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INITIAL VALUE PROBLEMS FOR CAPUTO FRACTIONAL

EQUATIONS WITH SINGULAR NONLINEARITIES

JEFFREY R. L. WEBB

Abstract. We consider initial value problems for Caputo fractional equations

of the form DαCu = f where f can have a singularity. We consider all orders
and prove equivalences with Volterra integral equations in classical spaces such

as Cm[0, T ]. In particular for the case 1 < α < 2 we consider nonlinearities of

the form t−γf(t, u,DβCu) where 0 < β ≤ 1 and 0 ≤ γ < 1 with f continuous,

and we prove results on existence of global C1 solutions under linear growth

assumptions on f(t, u, p) in the u, p variables. With a Lipschitz condition
we prove continuous dependence on the initial data and uniqueness. One

tool we use is a Gronwall inequality for weakly singular problems with double
singularities. We also prove some regularity results and discuss monotonicity

and concavity properties.

1. Introduction

The study of fractional integrals and fractional differential equations has ex-
panded dramatically in recent years, there are now literally thousands of research
papers dealing with various versions of fractional derivatives.

In this paper we will discuss Initial Value Problems (IVPs) mainly for the Caputo
fractional derivative, but also for the Riemann-Liouville fractional derivative, the
two fractional derivative that are most commonly used, both are defined in terms of
the Riemann-Liouville fractional integral. There are relatively few recent papers on
IVPs, as compared with the number dealing with boundary value problems, since
many results can be found in textbooks such as [7, 17, 24].

Our main goal, achieved in Section 8, is to prove a global existence theorem for
initial value problems for Caputo fractional differential equations involving a non-
linear term with a singularity and depending on lower order fractional derivatives.
In particular for fractional derivatives of order between 1 and 2, we treat in detail
the following problem for Caputo fractional derivatives in the space C1[0, T ]

Dαu(t) = t−γf(t, u(t), Dβu(t)), u(0) = u0, u
′(0) = u1, (1.1)

for 0 ≤ γ < 1, 1 < α < 2 and 0 < β ≤ 1 when f is continuous. We will prove a
global existence result under the assumption |f(t, u, p)| ≤ a(t)+M(|u|+|p|) for some
a ∈ L∞ and constant M > 0. Under a Lipschitz condition, with no restriction on
the size of the Lipschitz constant, we also prove continuous dependence on the initial
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data and uniqueness. An important tool we employ is a Gronwall inequality in a
weakly singular case. For weakly singular Gronwall type inequalities the pioneering
work was by Henry [14] who proved, by an iterative process, some L1 bounds given
by series related to the Mittag-Leffler function. References are often given to the
paper [28] which used Henry’s method to replace a constant by a nondecreasing
function which can in fact be simply deduced from the original result in [14]. For a
similar inequality involving an integral with a doubly singular kernel we proved in
[27] some L∞ bounds which involve the exponential function. Medved [21] proved
some L∞ inequalities of a different type by use of Hölder’s inequality. With a
similar method to that of Medved some other inequalities were given by Zhu [29].

For a real number α ∈ (0, 1) the Riemann-Liouville fractional integral of order
α is defined informally as an integral with a singular kernel by

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds.

When u ∈ L1 the definition becomes precise if equality is understood to hold in the
L1 sense and so it holds for almost every (a.e.) t.

It is frequently claimed that finding solutions of a fractional differential equation
is equivalent to finding solutions of a Volterra integral equation. For example, for
the IVP for a Caputo fractional derivative of order α with 0 < α < 1 with f
continuous,

Dα
Cu(t) = f(t, u(t)), u(0) = u0, (1.2)

and the Volterra integral equation

u(t) = u0 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s)) ds (1.3)

it is often claimed that u is a solution of (1.2) if and only if u is a solution of (1.3).
Apart from the fact that ‘solution’ means different things for the two problems
and is often not made precise, there is a more serious issue. There are, in fact,
two commonly used definitions of Caputo derivative, recalled below, which we will
denote by Dα

C and Dα
∗ , the second one we will call the modified Caputo derivative,

and an equivalence has been proved for only the second of these definitions, a fact
that has often been overlooked.

In this paper we will give precise definitions and prove equivalences for all order
fractional derivative cases in a more general case, when the nonlinearity is of the
form t−γf , with 0 ≤ γ < 1 and f is continuous, which, of course, includes the
previous case.

We believe our work that allows the singular term t−γ in the nonlinearity, espe-
cially the treatment of (1.1) is new.

We give some properties of the Riemann-Liouville integral in Section 3, some of
which may have some novelty, they seem to be not as well known as they should
be. We include proofs of some known results for completeness.

In Sections 4,5, and 6 we give some equivalences between solutions of IVPs and
solutions of corresponding integral equations.

In Section 7 we discuss the relationship between an increasing function and the
positivity of its Caputo fractional derivative of order α ∈ (0, 1) with a singularity
allowed, only one direction of implication is valid. We also discuss concavity prop-
erties for Caputo and Riemann-Liouville fractional derivatives of orders α ∈ (1, 2),
in particular we give counter-examples to some claims in recently published papers.
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We turn to existence of solutions of the IVP in Section 8. Kosmatov [18] stud-
ied the solvability of integral equations associated with the initial value problem

Dα
Cu(t) = f(t,Dβ

Cu(t)) (of all orders α) and depends on the fractional derivative of
lower order, assuming that the nonlinear term f is continuously differentiable. The
case studied by Kosmatov was continued in [6] which uses similar hypotheses. Our
method uses the Gronwall type inequality of [27] to obtain a priori bounds with
fewer restrictions. Also we allow f = f(t, u,Dβu) to also depend explicitly on u
and we have the extra singular term t−γ .

A local existence theorem for fractional equations in the special case γ = 0 is
given in Diethelm [7, Theorem 6.1] when f is continuous. A global existence result
is proved in [7, Corollary 6.3] when it is assumed that γ = 0 and f is continuous
and there exist constants c1 > 0, c2 > 0, 0 ≤ µ < 1 such that |f(t, u)| ≤ c1 + c2|u|µ
but that result does not allow µ = 1. Since, for 0 < µ < 1, |u|µ ≤ 1 + |u| our
result includes that one and covers the case µ = 1. Under a Lipschitz condition [7,
Theorem 6.8] proves an existence and uniqueness result by a very different argument
to ours.

Some existence results for the case 0 < α < 1 were given by this author in
the previous paper [27]. Li and Sarwar [20] also considered the IVP of order 0 <
α < 1 with nonlinearity t−γf , they first prove a local existence theorem, then a
continuation result to get global existence under the same type of condition as in
[27] but only the case γ = 0 is treated in the global result. Also they use the first
definition of Caputo derivative so this is an example where the claimed equivalence
with the Volterra integral equation is not valid.

Eloe and Masthay [12] consider an initial-value problem for the modified Caputo
fractional derivative of order α ∈ (n − 1, n] with a nonlinearity which depends on
classical, not fractional, derivatives of order at most n− 1. They establish a Peano
type local existence theorem, a Picard type existence and uniqueness theorem, and
some results related to maximal intervals of smooth solutions.

We prove some regularity results in Section 9, the solution can have more reg-
ularity when f is more regular, but there is a limit to what can be obtained, see
Theorem 9.1 for the details.

We end the paper by making some remarks on the implications for boundary
value problems of the equivalences between IVPs and Volterra integral equations.

2. Preliminaries

For simplicity we consider functions defined on an arbitrary finite interval [0, T ],
which is, by a simple change of variable, equivalent to any finite interval. For this
case we use simpler notations for fractional derivatives than are frequently used. In
this paper all integrals are Lebesgue integrals and L1 = L1[0, T ] denotes the usual
space of Lebesgue integrable functions.

In the study of fractional integrals and fractional derivatives the Gamma and
Beta functions occur frequently. The Gamma function is, for p > 0, given by

Γ(p) :=

∫ ∞
0

sp−1 exp(−s) ds (2.1)

which is an improper Riemann integral but is well defined as a Lebesgue integral,
and is an extension of the factorial function: Γ(n + 1) = n! for n ∈ N. The Beta
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function is defined by

B(p, q) :=

∫ 1

0

(1− s)p−1sq−1 ds (2.2)

which is a well defined Lebesgue integral for p > 0, q > 0 and it is well known, and

proved in calculus texts, that B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

The following simple lemma is elementary and classical. Since it is useful to us
we sketch the proof for completeness.

Lemma 2.1. Let 0 ≤ τ < t and p > 0, q > 0. Then we have∫ t

τ

(t− s)p−1(s− τ)q−1 ds = (t− τ)p+q−1B(p, q). (2.3)

Proof. Change the variable of integration from s to σ where s = τ + σ(t − τ) and
the integral becomes∫ 1

0

(
(1− σ)(t− τ)

)p−1(
σ(t− τ)

)q−1
(t− τ) dσ

=(t− τ)p+q−1

∫ 1

0

(1− σ)p−1σq−1 dσ

=(t− τ)p+q−1B(p, q).

�

The space of functions that are continuous on [0, T ] is denoted by C[0, T ] or
sometimes simply C or C0 and is endowed with the supremum norm ‖u‖∞ :=
maxt∈[0,T ] |u(t)|. For n ∈ N we will write Cn = Cn[0, T ] to denote those functions

u whose n-th derivative u(n) is continuous on [0, T ].
We will also use the space of absolutely continuous functions which is denoted

AC = AC[0, T ]. For n ∈ N, ACn = ACn[0, T ] will denote those functions u whose
n-th derivative u(n) is in AC[0, T ], hence u(n+1)(t) exists for a.e. t and is an L1

function. A note of caution: some authors denote this space as ACn+1.
The space AC is the appropriate space for the fundamental theorem of the

calculus for Lebesgue integrals. In fact, we have the following equivalence.

u ∈ AC[0, T ] if and only if u′(t) exists for a.e. t ∈ [0, T ]

with u′ ∈ L1[0, T ] and u(t)− u(0) =

∫ t

0

u′(s) ds for all t ∈ [0, T ].
(2.4)

If f ∈ L1 and If(t) :=
∫ t

0
f(s) ds then If ∈ AC and (If)′(t) = f(t) for a.e. t.

But if g is a continuous function and g′ ∈ L1 exists a.e. it does not follow that
g ∈ AC, as shown for example by the well-known Lebesgue’s singular function F
(also known as the Cantor-Vitali function, or Devil’s staircase) which is continuous
on [0, 1] and has zero derivative a.e., but is not AC, in fact F (0) = 0, F (1) = 1 and

thus F (1)− F (0) 6=
∫ 1

0
F ′(s) ds.

We write g ∈ Lip and say that g is Lipschitz (or satisfies a Lipschitz condition)
if there is a constant L > 0 such that |g(u)− g(v)| ≤ L|u− v| for all u, v ∈ dom(g).

The following facts are well known (on a bounded interval).

C1 ⊂ Lip ⊂ AC ⊂ differentiable a.e.,
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AC ⊂ uniformly continuous ⊂ C0.

It is also known that, on a bounded interval [0, T ], the sum and pointwise product
of functions in AC belong to AC and if u ∈ AC and g ∈ Lip then the composition
g ◦ u ∈ AC, but the composition of AC functions need not be AC.

We also have the following positive result, which may be known but we have not
seen it in the literature, when v is assumed to be ‘almost AC’, v′ ∈ L1 exists a.e.
so v′ can only blow up at 0 in an integrable manner.

Proposition 2.2. Let v ∈ C[0, T ] be such that v′(t) = f(t) for a.e. t ∈ [0, T ] where
f ∈ L1[0, T ] and suppose that v ∈ AC[δ, T ] for every δ > 0. Then v ∈ AC[0, T ].

Proof. Since v′ = f ∈ L1 we have to prove that v(t) − v(0) =
∫ t

0
f(s) ds for every

t ∈ [0, T ]. This is obviously true for t = 0, so suppose t > 0. Let ε > 0 and, since

f ∈ L1, let 0 < δ < t be chosen so that
∫ δ

0
|f(s)| ds < ε. As v is continuous at 0,

by choosing δ smaller if necessary, we can suppose that |v(δ) − v(0)| < ε. Since

v ∈ AC[δ, T ] with v′ = f a.e. we have v(t)− v(δ) =
∫ t
δ
f(s) ds. We then have

∣∣v(t)− v(0)−
∫ t

0

f(s) ds
∣∣

=
∣∣v(t)− v(δ) + v(δ)− v(0)−

∫ δ

0

f(s) ds−
∫ t

δ

f(s) ds
∣∣

=
∣∣v(δ)− v(0)−

∫ δ

0

f(s) ds
∣∣ < 2ε.

As ε > 0 is arbitrary this proves that v(t)− v(0) =
∫ t

0
f(s) ds. �

Remark 2.3. The hypotheses of Proposition 2.2 hold if v ∈ C[0, T ]∩C1(0, T ] and
v′ ∈ L1. An example is, for 0 < γ < 1,

v(t) =

{
tγ ln(t), if t > 0,

0, if t = 0.

