1}{5} \|\nabla(v^k - v^{k-1})\|_1^2$$
(2.23)

Therefore inequality (2.14) of Proposition 2.2 holds for $\nabla(v^{k+1} - v^k)$. Repeatedly applying (2.23) yields for $k \ge 1$:

$$\begin{aligned} \|\nabla(v^{k+1} - v^k)\|_1^2 &\leq \left(\frac{1}{5}\right)^k \|\nabla(v^1 - v^0)\|_1^2 \\ &= \left(\frac{1}{5}\right)^k \|\nabla v^1\|_1^2 \\ &\leq \left(\frac{1}{5}\right)^k C_1 \end{aligned}$$
(2.24)

where we used the fact that $\|\nabla v^1\|_1^2 \leq \|\nabla v^1\|_2^2 \leq C_1$ by Lemma 4.3 in Appendix B, where the constant C_1 depends on Ω and N.

By Lemma 4.2 in Appendix B,

$$\|v^{k+1} - v^k\|_2^2 \le C \|\nabla(v^{k+1} - v^k)\|_1^2$$
(2.25)

where we used the fact that $v^{k+1}(\mathbf{x}_0) = v^k(\mathbf{x}_0) = v_0$. Here the constant C depends on N, Ω .

Therefore from (2.24)–(2.25), it follows that

$$\|v^{k+1} - v^k\|_2^2 \le C \|\nabla(v^{k+1} - v^k)\|_1^2$$

$$\le \left(\frac{1}{5}\right)^k CC_1$$

$$= \left(\frac{1}{5}\right)^k C_3$$

(2.26)

where the constant C_3 depends on N, Ω .

Therefore inequality (2.15) of Proposition 2.2 holds for $v^{k+1}-v^k$. This completes the proof of Proposition 2.2.

Now we complete the proof of Theorem 2.1. From inequality (2.26) it follows that $||v^{k+1} - v^k||_2 \to 0$ as $k \to \infty$. From the estimate (2.12) for $||v^k||_4$ and for $||v^{k+1}||_4$, and from the standard interpolation inequality $||v^{k+1} - v^k||_r \leq C ||v^{k+1} - v^k||_2 = 0$ as $k \to \infty$ for 2 < r < 4, it follows that $||v^{k+1} - v^k||_r \to 0$ as $k \to \infty$ for 2 < r < 4. Therefore there exists $v \in H^r(\Omega)$ such that $||v^k - v||_r \to 0$

as $k \to \infty$. The fact that $v \in H^4(\Omega)$ can be deduced using boundedness in high norm and a standard compactness argument (see, for example, Embid [4], Majda [8]). Sobolev's lemma implies that $v \in C^2(\Omega)$.

From Lemma 3.1 in Appendix A, $v^{k+1} \in C^2(\Omega)$ is a solution of the linear equation $-\nabla \cdot (b(v^k)\nabla v^{k+1}) = g$ for each $k \geq 0$, and v^{k+1} satisfies the condition that $v^{k+1}(\mathbf{x}_0) = v_0$, and v^{k+1} satisfies the boundary condition $\mathbf{n}(\mathbf{x}) \cdot \nabla v^{k+1}(\mathbf{x}) = 0$ for $\mathbf{x} \in \partial \Omega$. It follows that v is a classical solution of the equation $-\nabla \cdot (b(v)\nabla v) = g$, and v satisfies the condition that $v(\mathbf{x}_0) = v_0$, and v satisfies the boundary condition $\mathbf{n}(\mathbf{x}) \cdot \nabla v(\mathbf{x}) = 0$ for $\mathbf{x} \in \partial \Omega$. The uniqueness of the solution follows by a standard proof using estimates similar to the estimates used in the proof of the contraction inequality (2.14). Therefore, there exists a unique classical solution $u = \left(\frac{\|\nabla f\|_0}{a_0}\right)v$ of $-\nabla \cdot (a(u)\nabla u) = f$ which satisfies the condition that $u(\mathbf{x}_0) = u_0$, and satisfies the boundary condition $\mathbf{n}(\mathbf{x}) \cdot \nabla u(\mathbf{x}) = 0$ for $\mathbf{x} \in \partial \Omega$. This completes the proof of the theorem.

3. Appendix A: Existence for the linear equation

In this section, we present the proof of the existence of a unique, classical solution to the linear problem (2.8)-(2.10).

Lemma 3.1. Let b be a smooth positive function of w. Let $w \in C^2(\Omega)$ and let $w(\mathbf{x}) \in \overline{G}_1 \subset \mathbb{R}$ for $\mathbf{x} \in \Omega$. Let $g \in H^2(\Omega)$ and let $\frac{1}{|\Omega|} \int_{\Omega} g \, d\mathbf{x} = 0$, where the domain $\Omega \subset \mathbb{R}^N$ is a bounded, connected, open set, with N = 2 or N = 3, and where the boundary $\partial\Omega$ is C^{∞} . Then there exists a unique solution $v \in C^2(\Omega)$ of the equation

$$-\nabla \cdot (b(w)\nabla v) = g \tag{3.1}$$

which satisfies the condition

$$v(\mathbf{x}_0) = v_0 \tag{3.2}$$

where $\mathbf{x}_0 \in \Omega$ is a given point and v_0 is a given value, under the Neumann boundary condition

$$\mathbf{n}(\mathbf{x}) \cdot \nabla v(\mathbf{x}) = 0 \tag{3.3}$$

for $\mathbf{x} \in \partial \Omega$.

Proof. We define the zero-mean function

$$\overline{v} = v - \frac{1}{|\Omega|} \int_{\Omega} v \, d\mathbf{x} \tag{3.4}$$

The existence of a unique zero-mean solution $\overline{v} \in C^2(\Omega)$ to equation (3.1) with a Neumann boundary condition $\mathbf{n}(\mathbf{x}) \cdot \nabla \overline{v}(\mathbf{x}) = 0$ on the boundary $\partial \Omega$, is a wellknown result from the standard theory of elliptic equations (see, e.g., Embid [4], Evans [5], Gilbarg and Trudinger [6]).

It follows that the function v defined by

$$v(\mathbf{x}) = \overline{v}(\mathbf{x}) + v_0 - \overline{v}(\mathbf{x}_0) \tag{3.5}$$

is the unique solution to equation (3.1) which satisfies the condition (3.2) that $v(\mathbf{x}_0) = v_0$, and also satisfies the boundary condition (3.3) that $\mathbf{n}(\mathbf{x}) \cdot \nabla v(\mathbf{x}) = 0$ for $\mathbf{x} \in \partial \Omega$. This completes the proof of the lemma.

4. Appendix B: A priori estimates

In this section, we present lemmas supporting the proof of the theorem. We begin by listing several standard Sobolev space inequalities.

Lemma 4.1 (Standard Sobolev Space Inequalities).

(a) Let h(w) be a smooth function of w, where $w(\mathbf{x})$ is a continuous function and where $w(\mathbf{x}) \in \overline{G}_1 \subset \mathbb{R}$ for $\mathbf{x} \in \Omega \subset \mathbb{R}^N$ and $w \in H^{r+1}(\Omega) \cap L^{\infty}(\Omega)$. Then for $r \geq 0$,

$$\|\nabla(h(w))\|_{r} \le C \left|\frac{dh}{dw}\right|_{r,\overline{G}_{1}} (1+|w|_{L^{\infty}(\Omega)})^{r} \|\nabla w\|_{r},$$

$$(4.1)$$

where $|F|_{r,\overline{G}_1} = \max\{|\frac{d^j F}{dw^j}(w_*)| : w_* \in \overline{G}_1, 0 \le j \le r\}$, and where C depends on r, N, and Ω .

(b) If $f \in H^m(\Omega)$, $g \in H^n(\Omega)$, and $r = \min\{m, n, m + n - s_0\} \ge 0$, where $\Omega \subset \mathbb{R}^N$ and $s_0 = [\frac{N}{2}] + 1$, then $fg \in H^r(\Omega)$ and

$$||fg||_r \le C ||f||_m ||g||_n \tag{4.2}$$

Here C is a constant which depends on m, n, N, Ω .