When studying fractional integrals and derivatives, functions such as tα−1 arise
where typically 0 < α < 1. This leads to consideration of a weighted space of
functions that are continuous except at t = 0 and have an integrable singularity at
t = 0. For γ > −1 we define the space denoted Cγ = Cγ [0, T ] by

Cγ [0, T ] := {u ∈ C(0, T ] such that lim
t→0+

t−γu(t) exists},

then u ∈ Cγ if and only if u(t) = tγv(t) for some function v ∈ C[0, T ] and we define
‖u‖γ := ‖v‖∞. The spaces of functions with singularity at t = 0 are C−γ where
γ > 0. The space C0 coincides with the space C0 = C[0, T ]. Clearly, for γ > 0 the
space Cγ is a subspace of C[0, T ]. We also define the space

C1,γ [0, T ] := {u ∈ C(0, T ] such that u(t) = tγv(t) for some v ∈ C1[0, T ]}.

Note that u ∈ C1,γ is AC if γ ≥ 0 but need not be a C1 function if 0 < γ < 1.
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3. Riemann-Liouville fractional integrals

Some authors ‘define’ Iαu by:

Iαu(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds, provided the integral exists.

This does not specify which functions are being considered and leaves open
whether the integral is to exist for all t, or for all nonzero t, or for a.e. t. A
precise definition for integrable functions is the following.

Definition 3.1. The Riemann-Liouville (R-L) fractional integral of order α > 0 of
a function u ∈ L1[0, T ] is defined for a.e. t by

Iαu(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds.

The integral Iαu is the convolution of the L1 functions h, u where h(t) =
tα−1/Γ(α), so by the well known results on convolutions Iαu is defined as an L1

function, in particular Iαu(t) is finite for a.e. t. If α = 1 this is the usual integration
operator which we denote I. We set I0u = u.

The R-L fractional integral operator has the following properties, which do not
seem to be as well known as they deserve to be, some seem to be new and perhaps
some of our proofs are new. Some of these say that Iα (partially) removes singular-
ities at t = 0. The trickiest cases are when 0 < α < 1 and the integrand is singular.
References are given in the Remark following the proofs.

Proposition 3.2. Let α > 0 and 0 ≤ γ < 1.

(1) Iα is a linear operator defined on L1. For 1 ≤ p ≤ ∞, Iα is a bounded
operator from Lp into Lp and

‖Iαu‖Lp ≤
Tα

Γ(α+ 1)
‖u‖Lp .

(2) For 1 ≤ p < 1/α, Iα is a bounded operator from Lp[0, T ] into Lr[0, T ] for
1 ≤ r < p/(1 − αp). If 1 < p < 1/α, then Iα is a bounded operator from
Lp[0, T ] into Lr[0, T ] for r = p/(1− αp).

(3) For 1/p < α < 1 + 1/p or p = 1 and 1 ≤ α < 2, the fractional integral
operator Iα is bounded from Lp into a Hölder space C0, α−1/p, hence, for
u ∈ Lp, Iαu is Hölder continuous with exponent α − 1/p, thus Iαu is
continuous. Moreover, Iαu(t)→ 0 as t→ 0+, that is Iαu(0) = 0.

(4) Iα is a bounded operator from C−γ [0, T ] into Cα−γ [0, T ]. Moreover we have

‖Iαu‖α−γ ≤ Γ(1−γ)
Γ(1+α−γ)‖u‖−γ .

(5) If 0 ≤ γ ≤ α < 1 then Iα is a bounded operator from C−γ [0, T ] into C[0, T ].
Moreover, if u(t) = t−γv(t) where v ∈ C[0, T ] then limt→0+ I

αu(t) = 0 if
either γ < α or v(0) = 0.

(6) Iα maps AC[0, T ] into AC[0, T ].
(7) If 0 < γ ≤ α < 1 (or if γ = 0 and 0 < α < 1) and u′ ∈ C−γ then

Iαu ∈ C1[0, T ] if and only if u(0) = 0. However, Iα does not map C1[0, 1]
into C1[0, 1] in general, in fact it does not map C∞ into C1.

(8) for m ∈ N, and 0 ≤ γ ≤ α < 1, Im+α maps C−γ [0, T ] into Cm[0, T ].
(9) Iα maps C1,−γ into C1,α−γ and maps C1,−γ into AC if α ≥ γ.
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(10) If u ∈ L1 and u is non-decreasing function of t then Iαu(t) is also a non-
decreasing function of t.

Proof. (1) It is clear that Iα acts linearly on u and, by known results on convolutions
Iαu is defined as an L1 function, in particular Iαu(t) is finite for a.e. t.

The proof uses Young’s convolution theorem (this can be found in many texts,
for example [10, Chapter 5, Theorem 1.2]):
If 1 ≤ p, q, r ≤ ∞ and 1 + 1/r = 1/p+ 1/q, then for h ∈ Lq, u ∈ Lp, it follows that
h ∗ u ∈ Lr and ‖h ∗ u‖r ≤ ‖h‖q‖u‖p.

We have Iαu = h ∗ u for h(t) = tα−1/Γ(α) and h ∈ L1 since α > 0. Taking
r = p, q = 1 gives

‖Iαu‖Lp ≤
Tα

Γ(α+ 1)
‖u‖Lp .

The case p = ∞ is simple: for u ∈ L∞ the integral for Iαu is well defined and we
have

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds

≤ 1

Γ(α)

∫ t

0

(t− s)α−1‖u‖∞ ds

=
1

Γ(α)

tα

α
‖u‖∞,

hence ‖Iαu‖∞ ≤
Tα

Γ(α+ 1)
‖u‖∞.

(2) We only give the case r < p/(1 − αp), see the remark below for the case of
equality. Take h(t) = tα−1/Γ(α) as in (1), and again apply Young’s convolution
theorem. We have h ∈ Lq if q(α − 1) > −1, that is q < 1/(1 − α) and hence
1/r > 1/p− α, that is r < p/(1− αp).

(3). Since we do not consider Hölder continuity in this paper we do not give any
proof concerning Hölder spaces here, see the references in the remark below. For
completeness we give a short proof of the last part, which is known from [1]. We
have

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds.

Let q = p/(p − 1) be the conjugate exponent of p. Note that for fixed t, s 7→
(t− s)α−1 ∈ Lq[0, t] since (α− 1)q > −1. Therefore by Hölder’s inequality we have

|Iαu(t)| ≤ 1

Γ(α)

(∫ t

0

(t− s)(α−1)q ds
)1/q(∫ t

0

|u|p(s) ds
)1/p

,

=
1

Γ(α)

( t(α−1)q+1

(α− 1)q + 1

)1/q(∫ t

0

|u|p(s) ds
)1/p

,

and both terms in the product have a zero limit as t→ 0+.
(4) For u ∈ C−γ we have u(t) = t−γv(t) for some function v ∈ C[0, T ] and

‖u‖−γ = ‖v‖∞. So we have

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1s−γv(s) ds,

=
1

Γ(α)
tα−γ

∫ 1

0

(1− σ)α−1σ−γv(tσ) dσ.

(3.1)
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Since v is continuous on [0, T ] it is bounded, say ‖v‖∞ = M , and we have∫ 1

0

(1− σ)α−1σ−γv(tσ) dσ ≤MB(α, 1− γ)

Therefore
∫ 1

0
(1− σ)α−1σ−γv(tσ) dσ is a continuous function of t by the dominated

convergence theorem, thus Iαu ∈ Cα−γ [0, T ]. Moreover,

‖Iαu‖α−γ ≤
1

Γ(α)

∫ 1

0

(1− σ)α−1σ−γ dσ‖v‖∞ =
Γ(1− γ)

Γ(1 + α− γ)
‖u‖−γ .

(5) Let 0 ≤ γ ≤ α. By part (3), Iα maps C−γ into Cα−γ ⊂ C[0, T ] and from

(3.1) we obtain ‖Iαu‖∞ ≤ Tα−γ Γ(1−γ)
Γ(1+α−γ)‖u‖−γ .

Also from (3.1) we obtain limt→0+ I
αu(t) = 0 if γ < α. By the dominated

convergence theorem this also holds if γ = α and v(0) = 0.
(6) For u ∈ AC, u′ ∈ L1 exists a.e. and u(t)− u(0) = Iu′(t) for all t. Then

Iαu(t) = Iα Iu′(t) + Iαu(0) = I Iαu′(t) + u(0)tα/Γ(α+ 1) (3.2)

where Iαu′ ∈ L1 so the first term is in AC, and the second term is also in AC since
α > 0.

(7) When u′ ∈ C−γ , we have Iαu′ ∈ Cα−γ ⊂ C by part (4), hence I(Iαu′) ∈ C1

and from (3.2) we see that Iαu ∈ C1[0, T ] if and only if u(0) = 0. For the last part,
taking v(t) ≡ 1 we have v ∈ C∞ and Iαv = tα/Γ(α + 1) is an AC function but is
not in C1 for α < 1.

(8) This follows at once since Im+αu = ImIαu where Iαu ∈ C by part (5).
(9) Let u ∈ C1,−γ [0, 1] so that u(t) = t−γv(t) for some v ∈ C1[0, 1]. Then we

have as above

Iαu(t) =
1

Γ(α)
tα−γ

∫ 1

0

(1− σ)α−1σ−γv(tσ) dσ,

where, by differentiation under the integral sign,

d

dt

(∫ 1

0

(1− σ)α−1σ−γv(tσ) dσ
)

=

∫ 1

0

(1− σ)α−1σ1−γv′(tσ) dσ.

Since v′ is continuous the integral on the right is a continuous function of t by the
dominated convergence theorem. Hence∫ 1

0

(1− σ)α−1σ−γv(tσ) dσ

is in C1[0, 1],that is Iαu ∈ C1,α−γ ; the example v(t) ≡ 1 shows this is optimal.
Also, if α ≥ γ, Iαu is tα−γ multiplied by a C1 function so is in AC.

(10) We have

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s) ds

=
1

Γ(α)
tα
∫ 1

0

(1− σ)α−1u(tσ)dσ,

and this is a non-decreasing function of t when u is non-decreasing. �



EJDE-2019/117 CAPUTO FRACTIONAL EQUATIONS 9

Remark 3.3. Part (1) is stated in [17, Lemma 2.1 a] and Theorem 2.6 of [24]
states: “may be verified by simple operations using the generalized Minkowski’s
inequality”.

Part (2) The first part for p ≥ 1 is stated in [17, Lemma 2.1 b] and is proved
in [24, Theorem 3.5] by another method. The fact that Iα is bounded from Lp

(with p > 1) into Lr with the equality r = p/(1 − αp) was proved by Hardy and
Littlewood [13, Theorem 4]. Hardy and Littlewood show that the result does not
hold if p = 1 for any α ∈ (0, 1), and they also show that if 0 < α < 1 and p = 1/α
the potentially plausible result is false, that is, Iαu is not necessarily bounded.

Part (3) This was proved by Hardy and Littlewood in [13, Theorem 12]. The
proof can be found in [7, Theorem 2.6 ] and in [24, Theorem 3.6 ]. The Hölder
space C0,λ has other notations in these references. Hardy and Littlewood point out
that the result is not true, in the cases p > 1, α = 1/p, and α = 1 + 1/p. The
continuity of Iαu is proved in [1, Lemma 2.2] by a direct method using Hölder’s
inequality and the last part is also proved in [1, Lemma 2.1] as in the given proof.
The result is also a consequence of Corollary to Theorem 3.6 of [24].

Part (4) is stated in [17, Lemma 2.8] with α, γ complex numbers, the proof is
referred to [16], a paper in Russian.

Part (5), the first part is stated in [17, Lemma 2.8]; the last part may be novel.
Part (6), this is proved in [24, Lemma 2.1], with a different notation, by a

longhand version of the same proof, and is proved in [19, Lemma 2.3] by using
Proposition 3.6 below.

Part (7) seems to be new for γ > 0, the case γ = 0 is known, see [7, Theorem
6.26]. The last part is well known and is pointed out in [7, Example 6.4].

Part (8) should be known but we do not have a reference, it improves [12, Lemma
2.4] which has the case γ = 0 and a different longer proof.

Part (9) This seems to be new when γ 6= 0.
Part (10) is presumably well known but we do not know a reference.

Interchanging the order of integration, using Fubini’s theorem, shows that these
fractional integral operators satisfy a semigroup property as follows.

Lemma 3.4. Let α, β > 0 and u ∈ L1[0, T ]. Then IαIβ(u) = Iα+β(u) as L1

functions, thus, IαIβ(u)(t) = Iα+β(u)(t) for a.e. t ∈ [0, T ]. If u is continuous, or
if u ∈ C−γ and α + β ≥ γ, this holds for all t ∈ [0, T ]. If u ∈ L1 and α + β ≥ 1
equality again holds for all t ∈ [0, T ].

Proof. For u ∈ L1 the fractional integrals Iβu and Iα+βu exist as L1 functions so
are finite almost everywhere. For each t for which Iα+β |u|(t) exists (finite), that is
a.e. t, we have

Γ(α)Γ(β)Iα(Iβu)(t)

=

∫ t

0

(t− s)α−1
(∫ s

0

(s− τ)β−1u(τ) dτ
)
ds

=

∫ t

0

u(τ)
(∫ t

τ

(t− s)α−1(s− τ)β−1 ds
)
dτ, by Fubini’s theorem,

=

∫ t

0

(t− τ)α+β−1u(τ)B(α, β) dτ, by Lemma 2.1,
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which proves the first part by the relationship between the Beta and Gamma func-
tions stated earlier. When u is continuous all terms are continuous, see Propo-
sition 3.2 part (5), so equality holds for all t. For u ∈ C−γ , by Proposition 3.2
part (4), Iβu ∈ Cβ−γ and Iα(Iβ(u)) ∈ Cα+β−γ ⊂ C0 when α+β ≥ γ, so both sides
are continuous functions and equality holds for all t. For the last part if β ≥ 1 or
α ≥ 1 then the terms on both sides are continuous so the only case to consider is
0 < α, β < 1. When α + β ≥ 1 we have Iα+β(u)(t) = I(Iα+β−1u)(t) and the right
side of this equation is AC so Iα+βu(t) exists for every t and equals IαIβu(t) by
the first part. �

Remark 3.5. Some of this is proved in [7, Theorem 2.2] and in [24, (2.21)]. The
part concerning u ∈ C−γ seems to be new. Also we make the observation that when
α+β > 1 and u ∈ L1 both sides are also Hölder continuous by using Proposition 3.2
parts (2) and (3). Note that there are functions that are Hölder continuous but not
AC and AC functions that are not Hölder continuous.

For α ∈ (0, 1) we will see that in discussing fractional differential equations via
the corresponding Volterra integral equation it is necessary to have I1−αu ∈ AC.
The following result gives conditions for this to hold; the result is known, it is
contained in the proof of [24, Theorem 2.1].

Proposition 3.6. Let u ∈ L1[0, T ] and α ∈ (0, 1). Then I1−αu ∈ AC and
I1−αu(0) = 0 if and only if there exists f ∈ L1 such that u = Iαf .

Proof. Suppose that there exists f ∈ L1 such that u = Iαf . Then, by Lemma 3.4

I1−αu = I1−αIαf = If ∈ AC,

and I1−αu(0) = limt→0+

∫ t
0
f(s) ds = 0, since f ∈ L1. Conversely suppose that

I1−αu ∈ AC and I1−αu(0) = 0. Let F (t) := I1−αu(t) so that F ∈ AC and

F (0) = 0. Then f := F ′ exists for a.e. t with f ∈ L1, and F (t) = If =
∫ t

0
f(s) ds.

From F (t) := I1−αu(t) we have IαF = Iu that is Iu = Iα If = I Iαf . By the
definition (see Proposition 3.2 (1), (2) we have Iαf ∈ L1 and since u ∈ L1 both Iu
and I Iαf are absolutely continuous so their derivatives exist a.e. as L1 functions
and are equal, that is u = Iαf . �

4. Fractional derivatives of order α ∈ (0, 1)

Let D denote the usual differentiation operator. The Riemann-Liouville (R-L)
fractional derivative of order α ∈ (0, 1) is defined as follows.

Definition 4.1. For α ∈ (0, 1) and u ∈ L1 the R-L fractional derivative Dαu is
defined when I1−αu ∈ AC by

Dαu(t) := D I1−αu(t), a.e. t ∈ [0, T ].

For D I1−αu(t) to be defined for a.e. t, it is necessary that I1−αu should be
differentiable a.e., but we do not believe that alone is sufficient, and our discussions
below show that it is necessary to always have I1−αu ∈ AC in considering IVPs for
R-L fractional differential equations via a Volterra integral equation, thus we make
this requirement. This has been noted in the monograph [24], see [24, Definition
2.4] and the related comments in the ‘Notes to §2.6’. Clearly DI1−αu exists a.e. if
u = Iαf for some f ∈ L1, using Lemma 3.4, but Proposition 3.6 already implies
that I1−αu ∈ AC.
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It follows using Lemma 3.4 that the R-L derivative Dα is the left inverse of Iα,
as shown, for example, in [7, Theorem 2.14].

Lemma 4.2. Let 0 < α ≤ 1. Then, for every h ∈ L1, DαIαh(t) = h(t) for almost
every t.

Proof. Since Ih ∈ AC we have

DαIαh(t) = D I1−α Iαh(t) = D Ih(t) = h(t), for a.e. t. �

In general fractional derivatives do not commute, see [7, Examples 2.6, 2.7 ].
The Caputo fractional derivative is defined with the derivative and fractional

integral taken in the reverse order to that of the R-L derivative.

Definition 4.3. For α ∈ (0, 1) and u ∈ AC the Caputo fractional derivative Dα
Cu

is defined for a.e. t by

Dα
Cu(t) := I1−αDu(t).

For u ∈ AC, Du ∈ L1 and so Dα
Cu = I1−α(Du) is defined as an L1 function. The

modified Caputo derivative is defined by Dα
∗ u := Dα(u− u(0)) whenever this R-L

derivative exists, that is when u(0) exists and I1−αu ∈ AC.

There is a connection between the R-L and Caputo derivatives for functions with
some regularity.

Proposition 4.4. Let u ∈ AC and let u0 denote the constant function with value
u(0). For 0 < α < 1 we have

Dα
∗ u(t) = Dα(u− u0)(t) = Dα

Cu(t), for a.e. t. (4.1)

Proof. Since u ∈ AC, by Proposition 3.2 (6), I1−αu ∈ AC so the R-L derivative
exists and we have

Dα
∗ u = Dα(u− u0) = DI1−α(u− u0)

= DI1−αIu′, since u ∈ AC,
= DI I1−αu′, by Lemma 3.4 as u′ ∈ L1,

= I1−αu′, since I1−αu′ ∈ L1,

= Dα
Cu. �

The result is a special case of the result given for fractional derivatives of all
orders in [7, Theorem 3.1], and which is proved below in Lemma 4.10.

The modified Caputo derivative Dα
∗ is the left inverse of Iα for continuous

functions; for the higher order case see [7, Theorem 3.7].

Lemma 4.5. Let α ∈ (0, 1) and let u be continuous, then Dα
∗ I

αu(t) = u(t) for
t ∈ [0, T ].

Proof. By Proposition 3.2 (5) with γ = 0, Iαu is continuous and Iαu(0) = 0, thus

Dα
∗ I

αu(t) = Dα(Iαu− 0)(t) = DI1−α(Iαu)(t) = D(Iu)(t) = u(t),

which is valid for every t since u ∈ C. �

The Caputo derivatives do not commute in general but Diethelm has a positive
result.
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Lemma 4.6 ([7, Lemma 3.13]). Let f ∈ Ck[0, T ] for some k ∈ N. Moreover let
α, β > 0 be such that there exists some ` ∈ N with ` ≤ k and α, α + β ∈ [` − 1, `].
Then,

Dα
∗D

β
∗ f = Dα+β

∗ f.

Remark 4.7. Diethelm [7] notes that existence of ` is important, and gives the
example f(t) = t, α = 7/10, β = 7/10 to show that it can fail when this condition
is not satisfied. Also he notes that such a result cannot be expected to hold in
general for Riemann-Liouville derivatives.

4.1. Fractional derivatives of higher order. For higher order derivatives the
definitions are as follows. For a positive integer k let Dk denote the ordinary
derivative operator of order k, and for n ∈ N and a function u such that Dku(0)

exists for k = 0, . . . , n let Tnu(t) :=
∑n
k=0

tkDku(0)
k! be the Taylor polynomial of

degree n and define T0u(t) = u(0).

Definition 4.8. Let β ∈ R+ and let n = dβe be the smallest integer greater
than or equal to β (the ceiling function acting on β). The Riemann-Liouville
fractional differential operator of order β is defined when Dn−1(In−βu) ∈ AC, that
is In−βu ∈ ACn−1, by

Dβu := DnIn−βu.

The Caputo derivative is defined for u ∈ ACn−1, by the equation

Dβ
Cu := In−βDnu.

The modified Caputo derivative is defined when In−βu ∈ ACn−1 and Tn−1u exists
by

Dβ
∗u = Dβ(u− Tn−1u),

where Tn−1u is the Taylor polynomial of degree n− 1.
Under the given conditions each fractional derivative exists a.e.

Remark 4.9. Diethelm [7, Definition 3.2] calls Dβ
∗ the Caputo differential operator

of order β and thereafter uses that definition.

In the following results m always denotes a positive integer.

Lemma 4.10. If Dmu ∈ AC then for 0 < α < 1, Dm+α
C u exists, and we have

Dm+α
C u(t) = Dα

CD
mu(t), for a.e. t ∈ [0, T ]. (4.2)

Proof. By definition of Caputo derivative and the fact that Dmu ∈ AC we have

Dm+α
C u = I1−αDm+1u = I1−αD(Dmu) = Dα

CD
mu.

�

Lemma 4.11. For 0 < α < 1 if u ∈ AC[0, T ] then Dm+α
∗ u(t) = Dm+α−1

∗ u′(t)
whenever both fractional derivatives exist.

Proof. By definition,

Dm+α
∗ u(t) = Dm+1(I1−α(u− Tmu))(t)

= Dm+α(I1−αI(u′ − Tm−1u))(t)

= Dm+α(II1−α(u′ − Tm−1u))(t)

= Dm+α−1(I1−α(u′ − Tm−1u))(t)

= Dm+α−1
∗ u′(t). �
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The following result is proved in Diethelm [7, Theorem 3.1] with a different proof
using integration by parts.

Lemma 4.12. Let Dmu ∈ AC and 0 < α < 1. Then

Dm+α
∗ u = Dm+α

C u. (4.3)

Proof. Since Dmu ∈ AC, u and derivatives of order up to m are absolutely con-
tinuous and all required fractional derivatives exist. By repeated application of
Lemma 4.11

Dm+α
∗ u = Dm+α−1(u′) = Dm+α−2

∗ u′′ = . . .

= Dα
∗ (Dmu) = Dα

C(Dmu), by Proposition 4.4,

= Dm+α
C u,by Lemma 4.10. �

5. IVP for Caputo derivative of all orders

We now turn to initial value problems for Caputo derivatives. For Caputo frac-
tional differential equations with a singular nonlinearity we have the following re-
lationships with a Volterra integral equation with a doubly singular kernel.

Theorem 5.1. Let f be continuous on [0, T ]×R, let 0 < α < 1 and let 0 ≤ γ < α.
For m ∈ N, if a function u with Dmu ∈ AC satisfies the Caputo fractional initial
value problem

Dm+α
C u(t) = t−γf(t, u(t)), a.e. t ∈ (0, T ],

u(0) = u0, u
′(0) = u1, . . . , u

(m)(0) = um,
(5.1)

then u satisfies the Volterra integral equation

u(t) =

m∑
k=0

tk

k!
uk +

1

Γ(m+ α)

∫ t

0

(t− s)m+α−1s−γf(s, u(s)) ds, t ∈ [0, T ]. (5.2)

Secondly, if u ∈ C[0, T ] satisfies (5.2) then u ∈ Cm[0, T ], and Dm+α
∗ u exists a.e.

and satisfies
Dm+α
∗ u(t) = t−γf(t, u(t)) for a.e. t,

u(0) = u0, u
′(0) = u1, . . . , u

(m)(0) = um.
(5.3)

Moreover, I1−α(u− Tm(u)) ∈ ACm.
Thirdly, if u ∈ Cm[0, T ] and I1−α(u − Tm(u)) ∈ ACm and if u satisfies (5.3),

then u satisfies (5.2).

Proof. Let g(t) := t−γf(t, u(t)), t ∈ (0, T ], and note that g ∈ L1 since 0 ≤ γ ≤ α <
1. First we show the result for the special case m = 0. So suppose that u ∈ AC and
Dα
Cu(t) = t−γf(t, u(t)) = g(t), for a.e. t ∈ (0, T ]. Then, by the definition of Caputo

derivative, we have I1−α(Du) = g where Du ∈ L1 since u ∈ AC. This yields
IαI1−α(Du) = Iαg, hence, by Lemma 3.4, I(Du) = Iαg, that is u(t)− u(0) = Iαg
since u ∈ AC.

Now we consider the case m > 0. Let u with Dmu ∈ AC satisfy (5.1). Then
using Lemma 4.10 we have a.e.,

Dm+α
C u = g =⇒ Dα

C(Dmu) = g,

=⇒ Dmu = um + Iαg, by the special case just proved.