(c) If $f \in H^{s_0}(\Omega)$ where $\Omega \subset \mathbb{R}^N$ and $s_0 = [\frac{N}{2}] + 1$, then

$$\|f\|_{L^{\infty}(\Omega)} \le C \|f\|_{s_0} \tag{4.3}$$

Here C is a constant which depends on N, Ω .

(d) If $f \in H^n(\Omega)$, where $\Omega \subset \mathbb{R}^N$, and $r = \beta m + (1 - \beta)n$, with $0 \le \beta \le 1$ and m < n, then

$$||f||_{r} \le C ||f||_{m}^{\beta} ||f||_{n}^{1-\beta}$$
(4.4)

Here C is a constant which depends on m, n, N, Ω .

These inequalities are well-known. Their proofs may be found, for example, in [7, 9]. These inequalities also appear in [2, 4].

Lemma 4.2. Let f, g be $H^r(\Omega)$ functions on a bounded domain $\Omega \subset \mathbb{R}^N$, where N = 2 or N = 3 and $r \geq 2$. And let $f(\mathbf{x}_0) = g(\mathbf{x}_0)$ at a point $\mathbf{x}_0 \in \Omega$. Then f - g satisfies the following inequalities:

$$\|f - g\|_0^2 \le C \|\nabla (f - g)\|_1^2, \tag{4.5}$$

$$||f - g||_r^2 \le C ||\nabla (f - g)||_{r-1}^2, \quad r \ge 2$$
(4.6)

$$|f - g|_{L^{\infty}(\Omega)}^{2} \le C \|\nabla(f - g)\|_{1}^{2}$$
(4.7)

$$||f - g||_1^2 \le C ||\nabla (f - g)||_1^2, \tag{4.8}$$

Here C is a constant which depends on N, Ω .

Proof. A proof of the inequality (4.5) appears in [3]. We now use inequality (4.5) to prove the remaining inequalities (4.6)–(4.8).

From (4.5) we obtain the following inequality for $r \ge 2$:

$$\begin{aligned} \|f - g\|_{r}^{2} &\leq \|f - g\|_{0}^{2} + C\|\nabla(f - g)\|_{r-1}^{2} \\ &\leq C\|\nabla(f - g)\|_{1}^{2} + C\|\nabla(f - g)\|_{r-1}^{2} \quad \leq C\|\nabla(f - g)\|_{r-1}^{2} \end{aligned}$$
(4.9)

for $r \ge 2$. This completes the proof of (4.6).

From (4.6) with r = 2, we obtain

$$|f - g|_{L^{\infty}}^2 \le C ||f - g||_2^2 \le C ||\nabla(f - g)||_1^2$$
(4.10)

where the constant C depends on N, Ω . Here we used the Sobolev lemma to obtain $|f - g|_{L^{\infty}(\Omega)} \leq C ||f - g||_{H^{s_0}(\Omega)}$, where $s_0 = [\frac{N}{2}] + 1 = 2$ for N = 2 or N = 3 (see, e.g., [4, 8]). This completes the proof of (4.7).

The inequality (4.8) for $||f - g||_1^2$ follows immediately from applying (4.6) with r = 2 and using the fact that $||f - g||_1^2 \le ||f - g||_2^2$.