Integrating m times gives u =
∑m
k=0

tk

k!uk + Im+αg.
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Secondly, let u be continuous and suppose that u(t) =
∑m
k=0

tk

k!uk + Im+αg(t)
with g(t) = t−γf(t, u(t)). To verify the initial conditions we observe that, for every
β ≥ α > γ, setting s = tσ,

Iβg(t) =
1

Γ(β)

∫ t

0

(t− s)β−1s−γf(s, u(s)) ds,

=
1

Γ(β)

∫ 1

0

tβ−γ(1− σ)β−1σ−γf(tσ, u(tσ)) dσ

exists for every t since
∫ 1

0
(1 − σ)β−1σ−γ dσ = B(β, 1 − γ), and f(tσ, u(tσ)) is

bounded by continuity of u and f . We also see that Iβg(t) is a continuous function
of t ∈ [0, T ]. In particular, Iαg(t) is continuous and therefore Im+αg ∈ Cm, hence
also u ∈ Cm. Furthermore for β > γ we have

Iβg(0) = lim
t→0+

Iβg(t) =
1

Γ(β)
lim
t→0+

tβ−γ
∫ 1

0

(1− σ)β−1σ−γf(tσ, u(tσ)) dσ = 0,

and then taking β = m+ α in the equation u(t) =
∑m
k=0

tk

k!uk + Im+αg(t) we first
obtain u(0) = u0. By differentiation we have

u′(t) =

m−1∑
k=0

tk

k!
uk+1 + Im−1+αg(t),

and taking β = m − 1 + α we obtain u′(0) = u1. Similarly, differentiating and
evaluating we obtain Dnu(0) = un for n = 1, . . . ,m. Then we have

Dm+α
∗ u = Dm+α(u− Tmu) = Dm+α

(
u−

m∑
k=0

tk

k!
uk
)

= Dm+αIm+αg = g.

This shows that Dm+1(I1−α(u− Tm(u))) = g a.e..
Since we have

I1−α(u− Tm(u)) = I1−αIm+αg = Im+1g = ImIg

it follows that Dm(I1−α(u−Tm(u))) = Ig ∈ AC, that is, I1−α(u−Tm(u)) ∈ ACm.
Thirdly, for g(t) = t−γf(t, u(t)), g ∈ L1, since I1−α(u − Tm(u)) ∈ ACm the

expression Dm+1(I1−α(u− Tm(u)))(t) = g(t) can be integrated m+ 1 times to get

I1−α(u− Tm(u))(t) = Im+1g(t) + a0 + a1t+ · · ·+ amt
m, for constants ai.

Applying Iα yields

I(u− Tm(u)) = Im+1+αg + b0t
α + b1t

1+α + · · ·+ bmt
m+α,

for constants bi whose precise values are not important here. Since u ∈ Cm we have
I(u−Tm(u)) ∈ Cm+1 and Im+1+αg = Im+αIg ∈ Cm+1 and therefore we must have
bi = 0 for every i. Then, we may differentiate to get u− Tm(u) = Im+αg. �

Remark 5.2. It has often been asserted (when γ = 0) that (5.1) is equivalent to
(5.2), but it seems that the absolute continuity of solutions u of (5.2) has never
been shown when f is at best continuous. The proved equivalence is:

if u ∈ Cm[0, T ] and I1−α(u− Tm(u)) ∈ ACm then u satisfies (5.3)
if and only if u satisfies (5.2).
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Some of these issues are discussed in the paper [19] where some positive results for
boundary value problems involving the fractional derivative D1+α

C u are obtained
under a Lipschitz condition on f . For some more positive results see §9 below. It
is important to have I1−α(u − Tm(u)) ∈ ACm in the third part of the theorem
otherwise the integration in the last part is not valid. This is often implicit in
the, often undefined, notion of ‘solution’ for the problem, for if Dm+α

∗ u exists and
Dm+α
∗ u(t) = t−γf(t, u(t)) when u, f are continuous then t−γf(t, u(t)) ∈ L1 so that

Dm+1I1−α(u − Tm(u)) ∈ L1 and therefore DmI1−α(u − Tm(u)) ∈ AC. When the
term t−γ is absent and (5.3) is satisfied then Dm+1I1−α(u− Tm(u)) is continuous
so I1−α(u− Tm(u)) ∈ Cm+1.

Remark 5.3. The case m = 0 is proved in the recent paper [27]. When there
is no singular term t−γ and f is continuous, Diethelm [7, Lemma 6.2] proves the
equivalence in the form that u ∈ C[0, h] is solution of Dm+α

∗ u(t) = f(t, u(t)) with
initial conditions Dku(0) = uk, k = 0, 1, . . . ,m, if and only if u is solution of

u(t) =

m∑
k=0

tk

k!
uk + Im+αf(t).

There it is implicit that a solution of the fractional differential equation is a function
for which Dm+α

∗ u exists, which requires more than continuity of u.

6. Initial value problems for the Riemann-Liouville fractional
derivative

It has often been stated imprecisely that the fractional differential equation with
the Riemann-Liouville fractional derivative is equivalent to an integral equation.

One such statement is as follows. Assume that α > 0. Then u satisfies Dαu = f
if and only if

u(t) = Iαf(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n, ci ∈ R, i = 1, 2, . . . n.

where n = dαe, the smallest integer greater than or equal to α.
The difficulty is that it is not stated in what class of functions the solution is

sought, one can consider f ∈ L1 and seek solutions u ∈ L1 or seek solutions in the
weighted space Cα−n, where the space Cγ was defined in §3. Seeking solutions in
the space C[0, T ] can only be done for special cases since cn = 0 is then necessary
irrespective of any condition on u(0), and then only u(0) = 0 is a consistent value.

6.1. R-L derivative of order 0 < α < 1. For 0 < α < 1 a well posed initial
value problem for the equation Dαu = f with f ∈ L1 is given by the following
Proposition.

Proposition 6.1. Let f ∈ L1[0, T ]. Then a function u ∈ L1 such that I1−αu ∈ AC
satisfies Dαu(t) = f(t) a.e. and I1−αu(0) = cΓ(α) if and only if u(t) = ctα−1 +
Iαf(t) a.e., where c = I1−αu(0)/Γ(α).

Proof. Let u ∈ L1 and suppose that I1−αu ∈ AC and Dαu(t) = f(t) a.e. Thus
D(I1−αu)(t) = f(t) a.e. and since I1−αu ∈ AC and f ∈ L1 we may integrate
to get I1−αu(t) = a + If where a = I1−αu(0). Applying the operator Iα gives
Iu(t) = atα/Γ(1 + α) + I1+αf(t). Differentiating these AC functions gives u(t) =
ctα−1 + Iαf(t) a.e. where c = I1−αu(0)/Γ(α).

Conversely, if u(t) = ctα−1+Iαf(t) a.e. then u ∈ L1 and I1−αu(t) = cΓ(α)+If(t)
so I1−αu ∈ AC and I1−αu(0) = cΓ(α). Moreover D(I1−αu)(t) = f(t) a.e. �
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Proposition 6.1 is stated in an equivalent form, also for the higher order case, as
[17, Lemma 2.5(b)] and was proved in [24, Theorem 2.4]. it is also proved, under
some slightly different hypotheses, in [3, Theorems 4.10 and 5.1], see Proposition 6.4
below.

When f depends also on u the result takes the following form.

Theorem 6.2. Let u ∈ L1 be such that I1−αu ∈ AC and suppose that t 7→
f(t, u(t)) ∈ L1. Then Dαu(t) = f(t, u(t)) a.e. and I1−αu(0) = cΓ(α) if and only
if u ∈ L1 with t 7→ f(t, u(t)) ∈ L1 satisfies u(t) = ctα−1 + Iαf(t, u(t)) a.e., where
c = I1−αu(0)/Γ(α).

The ‘initial condition’ is often given in terms of limt→0+ u(t)t1−α, when this
exists. The result is proved for α ∈ C with 0 < Re(α) < 1 in [17, Lemma 3.2].

Lemma 6.3. Let 0 < α < 1 and suppose that u ∈ L1. Then

lim
t→0+

u(t)t1−α = c implies that lim
t→0+

I1−αu(t) = cΓ(α).

Proof. For ε > 0 there exists δ > 0 such that |u(t)t1−α − c| < ε for |t| < δ. Then
for |t| < δ we have

I1−αu(t)− cΓ(α) =
1

Γ(1− α)

∫ t

0

(t− s)−α(u(s)− sα−1c) ds,

hence

|I1−αu(t)− cΓ(α)| ≤ 1

Γ(1− α)

∫ t

0

(t− s)−αsα−1ε ds

=
ε

Γ(1− α)

∫ 1

0

(1− σ)−ασα−1 dσ = Γ(α)ε.

Since ε > 0 is arbitrary this proves that limt→0+ I
1−αu(t) = cΓ(α). �

The following Proposition is given in [3, Theorem 6.2].

Proposition 6.4. Let 0 < α < 1, and let f be continuous on (0, T ] × J where
J ⊂ R is an unbounded interval. If u is continuous on (0, T ] and u, t 7→ f(t, u(t))
belong to L1[0, T ], then u satisfies the initial value problem,

Dαu(t) = f(t, u(t)), t ∈ (0, T ], lim
t→0+

t1−αu(t) = u0, (6.1)

if and only if it satisfies the Volterra integral equation

u(t) = u0tα−1 +
1

Γ(α)

∫ t

0

(t− s)α−1f(s, u(s)) ds, t ∈ (0, T ]. (6.2)

Remark 6.5. This is somewhat different to Theorem 6.2 since in Proposition 6.4
it is assumed that Dαu(t) exists for every t ∈ (0, T ] and functions that are in
L1 ∩ C(0, T ] are considered, as opposed to supposing that functions are in L1 and
Dαu(t) exists a.e. in Theorem 6.2.

The converse of Lemma 6.3 is claimed in [3, Theorem 6.1] but this is not clear
as the proof uses L’Hôpital’s rule which assumes the limit exists whose existence is
to be shown. Note that if limt→0+ I

1−αu(t) = cΓ(α) and c 6= 0 then it is necessary
that u 6∈ Lp for every p > 1/(1 − α) by Proposition 3.2 part (3). However, in [3]
the result needed for solutions of (6.2) does hold since I1−αIαf(t) = If(t)→ 0 as
t→ 0+ for f ∈ L1.
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Remark 6.6. Comparing Proposition 6.4 with Theorem 6.2 implies that the hy-
potheses of Proposition 6.4 should imply that I1−αu ∈ AC. In fact, if u ∈ L1 and
is a solution of (6.2) then writing g(t) = f(t, u(t)) we have g ∈ L1 and

I1−αu(t) = I1−α(u0tα−1 + Iαg(t)
)

= Γ(α)u0 + Ig(t) ∈ AC.

If u satisfies (6.1) then D(I1−αu) is continuous on (0, T ], and by Lemma 6.3,
limt→0+ I

1−αu(t) = u0Γ(α) so I1−αu satisfies the hypotheses of Proposition 2.2
and is therefore AC.

Remark 6.7. An early paper on the Riemann-Liouville IVP Dαu = f(t, u) is that
of Delbosco and Rodino [5] who studied continuous solutions. In some cases it is
implicit, but not explicit, that u(0) = 0. They also study the problem when f is
replaced by t−γf under a Lipschitz condition on f .

6.2. R-L derivative of order 1 < β < 2. It is obvious that if β = 1 + α with
0 < α < 1 and Dβu = D1+αu exists then D1+αu = D(Dαu). We have the following
result.

Theorem 6.8. Let f ∈ L1[0, T ]. Then u ∈ L1 such that Dαu = D(I1−αu) ∈ AC
satisfies D1+αu(t) = f(t) a.e. and I1−αu(0) = c1Γ(α) and Dαu(0) = c2 if and
only if u(t) = c1t

α−1 + c2t
α + I1+αf(t) a.e., where c1 = I1−αu(0)/Γ(α) and c2 =

Dαu(0)/Γ(1 + α).

Proof. Let u ∈ L1 and suppose that Dαu ∈ AC and D1+αu(t) = f(t) a.e. Thus
D(Dαu)(t) = f(t) a.e. and since Dαu ∈ AC and f ∈ L1 we may integrate to get
Dαu(t) = a2 + If(t) for all t, where a2 = Dαu(0). Integrating again gives

I1−αu(t) = a1 + a2t+ I2f(t), where a1 = I1−αu(0).

Applying the operator Iα gives

Iu(t) = a1t
α/Γ(1 + α) + a2t

1+α/Γ(2 + α) + I2+αf(t).

Differentiating these AC functions gives

u(t) = a1t
α−1/Γ(α) + a2t

α/Γ(1 + α) + I1+αf(t), for a.e. t.

Conversely, if u(t) = a1t
α−1/Γ(α)+a2t

α/Γ(1+α)+I1+αf(t) a.e. then u ∈ L1 and
I1−αu(t) = a1 + a2t+ I2f(t) so I1−αu(0) = a1 and Dαu = D(I1−αu) = a2 + If ∈
AC so that D(I1−αu)(0) = Dαu(0) = a2. Moreover D1+αu = D(Dαu) = f a.e. �

When f depends on u the result is as follows.