Lemma 4.3. Let b be a smooth positive function of w defined by

$$b(w) = \frac{1}{a_0} a(\frac{\|\nabla f\|_0}{a_0} w),$$

where $a_0 = \min_{u_* \in \overline{G}_0} a(u_*)$ and $\overline{G}_0 \subset \mathbb{R}$ is a closed, bounded interval. Let $w \in C^2(\Omega)$ and $g \in H^2(\Omega)$, where $\frac{1}{|\Omega|} \int_{\Omega} g \, d\mathbf{x} = 0$ and where $g = \left(\frac{1}{\|\nabla f\|_0}\right) f$. The domain $\Omega \subset \mathbb{R}^N$ is a bounded, connected, open set, with N = 2 or N = 3, and the boundary $\partial\Omega$ is C^{∞} . Let $w(\mathbf{x}) \in \overline{G}_1$ for $\mathbf{x} \in \Omega$, where $\overline{G}_1 \subset \mathbb{R}$ is a closed, bounded interval, and let $|w - v_0|_{L^{\infty}(\Omega)} \leq R$ where v_0 and R are constants. Let $\|\nabla w\|_2^2 \leq C_1$, where the constant C_1 depends on N, Ω . Let $\left(\frac{\|\nabla f\|_0^2}{a_0^4}\right) \left|\frac{da}{du}\right|_{0,\overline{G}_0}^2 \leq C_0$, where C_0 is sufficiently small so that $\max\{C_4, C_5\}C_0 \leq \frac{1}{6}$, where the constants C_4 , C_5 depend on N, Ω . And let $\left|\frac{d^2a}{du^2}\right|_{0,\overline{G}_0} \leq \frac{1}{a_0}\left|\frac{da}{du}\right|_{0,\overline{G}_0}^2$.

Let $v \in C^2(\Omega)$ be the solution from Lemma 3.1 of

$$-\nabla \cdot (b(w)\nabla v) = g \tag{4.11}$$

which satisfies the condition

$$v(\mathbf{x}_0) = v_0 \tag{4.12}$$

where $\mathbf{x}_0 \in \Omega$ is a given point and v_0 is a given constant, under the Neumann boundary condition

$$\mathbf{n}(\mathbf{x}) \cdot \nabla v(\mathbf{x}) = 0 \tag{4.13}$$

for $\mathbf{x} \in \partial \Omega$.

Then ∇v and v satisfy the inequalities

$$\|\nabla v\|_2^2 \le C_1, \quad \|v\|_4^2 \le C_2 \tag{4.14}$$

where the constant C_1 depends on N and Ω and where the constant C_2 depends on R, v_0 , a_0 , $\|\nabla f\|_0$, $\|\nabla f\|_1$, $\left|\frac{d(\ln(a(u)))}{du}\right|_{2,\overline{G}_0}$, $\left|\frac{d((a(u)))^{-1})}{du}\right|_{1,\overline{G}_0}$, N, and Ω .

Proof. In the estimates below, we will let C denote a generic constant whose value may change from one relation to the next.

Estimate for $\|\nabla v\|_2^2$: We write equation (4.11) equivalently as

$$\Delta v = -\nabla(\ln(b(w))) \cdot \nabla v - \frac{1}{b(w)}g \tag{4.15}$$

We will be using the standard regularity estimate for the equation $\Delta v = h$, when $\mathbf{n} \cdot \nabla v = 0$ on the boundary $\partial \Omega$ (see, e.g., Bourguignon and Brezis [1], Embid [4])

$$\|\nabla v\|_r^2 \le C \|h\|_{r-1}^2 \tag{4.16}$$

where $r \geq 1$ and where the constant C depends on r, N, and Ω .

In the following estimate, we will use the notation $f_{\alpha} = D^{\alpha} f$. Applying (4.16) to the equation (4.15) and letting r = 2, and using the Sobolev space inequalities in Lemma 4.1, yields

$$\|\nabla v\|_{2}^{2} \leq C \|\nabla(\ln(b(w))) \cdot \nabla v + \frac{1}{b(w)}g\|_{1}^{2}$$