Theorem 6.9. Let u ∈ L1 be such Dαu ∈ AC and that t 7→ f(t, u(t)) ∈ L1.
Then D1+αu(t) = f(t, u(t)) a.e., I1−αu(0) = c1Γ(α) and Dαu(0) = c2 if and
only if u(t) = c1t

α−1 + c2t
α + I1+αf(t, u(t)) a.e., where c1 = I1−αu(0)/Γ(α) and

c2 = D1−αu(0).

We note that to prove this equivalence it is required that Dαu ∈ AC, equivalently
I1−αu ∈ AC1. Also if we ask that t 7→ f(t, u(t)) ∈ L1 for every u ∈ L1 then it is
known that a necessary and sufficient condition is |f(t, u)| ≤ a(t)+ b|u| for all (t, u)
for some a ∈ L1 and some constant b ≥ 0.
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6.3. RL derivative of higher order. For the RL derivative of order m+α where
m ∈ N and 0 < α < 1 the result corresponding to Theorem 6.9 is the following and
can be proved in the same way.

Theorem 6.10. Let u ∈ L1 be such Dm−1+αu = Dm(I1−αu) ∈ AC (that is
I1−αu ∈ ACm) and suppose that t 7→ f(t, u(t)) ∈ L1. Then u satisfies

Dm+αu(t) = f(t, u(t)) a.e.,

I1−αu(0) = bm+1Γ(α), and Dm+α−ku(0) = bk, k = 1, . . . ,m,

if and only if

u(t) =

m∑
k=1

bkt
m+α−k + Im+αf(t, u(t)) a.e.,

where bm+1 = I1−αu(0)/Γ(α) and bk = Dm+α−ku(0).

This result is essentially given in Theorem 3.1 of [17] where it is assumed that
f is continuous on (0, T )×G (G an open set in R) satisfying f(t, u) ∈ L1 for every
u ∈ G. The proof claims that the necessary AC property holds but the results cross
referenced seem to be the wrong ones as they do not seem to prove this. Under a
Lipschitz condition on f it is also essentially given in [7, Lemma 5.2].

7. Monotonicity and concavity properties of fractional derivatives

The Caputo and R-L derivatives are nonlocal, that is, the fractional derivative
at a point t depends on the values of u(s) for all s ∈ [0, t]. However, the Caputo
derivative, in particular, has some similarities with derivatives of integer powers.
For example if u is non-decreasing on [0, T ] then for any one α ∈ (0, 1), both
Dα
∗ u(t) and Dαu(t) are nonnegative for a.e. t but the converse is not true as we

show below, though it is falsely claimed in the recent paper [23]. The correct result
implying monotonicity is given in [9], see Remark 7.3 below. Similarly if u ∈ C2

and u′′(t) ≤ 0, that is u is concave, then D1+α
∗ u(t) is non-positive but the converse

does not hold.
We first note the following simple fact, we include the proof for completeness.

Lemma 7.1. If u ∈ AC[0, T ] then u is non-decreasing if and only if u′(t) ≥ 0 for
a.e. t ∈ [0, T ].

Proof. Since u ∈ AC the derivative u′ exists for a.e. t. Suppose that u is non-
decreasing and that u′(τ) exists at a point τ ∈ (0, T ). For h 6= 0 sufficiently small

we have
u(τ + h)− u(τ)

h
≥ 0. Taking the limit as h → 0 shows that u′(τ) ≥ 0.

Conversely, suppose that u′(t) ≥ 0 for a.e. t. Since u ∈ AC we have u(t)− u(0) =∫ t
0
u′(s) ds. Then for t > τ , u(t) − u(τ) =

∫ t
τ
u′(s) ds ≥ 0, that is u is non-

decreasing. �

Proposition 7.2. Let 0 < α < 1 and let 0 ≤ γ < α. Suppose that u, v are
continuous and that I1−αu ∈ AC, I1−αv ∈ AC so that Dα

∗ u and Dα
∗ v exist a.e.

(1) If u is non-decreasing then Dα
∗ u(t) ≥ 0 and Dαu(t) ≥ 0 for a.e. t ∈ [0, T ].

(2) If Dα
∗ u ∈ C−γ and if Dα

∗ u(t) ≥ 0 for t > 0 then u(t) ≥ u(0) for every
t ∈ [0, T ]. If Dα

∗ u(t) > 0 for t > 0 then u(t) > u(0) for every t ∈ (0, T ].
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(3) If Dα
∗ u ∈ C−γ , Dα

∗ v ∈ C−γ and Dα
∗ u(t) ≥ Dα

∗ v(t) for t > 0 and u(0) ≥ v(0)
then it follows that u(t) ≥ v(t) for t ∈ [0, T ]. If Dα

∗ u(t) > Dα
∗ v(t) for t > 0

and u(0) ≥ v(0) then u(t) > v(t) for all t ∈ (0, T ].
(4) If, for some α ∈ (0, 1), we have Dα

∗ u(t) ≥ 0 for t ∈ [0, T ] (or if Dαu(t) ≥
0) it does not follow that u is non-decreasing even if Dα

∗ u or u is a C∞

function.

Proof. (1) Let u0 be the constant function taking the value u(0). By definition,
Dα
∗ u(t) = DI1−α(u − u0)(t) and I1−α(u − u0)(t) is a non-decreasing function of t

by Proposition 3.2 (10). Thus, by Lemma 7.1, its derivative Dα
∗ u is ≥ 0 a.e.

(2) Let g(t) := Dα
∗ u(t), then, by assumption, g(t) := t−γf(t) where f is contin-

uous. It follows from Theorem 5.1 part 3 that we have

u(t) = u(0) +

∫ t

0

(t− s)α−1g(s) ds

therefore u(t) ≥ u(0) since g(s) ≥ 0 for a.e. s > 0. When the inequality is strict,
we have (t − s)α−1g(s) > 0 for a.e. s ∈ (0, t), so the integral is positive for t > 0,
thus u(t) > u(0) for t > 0.

(3) We have Dα
∗ (u − v) ≥ 0 so u(t) − v(t) ≥ u(0) − v(0) ≥ 0 by part (2). The

strict inequality case is proved in the same way.
(4) We give two simple counter-examples, it is easy to give many other similar

ones. We note that for for a function u ∈ AC with u(0) = 0 the following equality
holds: Dαu(t) = Dα

∗ u(t) = Dα
Cu(t). For p > 0, the function hp(t) := tp satisfies

hp ∈ AC and hp(0) = 0 and we will use the well-known and easily verified fact that
for 0 < α < 1

Dα
Chp(t) =

tp−αΓ(p+ 1)

Γ(p+ 1− α)
.

Let α = 1/2 and T = 1 and firstly let u(t) = 5t3/2 − 4t5/2. Then u ∈ C1 and we
obtain

D
1/2
C u(t) = 5Γ(5/2)(t− t2) =

15
√
π

4
(t− t2) ≥ 0, for t ∈ [0, 1],

and D
1/2
C u is a C∞ function, but u(t) is increasing on [0, 3/4] and decreasing on

[3/4, 1].
Secondly, for α = 1/2 and T = 1 take v(t) = 6t2 − 5t3 so v ∈ C∞. By the

above formulas we obtain D
1/2
C v(t) = 16(t3/2 − t5/2)/

√
π ≥ 0 for t ∈ [0, 1] but v is

increasing on [0, 4/5] and decreasing on [4/5, 1]. �

Remark 7.3. The results with γ 6= 0 may be new. Diethelm [9] discusses mono-
tonicity properties for C1[0, T ] functions in terms of Dα

Cu. He proves part (1) for
C1 functions in his Theorem 2.1; the proof is also simple with the definition Dα

Cu
available. He further shows that monotonicity of u ∈ C1 is equivalent to requiring
that there is α0 ∈ (0, 1) such that the Caputo derivatives Dα

Cu of orders α ∈ (α0, 1)
do not change sign, and this is equivalent to the Caputo derivatives Dα

Cu of all
orders α ∈ (0, 1) do not change sign. For part (4) he gives a different example
to ours where Dα

∗ u(t) does not change sign for some, but not all, α and u is not
monotone.

Theorem 2.4 in [4] partially proves part (3) when γ = 0 for the fractional deriva-
tive Dα

C but omits to state that f must be continuous and that u should be in AC.
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The proof also claims the fractional differential and integral equations are equiva-
lent but the correct equivalence is given in Theorem 5.1, however the implication
of part 1 of Theorem 5.1 is sufficient there.

We now discuss concavity properties, for simplicity we consider functions defined
on [0, 1]. If 0 < α < 1 is given and D1+α

∗ u(t) = g(t) we might hope that g ≤ 0
implies that u is concave but this is not valid.

Proposition 7.4. If 0 < α < 1, u ∈ AC[0, 1], I1−αu′ ∈ AC, and u is concave,
that is u′(t) is non-increasing, then D1+α

∗ u(t) ≤ 0. But D1+α
∗ u(t) ≤ 0 (for a fixed

α) does not imply that u is concave even if u ∈ C2[0, 1] or D1+α
∗ u ∈ C2[0, 1] (or

more regular).

Proof. The assumption I1−αu′ ∈ AC ensures that the fractional derivative D1+α
∗ u

exists. Then by Lemma 4.11 we have

D1+α
∗ u(t) = Dα(u′ − u′(0))(t) = D(I1−α(u′ − u′(0)))(t) ≤ 0

by Proposition 3.2 (10) since u′(t)− u′(0) is non-increasing.
For the second part, we take α = 1/2 and note that for hp(t) = tp we have

D
3/2
C hp(t) =

{
0, if p = 0 or if p = 1,

Γ(p+1)
Γ(p−1/2) t

p−3/2, if p > 1.

Firstly we take the following C∞ function u(t) = a + bt + t3 − 2t2 where a, b can

be arbitrary constants. Then by the above formula D
3/2
C u(t) = 8√

π
(t3/2− t1/2) ≤ 0

but u′′ = 6t − 4 changes sign at t = 2/3 so u is not concave, also not convex, on
[0, 1].

Secondly take, u(t) = a+ bt− 8t5/2

15
√
π

+
32t7/2

105
√
π

so that D
3/2
C u(t) = −t+ t2 ≤ 0.

Then u′′(t) = −2t1/2/
√
π + 8t3/2/(3

√
π) which changes sign at t = 3/4 so u is

neither convex nor concave. �

Remark 7.5. Using Diethelm’s result on monotonicity [9] mentioned above applied
to u′, it follows that if u ∈ C2[0, 1] then u is concave if and only if for every
α ∈ (0, 1) the fractional derivative D1+α

C u(t) is non-positive for t ∈ [0, 1]. The
application of this result could be limited by the fact that a solution of a problem
D1+α
∗ u(t) = f(t, u(t)) with f continuous is not a C2[0, 1] function in general, see

[7, Theorem 6.25] and Theorem 9.1 below.

There have been some papers which make incorrect claims regarding concavity
properties. Ntouyas and Pourhadi [22] discuss the following BVP with 0 < α < 1
(we have changed to the interval [0, 1]):

D1+α
C u(t) + g(t) = 0, u(0) = 0, u(1) = βu(η), (7.1)

where βη 6= 1. They claim the following.

[22, Lemma 2.6] Suppose that g ∈ C2([0, 1];R) and g(0) ≥ 0.
(a) If g is convex, then the unique solution of (7.1) is concave.
(b) If g is concave, then the unique solution of (7.1) is convex.

Unfortunately this is not correct. We can take the same example as above with

α = 1/2, that is consider D
3/2
C u for u(t) = a+bt− 8t5/2

15
√
π

+
32t7/2

105
√
π

, taking a = 0 and
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b chosen to make u(1) = βu(η), then u satisfies D
3/2
C u(t) + t− t2 = 0, and we have

g(t) = t− t2 which is concave and non-negative but the solution is neither convex
nor concave. For example, if η = 1/2 and we also ask for u(t) ≥ 0 for t ∈ [0, 1] (the
paper [22] is interested in existence of positive solutions and assumes βη < 1 in
some Lemmas) then we need b ' 0.129 and then for any for any β ∈ [0.0016, 1.944]
such b exists, for example when β = 0.01, η = 1/2 we can take b ≈ 0.1292, for
β = 1, η = 1/2 we can take b ≈ 0.182, or for β = 1.944, η = 1/2 we can take
b ≈ 1.968.

Eloe and Neugebauer [11] discuss concavity properties of the R-L fractional de-
rivative. One of their results, [11, Theorem 3.7], claims that if α ∈ (0, 1), and D1+αu
is continuous with u(0) = 0 and u(1) ≥ 0, then, if u ∈ C2(0, 1] (not necessarily at
0), D1+αu(t) ≤ 0 implies that u′′(t) ≤ 0 for t ∈ (0, 1].