$$\begin{split} &= C \sum_{0 \leq |\alpha| \leq 1} \|D^{\alpha} \Big(\nabla (\ln(b(w))) \cdot \nabla v + \frac{1}{b(w)} g \Big) \|_{0}^{2} \\ &\leq C \|\nabla (\ln(b(w))) \cdot \nabla v \|_{0}^{2} + C \sum_{|\alpha| = 1} \|D^{\alpha} (\nabla (\ln(b(w))) \cdot \nabla v) \|_{0}^{2} \\ &+ C \|\frac{1}{b(w)} g \|_{0}^{2} + C \sum_{|\alpha| = 1} \|D^{\alpha} \Big(\frac{1}{b(w)} g \Big) \|_{0}^{2} \\ &\leq C |\nabla (\ln(b(w))) \|_{\mathcal{L}^{\infty}(\Omega)}^{2} \|\nabla v \|_{0}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big(\|(\nabla (\ln(b(w)))) \cdot \nabla v \|_{0}^{2} + \|\nabla (\ln(b(w)))) \cdot \nabla v_{\alpha} \|_{0}^{2} \Big) \\ &+ C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dv} \Big|_{0,\overline{G}_{1}}^{2} |\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla v \|_{0}^{2} + \|\nabla (\ln(b(w)))) \cdot \nabla v_{\alpha} \|_{0}^{2} \Big) \\ &+ C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} |\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla v \|_{0}^{2} + \| \Big(\frac{1}{b(w)} \Big)_{\alpha} g \|_{0}^{2} \Big) \\ &\leq C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} |\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla v \|_{0}^{2} + C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \|g \|_{0}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \|g \|_{0}^{2} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \|\nabla w \|_{0}^{2} \|\nabla v \|_{L^{\infty}(\Omega)}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} \|\nabla w \|_{0}^{2} \|\nabla v \|_{L^{\infty}(\Omega)}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} \|w \|_{0}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla v \|_{L^{\infty}(\Omega)}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} \|w \|_{0}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla v \|_{L^{\infty}(\Omega)}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla v \|_{L^{\infty}(\Omega)}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla v \|_{L^{\infty}(\Omega)}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \|w \|_{0}^{2} \\ &+ C \sum_{|\alpha| = 1} \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{2} \Big| \frac{dw}{dw} \Big|_{0,\overline{G}_{1}}^{2} \|\nabla w \|_{L^{\infty}(\Omega)}^{2} \|\nabla w \|_{L^{$$

$$\begin{split} &+ C \Big| \frac{1}{b} \Big|_{0,\overline{G}_{1}}^{4} \Big| \frac{db}{dw} \Big|_{0,\overline{G}_{1}}^{2} \| \nabla w \|_{2}^{2} \| \nabla g \|_{0}^{2} \\ &\leq CC_{1} \Big| \frac{db}{dw} \Big|_{0,\overline{G}_{1}}^{2} \| \nabla v \|_{0}^{2} + CC_{1} \Big| \frac{db}{dw} \Big|_{0,\overline{G}_{1}}^{2} \| \nabla v \|_{2}^{2} + CC_{1}^{2} \Big| \frac{db}{dw} \Big|_{0,\overline{G}_{1}}^{4} \| \nabla v \|_{2}^{2} \\ &+ CC_{1}^{2} \Big| \frac{d^{2}b}{dw^{2}} \Big|_{0,\overline{G}_{1}}^{2} \| \nabla v \|_{2}^{2} + CC_{1} \Big| \frac{db}{dw} \Big|_{0,\overline{G}_{1}}^{2} \| \nabla v \|_{1}^{2} + C \| \nabla g \|_{0}^{2} \\ &+ CC_{1} \Big| \frac{db}{dw} \Big|_{0,\overline{G}_{1}}^{2} + C_{1}^{2} \Big| \frac{db}{dw} \Big|_{0,\overline{G}_{1}}^{4} + C_{1}^{2} \Big| \frac{d^{2}b}{dw^{2}} \Big|_{0,\overline{G}_{1}}^{2} \Big) \| \nabla v \|_{2}^{2} + C + CC_{1} \Big| \frac{db}{dw} \Big|_{0,\overline{G}_{1}}^{2} \\ &\leq C \Big(C_{1} \Big(\frac{\| \nabla f \|_{0}^{2}}{a_{0}^{4}} \Big) \Big| \frac{da}{du} \Big|_{0,\overline{G}_{0}}^{2} + C_{1}^{2} \Big(\frac{\| \nabla f \|_{0}^{4}}{a_{0}^{8}} \Big) \Big| \frac{da}{du} \Big|_{0,\overline{G}_{0}}^{4} \\ &+ C_{1}^{2} \Big(\frac{\| \nabla f \|_{0}^{4}}{a_{0}^{6}} \Big) \Big| \frac{d^{2}a}{du^{2}} \Big|_{0,\overline{G}_{0}}^{2} + C_{1}^{2} \Big(\frac{\| \nabla f \|_{0}^{4}}{a_{0}^{8}} \Big) \Big| \frac{da}{du} \Big|_{0,\overline{G}_{0}}^{4} \\ &+ C_{1}^{2} \Big(\frac{\| \nabla f \|_{0}^{4}}{a_{0}^{6}} \Big) \Big| \frac{d^{2}a}{du^{2}} \Big|_{0,\overline{G}_{0}}^{2} \Big) \| \nabla v \|_{2}^{2} + C + CC_{1} \Big(\frac{\| \nabla f \|_{0}^{4}}{a_{0}^{6}} \Big) \Big| \frac{da}{du} \Big|_{0,\overline{G}_{0}}^{2} \\ &\leq C \Big(C_{1} \Big(\frac{\| \nabla f \|_{0}^{2}}{a_{0}^{4}} \Big) \Big| \frac{da}{du} \Big|_{0,\overline{G}_{0}}^{2} + C_{1}^{2} \Big(\frac{\| \nabla f \|_{0}^{4}}{a_{0}^{8}} \Big) \Big| \frac{da}{du} \Big|_{0,\overline{G}_{0}}^{4} \Big) \| \nabla v \|_{2}^{2} \\ &+ C + CC_{1} \Big(\frac{\| \nabla f \|_{0}^{2}}{a_{0}^{4}} \Big) \Big| \frac{da}{du} \Big|_{0,\overline{G}_{0}}^{2} \\ &\leq (CC_{1}C_{0} + CC_{1}^{2}C_{0}^{2}) \| \nabla v \|_{2}^{2} + C + CC_{1}C_{0} \\ &\leq CC_{1}^{2}C_{0} \| \nabla v \|_{2}^{2} + C + CC_{1}^{2}C_{0} \\ &= C_{5}C_{0} \| \nabla v \|_{2}^{2} + C + C_{5}C_{0} \\ &\leq \frac{1}{6} \| \nabla v \|_{2}^{2} + C + \frac{1}{6} \end{aligned}$$

where we define $C_5 = CC_1^2$. Here we used the facts that $b(w) = \frac{1}{a_0} a(\frac{\|\nabla f\|_0}{a_0}w)$ and that $\left(\frac{\|\nabla f\|_0^2}{a_0^4}\right) \left|\frac{da}{du}\right|_{0,\overline{G}_0}^2 \leq C_0$, where C_0 is sufficiently small so that $C_5C_0 \leq \max\{C_4, C_5\}C_0 \leq \frac{1}{6}$ where C_4 is a constant which was defined in the proof of Proposition 2.2, and where C_4 , C_5 , C_0 depend on N, Ω . And we may assume that $C_1 > 1$ and $C_4 > 1$ and $C_5 > 1$ and $C_0 < 1$. And we used the facts that $\left|\frac{1}{b(w_*)}\right| \leq \left|\frac{1}{b}\right|_{0,\overline{G}_1}$ and that $\left|\frac{db}{dw}(w_*)\right| \leq \left|\frac{db}{dw}\right|_{0,\overline{G}_1}$ and that $\left|\frac{d^2b}{dw^2}(w_*)\right| \leq \left|\frac{d^2b}{dw^2}\right|_{0,\overline{G}_1}$ because $w_*(\mathbf{x}) \in \overline{G}_1$ for $\mathbf{x} \in \Omega$. And we used the facts that $\left|\frac{1}{b}\right|_{0,\overline{G}_1} = 1$ by the definition of the function b in (2.4), and that $\|\nabla g\|_0^2 = 1$. We also used the fact that $\|\nabla w\|_2^2 \leq C_1$. And we used the fact that $\left|\frac{d^2a}{du^2}\right|_{0,\overline{G}_0} \leq \frac{1}{a_0}\left|\frac{da}{du}\right|_{0,\overline{G}_0}^2$. We also used Poincaré's inequality to obtain $\|g\|_0^2 \leq C\|\nabla g\|_0$ since g is a zero-mean function, where the constant C depends on N, Ω . And we used the Sobolev space inequality $|f|_{L^{\infty}(\Omega)}^2 \leq C\|f\|_{s_0}^2$, where $s_0 = [\frac{N}{2}] + 1 = 2$ when N = 2 or N = 3.