Unfortunately this is not correct. We again take α = 1/2 and consider

u(t) = bt1/2 − 8t5/2

15
√
π

+
32t7/2

105
√
π

and we can choose, for example, b ≥ 0.129 to make u(1) ≥ 0; a simple choice
is b = 1/6 which we now make. Note that, by properties of the R-L derivative,
D3/2t1/2 = 0. Then we obtain D3/2u(t) = −t + t2 ≤ 0 but by calculation u′′(t)
changes sign when t ≈ 0.794, thus u is neither concave nor convex. An error is that
the ‘if’ part of their Lemma 2.1 which is used in the proof of their Theorem 3.7 is not
correct, a counter example to that implication on [0, 1] is u(t) = t/(1 + 4t2) where

u′′ changes sign at t =
√

3/2. We note that for the ‘only if’ part of their Lemma
2.1 (for which there is a simpler proof directly using the definition of concavity) the
condition u(0) ≥ 0 is necessary for its validity; in the paper [11] the main results
have u(0) = 0.

8. Existence of Caputo IVPs with nonlinearity depending on a
fractional derivative

We will now consider the Caputo IVP:

D1+α
∗ u(t) = t−γf(t, u(t), Dβ

Cu(t)) for t > 0, u(0) = u0, u
′(0) = u1,

where 0 ≤ γ < α < 1 and 0 < β ≤ 1. We believe our results here are new even for
the case β = 1 since we include the singular term t−γ .

For this problem it is natural to work in the space C1[0, T ] in which we will use

the norm ‖u‖1 := ‖u‖∞ + ‖u′‖∞. Since u ∈ C1 we have Dβ
∗u(t) = Dβ

Cu(t) by

Proposition 4.4, but we do not necessarily have D1+α
∗ u(t) = D1+α

C u(t). We write

Dβ
Cu since this is the form we use in the proof below. First we have the following

equivalence.

Theorem 8.1. Let 0 ≤ γ < α < 1 and 0 < β ≤ 1. Let f be continuous on
[0, T ] × R × R. If a function u ∈ C1[0, T ] is such that D1+α

∗ u exists a.e. and
satisfies the Caputo fractional initial value problem

D1+α
∗ u(t) = t−γf(t, u(t), Dβ

Cu(t)), for a.e. t > 0, u(0) = u0, u′(0) = u1.
(8.1)

then u satisfies the Volterra integral equation

u(t) = u0 + u1 t+ I1+α(t−γf(t, u(t), Dβ
Cu(t))). (8.2)
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Conversely, if u ∈ C1[0, T ] satisfies (8.2) then D1+α
∗ u exists a.e. and u satisfies

(8.1).

Proof. Let g(t) := f(t, u(t), Dβ
Cu(t)). First we note that for u ∈ C1 the Caputo

fractional derivative Dβ
Cu is continuous. In fact,

Dβ
Cu = I1−βu′ ∈ C1−β ⊂ C, by Proposition 3.2 (5).

Hence for u ∈ C1, g is continuous. The proof is now almost identical with that of
Theorem 5.1 so is omitted. �

We will prove a global existence theorem under the growth assumption

|f(t, u, p)| ≤ a(t) +M(|u|+ |p|) for some a ∈ L∞ and constant M > 0.

Under an extra Lipschitz condition we will also prove continuous dependence on
initial data, and a uniqueness result.

The problem

u(t) = u0 +
1

Γ(α)

∫ t

0

(t− s)α−1s−γf(s, u(s)) ds

when 0 ≤ γ < α < 1 and f is continuous was recently studied by this author in [27]
by employing a new L∞ Gronwall inequality which established an a priori bound
for solutions of a problem with weakly singular kernel in the space C[0, T ]. For
problem (8.1) the appropriate space is C1[0, T ] and we must obtain a priori bounds
on both the function u and its derivative u′. We will use the Gronwall inequality
from [27] which we now recall in a simplified form.

Theorem 8.2. Let a ≥ 0 and b > 0 be constants and suppose that η > 0, γ ≥ 0
and η + γ < 1. Suppose that u ∈ L∞+ [0, T ] satisfies the inequality

u(t) ≤ a+ b

∫ t

0

(t− s)−ηs−γu(s) ds, for a.e. t ∈ [0, T ]. (8.3)

Then there is an explicit constant B = B(b, η, γ) (see [27] for details) such that

u(t) ≤ a(1− γ)

1− η − γ
exp

(
Bt1−γ

)
, for a.e. t ∈ [0, T ]. (8.4)

In particular, there is an explicit constant C = C(b, η, γ, T ) such that u(t) ≤ aC
for a.e. t ∈ [0, T ].

When u is continuous the inequality holds for all t not only a.e. t.
We will now discuss solutions in the space C1[0, T ] of the Volterra integral equa-

tion

u(t) = u0 + u1 t+ I1+α(t−γf(t, u(t), Dβ
Cu(t))), (8.5)

where 0 < α < 1 and 0 < β ≤ 1. If u ∈ C1 is a solution then its derivative satisfies

u′(t) = u1 + Iα(t−γf(t, u(t), Dβ
Cu(t))). (8.6)

Our result reads as follows.

Theorem 8.3. Let f : [0, T ] × R2 → R be continuous, let 0 < α < 1, 0 ≤ γ < α,
and 0 < β ≤ 1, and let u0, u1 ∈ R. Suppose there are a ∈ L∞ and a constant
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M > 0 such that |f(t, u, p| ≤ a(t) + M(|u| + |p|) for all t ∈ [0, T ] and u, p ∈ R.
Then the integral operator

Nu(t) := u0 + tu1 +
1

Γ(1 + α)

∫ t

0

(t− s)αs−γf(s, u(s), Dβ
Cu(s)) ds

has a fixed point in C1[0, T ]. If, in addition, there exists L > 0 such that f satisfies
the Lipschitz condition

|f(t, u, p)− f(t, v, q)| ≤ L(|u− v|+ |p− q|), for all t ∈ [0, T ], u, v, p, q ∈ R,

then fixed points depend continuously on the initial data and, in particular, for a
given u0, u1 there is a unique fixed point.

Proof. The proof of existence consists of showing that N : C1 → C1 is completely
continuous, that is N is continuous and maps bounded subsets of C1 into relatively
compact subsets of C1, and that there is a bounded open set U containing 0 such
that Nu 6= λu for all u ∈ ∂U and all λ ≥ 1. This will prove the Leray-Schauder
degree deg(N,U, 0) = 1 which proves that N has a fixed point in U . To show that
N is completely continuous we will show N is continuous and will apply the Arzelà-
Ascoli criterion to show that N(U) is bounded and that (Nu)(t) and (Nu)′(t) are
equicontinuous for u ∈ U .

We will use the simple fact that

s−γ |Dβ
Cu(s)| ≤ I1−β(s−γ |u′(s)|) for a.e. s. (8.7)

In fact, since u′ is continuous s 7→ s−γ |u′(s)| is an L1 function and we have

s−γ |Dβ
Cu(s)| = s−γ |I1−βu′(s)|

≤ 1

Γ(1− β)
s−γ

∫ s

0

(s− σ)−β |u′(σ)| dσ

≤ 1

Γ(1− β)

∫ s

0

σ−γ(s− σ)−β |u′(σ)| dσ

= I1−β(s−γ |u′(s)|).

We now show the existence of a suitable set U . In fact, if there exists λ ≥ 1 and
u 6= 0 such that λu = Nu then λu(t) = Nu(t) and λu′(t) = (Nu)′(t), and we have

|u(t)| ≤ λ|u(t)| = |Nu(t)| ≤ |u0|+ t|u1|+ I1+αs−γ |f(s, u(s), Dβ
Cu(s))|

≤ |u0|+ T |u1|+ I1+α(s−γ(a(s) +M(|u(s)|+ |Dβ
Cu(s)|)

≤ C0(a, u0, u1, T ) +MI1+α(s−γ |u(s)|) +MI1+αI1−β |s−γu′(s)|

= C0(a, u0, u1, T ) +MI1+αs−γ |u(s)|+MI2+α−β |s−γu′(s)|.

The constant C0 can be given explicitly but since it is not important to us we omit
the explicit value; we also do this with other constants below. Similarly we obtain

|u′(t)| ≤ |u1|+ Iα|f(s, u(s), Dβ
Cu(s))|

≤ C1(a, u1, T ) +MIα(s−γ |u(s)|) +MI1+α−β |s−γu′(s)|.

Now we note that

Iα1v ≤ C2(α1, α2, T )Iα2v whenever α1 ≥ α2. (8.8)
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In fact,

Iα1v(t) =
1

Γ(α1)

∫ t

0

(t− s)α1−1v(s) ds

=
1

Γ(α1)

∫ t

0

(t− s)α2−1(t− s)α1−α2v(s) ds

≤ 1

Γ(α1)
Tα1−α2

∫ t

0

(t− s)α2−1v(s) ds

≤ Γ(α2)

Γ(α1)
Tα1−α2Iα2v.

Adding the above inequalities and using (8.8) several times (noting that α is the
smallest exponent) gives

|u(t)|+ |u′(t)| ≤ C3(a, u0, u1, T ) + C4(a, u0, u1, T )Iαs−γ(|u(s)|+ |u′(s)|)

= C3 + C4(a, u0, u1, T )

∫ t

0

(t− s)α−1s−γ(|u(s)|+ |u′(s)|) ds.

Since 1−α+ γ < 1, by Theorem 8.2 there is a constant C5, independent of u, such
that |u(t)|+ |u′(t)| ≤ C5 for all t ∈ [0, T ]. Choose R > C5, and let UR, be the open
ball in C1 of radius R centred at 0. We have shown that Nu 6= λu for all u ∈ ∂UR
and all λ ≥ 1.

Now we show that N(UR) is bounded. We have ‖u‖1 ≤ R so that |u(t)|+|u′(t)| ≤
R for all t ∈ [0, T ], and we obtain

|Dβu(t)| = |I1−βu′| ≤ 1

Γ(1− β)

∫ t

0

(t− s)−β |u′|(s) ds ≤ R1 :=
RT 1−β

Γ(2− β)
.

As f is uniformly continuous on [0, T ]×[0, R]×[0, R1], there existsM = M(R, β, T ) <
∞ such that |f(t, u, p)| ≤ M for all t ∈ [0, T ], u ∈ [0, R], p ∈ [0, R1]. Thus for
u ∈ UR we have

|(Nu)′(t)| ≤ |u1|+
1

Γ(α)

∫ t

0

(t− s)α−1s−γ |f(s, u(s), Dβu(s))| ds

≤ |u1|+
1

Γ(α)
M

∫ t

0

(t− s)α−1s−γ ds

= |u1|+
1

Γ(α)
Mtα−γB(α, 1− γ)

≤ |u1|+
1

Γ(α)
MTα−γB(α, 1− γ).

A similar calculation is valid for Nu(t). This proves that the set N(UR) is bounded.
The proof of equicontinuity of (Nu)′(t) is essentially identical with the proof

in [27] since the property of f used is the uniform bound, hence we omit this.
The proof of equicontinuity for {Nu(y) : u ∈ UR} is similar but easier. The
equicontinuity shows that N maps bounded sets into relatively compact sets by the
Arzelà-Ascoli theorem. Also it shows that Nu(t) and (Nu)′(t) are continuous in t
so N(UR) ⊂ C1.

Finally we show that N is continuous on C1, that is, un(s)→ u(s) and u′n(s)→
u′(s) uniformly in s implies Nun(t) → Nu(t) and (Nu)′n(t) → (Nu)′(t) uniformly
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in t. For ε > 0 there exists n0(ε) ∈ N such that |u′n(s)− u′(s)| < ε for n > n0 and
all s ∈ [0, T ]. Then we have

|Dβun(t)−Dβu(t)| ≤ 1

Γ(1− β)

∫ t

0

(t− s)−β |u′n(s)− u′(s)| ds

<
1

Γ(1− β)
ε

∫ t

0

(t− s)−β ds ≤ εT 1−β

Γ(1− β)
.

As ε > 0 is arbitrary this shows that Dβun(t) → Dβu(t) uniformly in t. Hence,
since {un} is bounded, say ‖un‖1 ≤ R, and f is uniformly continuous on [0, T ] ×
[0, R]× [0, R1], for ε > 0 there exists n1 = n1(ε) ∈ N such that

|f(s, un(s), Dβun(s)(s))− f(s, u(s), Dβu(s)| < ε,

for all n > n1 and all s ∈ [0, T ]. Then we have, for every t ∈ [0, T ],

|(Nun)′(t)− (Nu)′(t)|

≤ 1

Γ(α)

∫ t

0

(t− s)α−1s−γ |f(s, un(s), Dβun(s))− f(s, u(s), Dβu(s))| ds

<
ε

Γ(α)

∫ t

0

(t− s)α−1s−γ ds

≤ ε

Γ(α)
Tα−γB(α, 1− γ), for n > n1.

This proves that (Nun)′(t) → (Nu)′(t) uniformly in t and a similar calculation
shows that (Nun)(t) → (Nu)(t) uniformly in t. This completes the proof for
existence of a solution.