Re-arranging terms in (4.17) yields

$$\|\nabla v\|_2^2 \le \frac{6}{5}C + \frac{1}{5} = C_1 \tag{4.18}$$

where the constants C, C_1 depend on N, Ω .

Estimate for $\|\nabla v\|_3^2$: If r = 3 in (4.16), then after using the Sobolev space inequalities in Lemma 4.1, we obtain from equation (4.15) the estimate

$$\begin{split} \nabla v \|_{3}^{2} &\leq C \|\nabla(\ln(b(w))) \cdot \nabla v + \frac{1}{b(w)}g\|_{2}^{2} \\ &\leq C \|\nabla(\ln(b(w)))\|_{2}^{2} \|\nabla v\|_{2}^{2} + C \|\frac{1}{b(w)}\|_{2}^{2} \|g\|_{2}^{2} \\ &\leq C \|\nabla(\ln(b(w)))\|_{2}^{2} \|\nabla v\|_{2}^{2} + C \Big(\|\frac{1}{b(w)}\|_{0}^{2} + C \|\nabla\left(\frac{1}{b(w)}\right)\|_{1}^{2}\Big)\|g\|_{2}^{2} \\ &\leq C \Big|\frac{d(\ln(b(w)))}{dw}\Big|_{2,\overline{G}_{1}}^{2} (1 + |w|_{L^{\infty}(\Omega)})^{4} \|\nabla w\|_{2}^{2} \|\nabla v\|_{2}^{2} \\ &+ C \Big|\frac{1}{b}\Big|_{0,\overline{G}_{1}}^{2} |\Omega|\|g\|_{2}^{2} + C \Big|\frac{d((b(w))^{-1})}{dw}\Big|_{1,\overline{G}_{1}}^{2} (1 + |w|_{L^{\infty}(\Omega)})^{2} \|\nabla w\|_{1}^{2} \|g\|_{2}^{2} \\ &\leq C C_{1}^{2} \Big|\frac{d(\ln(b(w)))}{dw}\Big|_{2,\overline{G}_{1}}^{2} (1 + |w - v_{0}|_{L^{\infty}(\Omega)} + |v_{0}|)^{4} + C \Big|\frac{1}{b}\Big|_{0,\overline{G}_{1}}^{2} |\Omega|\|\nabla g\|_{1}^{2} \\ &+ C C_{1} \Big|\frac{d((b(w)))^{-1}}{dw}\Big|_{2,\overline{G}_{1}}^{2} (1 + |w - v_{0}|_{L^{\infty}(\Omega)} + |v_{0}|)^{2} \|\nabla g\|_{1}^{2} \\ &\leq C C_{1}^{2} \Big|\frac{d(\ln(b(w)))}{dw}\Big|_{2,\overline{G}_{1}}^{2} (1 + R + |v_{0}|)^{4} + C |\Omega|\|\nabla g\|_{1}^{2} \\ &+ C C_{1} \Big|\frac{d((b(w)))^{-1}}{dw}\Big|_{2,\overline{G}_{0}}^{2} (1 + R + |v_{0}|)^{2} \|\nabla g\|_{1}^{2} \\ &= C C_{1}^{2} \Big|\frac{\|\nabla f\|_{0}}{a_{0}} \frac{1}{a(u)} \frac{da}{du}\Big|_{2,\overline{G}_{0}}^{2} (1 + R + |v_{0}|)^{2} \frac{\|\nabla f\|_{1}^{2}}{\|\nabla f\|_{0}^{2}} \\ &+ C C_{1} \Big|\|\nabla f\|_{0} \frac{-1}{a(u)^{2}} \frac{da}{du}\Big|_{1,\overline{G}_{0}}^{2} (1 + R + |v_{0}|)^{2} \frac{\|\nabla f\|_{1}^{2}}{\|\nabla f\|_{0}^{2}} \\ &= C C_{1}^{2} \frac{\|\nabla f\|_{0}^{2}}{a_{0}^{2}} \Big|\frac{d(\ln(a(u)))}{du}\Big|_{2,\overline{G}_{0}}^{2} (1 + R + |v_{0}|)^{2} \|\nabla f\|_{1}^{2} \\ &= C C_{1}^{2} \frac{\|\nabla f\|_{0}^{2}}{a_{0}^{2}} \Big|\frac{d(\ln(a(u)))}{du}\Big|_{2,\overline{G}_{0}}^{2} (1 + R + |v_{0}|)^{2} \|\nabla f\|_{1}^{2} \end{aligned}$$