Now suppose that f satisfies the Lipschitz condition and let u, v be fixed points
with u(0) = u0, u

′(0) = u1, v(0) = v0, v
′(0) = v1. Then we have

u(t)− v(t) = u0 − v0 + t(u1 − v1) +
1

Γ(1 + α)

∫ t

0

(t− s)αs−γ
(
f(s, u(s), Dβu(s))

− f(s, v(s), Dβv(s)
)
ds,

and

u′(t)− v′(t)

= u1 − v1 +
1

Γ(α)

∫ t

0

(t− s)α−1s−γ
(
f(s, u(s), Dβu(s))− f(s, v(s), Dβv(s)

)
ds.

By the arguments used above this gives

|u(t)− v(t)|+ |u′(t)− v′(t)|
≤ |u0 − v0|+ (1 + T )|u1 − v1|+ C6LI

α
(
s−γ(|u(s)− v(s)|+ |u′(s)− v′(s)|

)
.

By Theorem 8.2 we obtain, for t ∈ [0, T ],

|u(t)− v(t)|+ |u′(t)− v′(t)| ≤ (|u0 − v0|+ (1 + T )|u1 − v1|)C7 exp
(
Bt1−γ

)
.

This proves the continuous dependence on initial data and taking u0 = v0, u1 = v1

proves uniqueness. �

Remark 8.4. We can obtain existence of nonnegative solutions if we suppose that
f(t, u, p) ≥ 0 and that u0 ≥ 0 and u0 + Tu1 ≥ 0. The proof is almost the same
using fixed point index theory in place of degree theory.
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Remark 8.5. Some previous work with nonlinearities involving fractional deriva-
tives was done by Kosmatov [18] and continued by Deng and Deng [6]. They con-

sider Dα
Cu(t) = f(t,Dβ

Cu(t)) (of any order α) when the nonlinear term f is assumed
to be continuously differentiable. It is assumed in [18] that |f(t, p)| ≤ a1(t)+a2(t)|p|
and that a certain integral involving a1 is finite and another involving a2 is smaller
than one in order to prove appropriate a priori bounds. Deng and Deng [6] use some
of the results from Kosmatov [18] and generalize the main existence theorem by
imposing the condition |f(t, p)| ≤ a|p|+ b for t ∈ [0, 1] with a, b positive constants
but no restriction on the size.

For 1 < α < 2 and 0 < β < 1 (a particular case) Kosmatov [18, Lemma 3.1]

claims the equivalence of Dα
Cu(t) = f(t,Dβ

Cu(t)) and u(0) = u0, u
′(0) = u1 with an

integral equation for C2[0, T ] functions. However, solutions of the integral equation
do not have enough regularity for this in general, see Theorem 9.3, so this is not
clear. Deng and Deng [6] use the claimed result without comment.

Our method uses Theorem 8.2, the Gronwall inequality of [27], to obtain a priori
bounds with fewer restrictions. We work in the space C1 and we do not need f ∈ C1

or a condition such as f(0, 0) = 0, also we allow f = f(t, u,Dβu) to depend on u
too and we have the extra singular term t−γ .

The same methods as above apply to higher order problems. We only give the
case for fractional derivatives of order between 2 and 3. We will consider the Caputo
IVP:

D2+α
∗ u(t) = t−γf(t, u(t), Dβ1

C u(t), D1+β2

C u(t)), for t > 0,

u(0) = u0, u′(0) = u1, u′′(0) = u2,

where 0 ≤ γ < α < 1 and 0 < β1, β2 ≤ 1.
For this problem we work in the space C2[0, T ] in which we will use the norm

‖u‖2 := ‖u‖∞ + ‖u′‖∞ + ‖u′′‖∞. As previously in Theorem 8.1 this is equivalent
to the Volterra integral equation

u(t) = u0 + u1t+ u2t
2/2 + I2+α(t−γf(t, u(t), Dβ1

C u(t), D1+β2

C u(t))). (8.9)

We note that D1+β2

C u = I1−β2u′′ ∈ C[0, T ] and, as before, that

|s−γD1+β2

C u(s)| ≤ I1−β2 |s−γu′′(s)|.
We now have the following result.

Theorem 8.6. Let f : [0, T ] × R3 be continuous, let 0 < α < 1, 0 ≤ γ < α, and
0 < βi ≤ 1 (i = 1, 2), and let u0, u1, u2 ∈ R. Suppose there are a ∈ L∞ and a
constant M > 0 such that |f(t, u, p, q)| ≤ a(t) +M(|u|+ |p|+ |q|) for all t ∈ [0, T ]
and u, p, q ∈ R. Then the integral operator

Nu(t) : = u0 + tu1 + (t2/2)u2

+
1

Γ(2 + α)

∫ t

0

(t− s)1+αs−γf(s, u(s), Dβ1

C u(s), D1+β2

C u(s))) ds

has a fixed point in C2[0, T ]. If, in addition, there exists L > 0 such that f satisfies
the Lipschitz condition

|f(t, u1, p1, q1)− f(t, u2, p2, q2)| ≤ L(|u1 − u2|+ |p1 − p2||+ |q1 − q2|),
for all t ∈ [0, T ] and all ui, pi, qi ∈ R,
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then fixed points depend continuously on the initial data and in particular, for a
given u0, u1, u2 there is a unique fixed point.

Proof. If u = λNu for λ ≥ 1 then we have:

|u(t)| ≤ |u0|+ t|u1|+ (t2/2)|u2|+ I2+α|s−γf(s, u(s), Dβ1

C u(s), D1+β2

C u(s)|,

|u′(t)| ≤ |u1|+ t|u2|+ I1+α|s−γf(s, u(s), Dβ1

C u(s), D1+β2

C u(s))|,

|u′′(t)| ≤ |u2|+ Iα|s−γf(s, u(s), Dβ1

C u(s), D1+β2

C u(s))|.
These are estimated exactly as in the proof of Theorem 8.3 and the Gronwall
inequality Theorem 8.2 is used to get the a priori bound on |u| + |u′| + |u′′|. The
rest of the proof is exactly similar to that of Theorem 8.3 hence is omitted. �

A similar result can be given for higher order problems, since this requires no
new ideas we do not state or prove this.

9. Regularity results for Caputo IVP

For the case of fractional derivatives Dβ
∗ with 1 < β < 2 we can give some

regularity results when f has more regularity.

Theorem 9.1. (1) Let f be continuous on [0, T ], let 0 < γ ≤ α < 1 and let
g(t) := t−γf(t). If u ∈ C[0, T ] is such that D1+α

∗ u exists and satisfies the
Caputo fractional initial value problem

D1+α
∗ u(t) = g(t) for a.e. t, u(0) = u0, u′(0) = u1. (9.1)

then u ∈ C1[0, T ] and satisfies the Volterra integral equation u(t) = u0 +
u1 t+ I1+αg(t), that is,

u(t) = u0 + u1 t+
1

Γ(1 + α)

∫ t

0

(t− s)αs−γf(s) ds, t ∈ [0, T ]. (9.2)

Conversely, if u ∈ C[0, T ] satisfies (9.2) then u ∈ C1[0, T ] and satisfies
(9.1).

(2) If f ∈ AC and u ∈ C[0, T ] satisfies

D1+α
∗ u(t) = f(t) for t ∈ [0, T ], u(0) = u0, u′(0) = u1. (9.3)

then u(t) = u0 + tu1 + v(t) + f(0)tα+1

Γ(α+1) where v ∈ AC1, thus u′ ∈ AC and

hence D1+α
∗ u = D1+α

C u.
(3) If f ∈ C1 and u ∈ C[0, T ] satisfies (9.3) then u′ ∈ AC and u(t) = u0 +

tu1 + v(t) + f(0)
Γ(α+1) t

1+α where v ∈ C2[0, T ]. In particular, u ∈ C2(0, T ],

moreover u ∈ C2[0, T ] if and only if f(0) = 0.

Proof. (1) By definition D1+α
∗ u(t) = g(t) means that DI1−α(u− T1(u)) ∈ AC and

T1(u) exists, and D2I1−α(u− T1(u)) = g ∈ L1. Integrating twice gives

I1−α(u− T1(u))(t) = I2g(t) + a+ bt.

By Proposition 3.2 (5), I1−α(u − T1(u))(0) = 0 so we must have a = 0. Applying
Iα gives

I(u− T1(u)) = I2+αg + btα+1/Γ(α+ 2),

hence

(u− T1(u))(t) = I1+αg(t) + btα/Γ(α+ 1).
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Since u′(0) exists we must have b = 0. Thus (9.2) holds and u− T1(u) = I1+αg =
I(Iαg) ∈ C1 since Iαg ∈ Cα−γ ⊂ C by Proposition 3.2 (5).

Conversely, if u ∈ C[0, T ] satisfies (9.2) then since I1+αg = I(Iαg) ∈ C1 we
obtain u ∈ C1 and D1+α

∗ u = D1+αI1+αg = g a.e.
(2) By part (1) u− T1u = I1+αf and u ∈ C1. For f ∈ AC we have f ′ ∈ L1 and

f(t)− f(0) = If ′(t). Therefore

u− T1u = I1+α(If ′ + f(0)) = v(t) +
f(0)tα+1

Γ(α+ 1)
,

where v(t) = I Iα(If ′) ∈ AC1 (using Proposition 3.2) and f(0)tα+1

Γ(α+1) ∈ AC1 too.

Thus u ∈ AC1 and D1+α
∗ u = D1+α

C u by Lemma 4.10.
(3) For f ∈ C1, we have f ′ ∈ C[0, T ] and f(t)− f(0) = If ′(t) so

u− T1u = I1+α(If ′ + f(0)) = I2Iαf ′ + f(0)t1+α/Γ(1 + α),

where v(t) := I2Iαf ′ ∈ C2[0, T ]. This equation shows that u ∈ C2[0, T ] if and only
if f(0) = 0. �

Remark 9.2. Nothing much better than u ∈ C1 is expected in the analogue
to parts (2), (3) when there is the singular term t−γ since we can only prove
Iα(t−γf(t)) ∈ Cα−γ .

For fractional differential equations of order 1 + α with 0 < α < 1 and when f
depends on u but not on derivatives of u we have the following regularity results.

Theorem 9.3. Let 0 < γ ≤ α < 1.

(1) Let f be continuous on [0, T ] × R. If a function u ∈ C[0, T ] is such that
D1+α
∗ u exists and satisfies the Caputo fractional initial value problem

D1+α
∗ u(t) = t−γf(t, u(t)) for a.e. t, ;u(0) = u0, u′(0) = u1. (9.4)

then u ∈ C1[0, T ] and satisfies the Volterra integral equation

u(t) = u0 + u1 t+ I1+α(t−γf(t, u(t))). (9.5)

Conversely, if u ∈ C[0, T ] satisfies (9.5) then u ∈ C1[0, T ] and satisfies
(9.4).

(2) Let f be continuous on [0, T ]× R and such that

t 7→ f(t, u(t)) ∈ AC for every u ∈ C1[0, T ]. (9.6)

Then if u ∈ C[0, T ] satisfies

D1+α
∗ u(t) = f(t, u(t)) for a.e. t, u(0) = u0, u′(0) = u1. (9.7)

we have u′ ∈ AC[0, T ] and D1+α
C u(t) = f(t, u(t)).

(3) If f ∈ C1, that is ∂tf and ∂uf are continuous functions, and u ∈ C[0, T ]
satisfies (9.7) then u(t) = v(t) + ct1+α where v ∈ C2[0, T ] and c is a
constant, in particular, u ∈ C2(0, T ] ∩ AC1[0, T ] and satisfies D1+α

C u(t) =
f(t, u(t)). Moreover u ∈ C2[0, T ] if and only if f(0, u0) = 0.

Proof. (1) Define h(t) := f(t, u(t)). If u ∈ C[0, T ] satisfies (9.4) then D1+α
∗ u(t) =

t−γh(t). By Theorem 9.1 (1) the result follows.
(2) Let h(t) := f(t, u(t)). By part (1), u ∈ C1[0, T ] hence by assumption (9.6)

we obtain h ∈ AC and Theorem 9.1 (2) applies.
(3) In this case h ∈ C1 so this follows from Theorem 9.1 (3). �



EJDE-2019/117 CAPUTO FRACTIONAL EQUATIONS 29

Remark 9.4. The regularity in (3) on all of [0, T ] cannot be improved in general
even if f ∈ C∞. For u(t) = t1+α satisfies D1+α

∗ u = constant ∈ C∞ but we only
have u ∈ AC1[0, T ]. In [7, Theorem 6.25] it is proved (also there are results for the
higher order case) that u ∈ C1[0, T ] as in (1). In [7, Theorem 6.26] it is shown (also
there is a higher order case result), as in (3), that u ∈ C2(0, T ] and that u ∈ C2[0, T ]
if and only if f(0, u0) = 0, by similar arguments but without the explicit functions.
We have not seen the exact forms of our cases (2) and (3) in the literature so they
may be novel. Although smooth solutions cannot exist in general, Diethelm [8] give
a full characterization of the situations where smooth solutions exist, even analytic.