where C, C_1 are constants which depend on N, Ω . Here, we used the facts that $b(w) = \frac{1}{a_0} a(\frac{\|\nabla f\|_0}{a_0}w)$, and that $\left|\frac{1}{b}\right|_{0,\overline{G}_1} = 1$, and that $g = \frac{1}{\|\nabla f\|_0}f$ from the definition of the functions b, g in (2.4). And we used the inequality $\|\nabla v\|_2^2 \leq C_1$ from (4.18). We also used the facts that $|w - v_0|_{L^{\infty}(\Omega)} \leq R$ and that $\|\nabla w\|_2^2 \leq C_1$. And we used Poincaré's inequality to obtain $\|g\|_2^2 \leq \|g\|_0^2 + C\|\nabla g\|_1^2 \leq C\|\nabla g\|_0^2 + C\|\nabla g\|_1^2 \leq C\|\nabla g\|_1^2 \leq C\|\nabla g\|_1^2$

Estimate for $||v||_4^2$: From (4.19) and by Lemma 4.2, it follows that

$$\begin{split} \|v\|_{4}^{2} &= \|v - v_{0} + v_{0}\|_{4}^{2} \\ &\leq 2\|v - v_{0}\|_{4}^{2} + 2\|v_{0}\|_{4}^{2} \\ &\leq C\|\nabla(v - v_{0})\|_{3}^{2} + 2|v_{0}|^{2}|\Omega| \\ &= C\|\nabla v\|_{3}^{2} + 2|v_{0}|^{2}|\Omega| \\ &\leq CC_{1}^{2}\frac{\|\nabla f\|_{0}^{2}}{a_{0}^{2}}\Big|\frac{d(\ln(a(u)))}{du}\Big|_{2,\overline{G}_{0}}^{2}(1 + R + |v_{0}|)^{4} + \frac{C|\Omega|\|\nabla f\|_{1}^{2}}{\|\nabla f\|_{0}^{2}} \end{split}$$

 $\|$

$$+ CC_1 \left| \frac{d((a(u))^{-1})}{du} \right|_{1,\overline{G}_0}^2 (1 + R + |v_0|)^2 \|\nabla f\|_1^2 + 2|v_0|^2 |\Omega|$$

= C₃

where $||v - v_0||_4^2 \leq C ||\nabla (v - v_0)||_3^2$ by Lemma 4.2, and where we used the fact that $v(\mathbf{x}_0) = v_0$, where v_0 is a constant. This completes the proof.

References

- J. P. Bourguignon, H. Brezis; *Remarks on the Euler equation*, Journal of Functional Analysis, 15 (1974), 341–363.
- [2] D. Denny; Existence of a solution to a system of equations modelling compressible fluid flow, Electronic Journal of Differential Equations, 2015 no. 216 (2015), 1–28.
- [3] D. Denny; Existence of a unique solution to a quasilinear elliptic equation, Journal of Mathematical Analysis and Applications 380 (2011), 653–668.
- [4] P. Embid; On the Reactive and Non-diffusive Equations for Zero Mach Number Flow, Comm. in Partial Differential Equations 14, nos. 8 and 9, (1989), 1249–1281.
- [5] L. Evans; Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, Rhode Island, 1998.
- [6] D. Gilbarg, N. S. Trudinger; *Elliptic Partial Differential Equations of Second Order*, Springer-Verlag, Berlin, 1983.
- [7] S. Klainerman, A. Majda; Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math. 34 (1981), 481–524.
- [8] A. Majda; Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag: New York, 1984.
- [9] J. Moser; A rapidly convergent iteration method and non-linear differential equations, Ann. Scuola Norm. Sup., Pisa 20 (1966), 265–315.

DIANE L. DENNY

Department of Mathematics and Statistics, Texas A&M University - Corpus Christi, Corpus Christi, TX 78412, USA

Email address: diane.denny@tamucc.edu