Remark 9.5. Of course it is important to have some explicit conditions that imply
(9.6). Clearly f ∈ C1 is sufficient. The sum and pointwise product of functions in
AC[0, T ] belong to AC[0, T ] and if u ∈ AC then the composition g ◦ u ∈ AC if g
satisfies a Lipschitz condition. Hence we have the following examples:

(1) f is Lipschitz in both variables, that is |f(t, u)−f(s, v)| ≤ L(|t−s|+ |u−v|)
for all t, s ∈ [0, T ] and all u, v ∈ R. Then for u ∈ C1, t 7→ f(t, u(t)) ∈ AC.

(2) f(t, u) = h1(t) + h2(t)g(u) where hi ∈ AC[0, T ] and g ∈ Lip.
(3) Sums of terms of the above types.

The case (1) where f is Lipschitz in both variables is discussed in detail for several
boundary value problems in [19] with somewhat different arguments.

For the problem D1+α
∗ u(t) = t−γf(t, u(t), Dβu(t)) which was studied above in

the space C1 via the Volterra integral equation

u(t) = u0 + u1 t+ I1+α(t−γf(t, u(t), Dβ
Cu(t))),

even if f ∈ C1 we only have t 7→ f(t, u(t), Dβ
Cu(t)) ∈ C0 so we can not prove more

than u ∈ C1.

10. Comments on Boundary Value problems

For the Caputo fractional differential equation Dα
∗ u(t) = f(t, u(t)), t ∈ [0, T ],

of order α ∈ (0, 1) it is appropriate to impose exactly one boundary condition. A
natural type of condition is au(0) + bu(T ) = c. When f is continuous it is shown
in Lemma 6.40 of [7] that the Caputo problem is equivalent to a Fredholm integral
equation. Tisdell [25] studies systems of such equations with this type of boundary
condition. We prove a new equivalence result exactly similar to [7] for the single
equation when the nonlinearity is allowed to be singular.

Theorem 10.1. Let 0 ≤ γ < α < 1, let a, b, c ∈ R with a + b 6= 0 and let
f : [0, T ]×R→ R be continuous. Then, the function u ∈ C[0, T ] with I1−αu ∈ AC
is a solution of the boundary value problem

Dα
∗ u(t) = t−γf(t, u(t)), t ∈ (0, T ], au(0) + bu(T ) = c, (10.1)

if and only if u ∈ C[0, T ] is a solution of the integral equation

u(t) =
c

a+ b
+

1

Γ(α)

∫ t

0

(t− s)α−1s−γf(s, u(s)) ds

− b

a+ b

1

Γ(α)

∫ T

0

(T − s)α−1s−γf(s, u(s)) ds.

(10.2)
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Proof. Let u ∈ C[0, T ] satisfy (10.2), let g(t) := t−γf(t, u(t)) so g ∈ L1. Then u
satisfies

u(t) =
c

a+ b
+ Iαg(t)− b

a+ b
Iαg(T ).

Thus u(0) = c
a+b−

b
a+bI

αg(T ) and u(T ) = c
a+b+ a

a+bI
αg(T ), hence au(0)+bu(t) = c.

Furthermore, Dα
∗ u = Dα(u − u(0)) = DαIαg = g a.e. so Dα

∗ u = t−γf(t, u(t) for
t ∈ (0, T ]. Moreover it follow that I1−αu ∈ AC as in Theorem 5.1. Conversely, let
u ∈ C[0, T ] with I1−αu ∈ AC satisfy (10.1). By Theorem 5.1, u(t) = u0 + Iαg(t)
and so u0 = u(0), u(T ) = u0 + Iαg(T ). The boundary conditions give au0 + bu0 +

bIαg(T ) = c thus u0 = c−bIαg(T )
a+b , which proves that u satisfies (10.2). �

Remark 10.2. When γ = 0, Dα
∗ u = f means that D(I1−α(u − u0)) = f so

I1−α(u− u0) ∈ C1 and is automatically AC; this recovers the result of [7, Lemma
6.40].

For the Caputo fractional differential equation D1+α
∗ u(t) = f(t, u(t)), t ∈ [0, T ],

where α ∈ (0, 1) it is natural to impose two boundary conditions. The case with
D1+α
C u(t) = f(t, u(t)) and general separated boundary conditions (also sometimes

called Sturm-Liouville boundary conditions) was extensively studied in [19]. Lemma
6.43 of [7] proves an equivalence when f is continuous and D1+α

∗ u(t) = f(t, u(t))
together with boundary conditions of this type. We can allow a singularity as
follows.

Theorem 10.3. Let 0 ≤ γ < α ∈ (0, 1), let a, b, c, d ∈ R with ad + bc + acT 6= 0
and let f : [0, T ] × R → R be continuous. Then, the function u ∈ C[0, T ] with
I1−αu ∈ AC1 is a solution of the boundary value problem

D1+α
∗ u(t) = t−γf(t, u(t)), t ∈ (0, T ],

au(0)− bu′(0) = 0, cu(T ) + du′(T ) = 0,
(10.3)

if and only if u ∈ C[0, T ] is a solution of an integral equation equation

u(t) =

∫ T

0

G(t, s)s−γf(s, u(s)) ds,

where G is called the Green’s function.

Proof. By Theorem 5.1 for u ∈ C[0, T ] with I1−αu ∈ AC1 satisfying D1+α
∗ u(t) =

t−γf(t, u(t)) we have u(t) = u0 + tu1 + I1+αg(t) where g(t) = t−γf(t, u(t)). The
boundary conditions are satisfied if

au0 − bu1 = 0, cu0 + cTu1 + cI1+αg(T ) + du1 + dIαg(T ) = 0.

These equations have unique solution u0, u1 if and only if

det

[
a −b
c cT + d

]
= ad+ bc+ acT 6= 0.

These values are then substituted into u0 + tu1 + I1+αg(t) to get the formula for
the Green’s function. The converse is similar to previous arguments. Since we
are not pursuing any existence theory for boundary value problems here we omit
the formulas for the Green’s function which can be readily found and are given in
[19]. �

Remark 10.4. In [19] the authors assume a Lipschitz condition on f in order that
the solutions of the integral equation satisfy D1+α

C u(t) = f(t, u(t)).
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For Riemann-Liouville fractional derivatives the type of boundary conditions
that can be considered depend on the function space in which the solution is to be
found. We will only discuss the case D1+α for 0 < α < 1.

The equation D1+αu = f is equivalent to D2(I1−α)u = f where we should
suppose explicitly that I1−αu ∈ AC1. By writing v = I1−αu we see that v′ ∈ AC
and v satisfies the second order ordinary differential equation v′′ = f . Therefore
natural BVPs would have boundary condition defined in terms of I1−αu and its
derivative D(I1−α)u = Dαu evaluated at t = 0, t = T . The physical interpretation
of such boundary conditions is not obvious, but we recall that I1−αu(0) is related
to limt→0+ t

1−αu(t), see Lemma 6.3.
If, as is often the case, solutions are to be found in the space C[0, T ] as fixed

points of a Fredholm integral operator, with kernel the Green’s function, then
certain boundary conditions are not allowed. The Green’s function would be found
by using the equivalence from Theorem 6.8. When f is continuous the procedure
would begin by claiming the solution is of the form

u(t) = c1t
α−1 + c2t

α + I1+αf(t, u(t)) (10.4)

and then use the boundary conditions to determine unique values for c1, c2 as
functions of u, f . We note that if c1 6= 0 then u is not defined at 0 and if c2 6= 0
then u′ is not defined at 0. If we seek a solution u ∈ C[0, T ] of (10.4) then it is
necessary that c1 = 0 irrespective of the value u(0), but when c1 = 0 in (10.4) it is
necessary that u(0) = 0 so that is the only compatible boundary condition.

If we seek a solution u ∈ C[0, T ] of (10.4) and try to impose a boundary condition
at 0 involving u′(0) then we must have c2 = 0 in addition to c1 = 0 so the only
problem that can be considered is u(t) = I1+αf(t, u(t)) which is a Volterra equation,
not a Fredholm equation, and any extra BC at t = T would give an over-determined
problem, in other words a BC at 0 involving u′(0) is not allowed with any other
BC at t = T for the R-L derivative case if solutions in C[0, T ] are sought.

If one BC is u(0) = 0 then one can impose many possible BCs at t = T and
solutions of the integral equation will give solutions of the BVP. This has been done
in many papers, too large a number to be given here.

However, it should be noted that one can never get periodic solutions (or anti-
periodic ones) for fractional equations, it has been shown by Kaslik and Sivasun-
daram [15] in 2012 and by, Wang, Feckan, and Zhou [26] in 2013, and by Area,
Losada, and Nieto [2] in 2014 that the fractional derivative or integral of a peri-
odic function u defined on the whole real line cannot be periodic, except, in the
Riemann-Liouville case for the trivial example of u = 0, in the Caputo case for u
constant. Boundary value problems on a finite interval with boundary conditions
of periodic type can be, and have been, considered.
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Addendum posted on August 5, 2020

Some further information and corrections.
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(1) Proposition 3.2 (10) needs the extra condition that u is non-negative.
Signs are important, the product of two non-decreasing functions is non-
decreasing if both are non-negative but not necessarily if they have opposite
signs.

Proposition 3.2 (10) is usually false when u is increasing but is negative
on some interval (0, δ). Then Iαf(t) is negative for t ∈ (0, δ). For example
if f ∈ Lp for p > 1/α then Iαf(0) = 0 (see Proposition 3.2 (3)), hence Iαf
is not increasing for t near 0. A simple example, for t ≥ 0, is u(t) = 3kt− 1
and α = 1/2, where k > 0 can be arbitrarily large. Then u is increasing,
negative for t < 1/(3k) and positive for t > 1/(3k). By a small calculation,
I1/2u(t) = (4kt3/2 − 2t1/2)/

√
π which is zero at 0, is then negative and

decreasing, has a negative minimum at t = 1/(6k), and then increases,
crossing zero at t = 1/(2k).

For 0 < γ < 1 the L1[0, T ] function u(t) = t−γ has

Iαu(t) =
Γ(1− γ)

Γ(1 + α− γ)
tα−γ

so gives an example of a positive decreasing L1 function whose fractional
derivative is increasing for α > γ and is decreasing for α < γ.

By applying the result to −u there is the obvious dual result that
if u(t) ≤ 0 and non-increasing for t ≥ 0 then Iαu(t) is non-increasing.

Proposition 3.2 (10) is correctly used in two places, in Proposition 7.2
where it is applied to v(t) = u(t)−u(0) with u nondecreasing so v is also non-
negative, and in Proposition 7.4 where the dual is applied to u′(t) − u′(0)
with u′ non-increasing.

(2) Proposition 3.2 (3) can be extended.
Lemma A1. For 0 < α < 1 and p > 1/α, Iα is a compact operator from

Lp[0, T ] to C[0, T ]. Hence Iα is also compact from C[0, T ] to C[0, T ].

This is because Iα maps into a Hölder space and the fact that for 0 <
β < 1 the Hölder space C0,β [0, T ] is compactly embedded in C[0, T ].

The proof of this compact embedding is simple, so we give it here. The
norm in C0,β [0, T ] is

‖u‖0,β := sup
x∈[0,T ]

|u(x)|+ sup
x 6=y

|u(x)− u(y)|
|x− y|β

.

Lemma A2. If {un} is a bounded sequence in C0,β [0, T ], then {un} is
relatively compact in C[0, T ].

Proof. Let ‖un‖0,β ≤M . For x 6= y we have

|un(x)− un(y)| = |un(x)− un(y)|
|x− y|β

|x− y|β ≤M |x− y|β

so {un} is bounded and equicontinuous hence relatively compact in C[0, T ]
by the Ascoli-Arzelà theorem. �

(3) With a closer reading of the Hardy-Littlewood paper [13] I discovered that
they have answered the following question which arises from Remark 5.2:

Question. Does there exist a function w ∈ C[0, T ] such that
Iαw /∈ AC?
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From the known results (see Proposition 3.2 (6)) w must not be AC.
The answer is yes. In §5.5 of [13] they give the following example. For

a > 1 and any k ∈ (0, 1), let wk be the Weierstrass function

wk(t) =

∞∑
n=0

a−nk cos(ant).

Then state (and have proved in other papers cited there) that wk is Hölder
continuous with exponent k but I1−kwk is not differentiable at any point
so is not AC.

This implies that, for 0 < α < 1, if all we know is that u and f are
continuous and u(t) = u0+Iαf(t) then it cannot be inferred that Dα

C exists;
Dα
∗ does exist since I1−α(u−u0) = If ∈ C1. Thus, in Theorem 5.1 the often

supposed equivalence between (5.1) and (5.2) is false in general. Therefore
to study a Caputo fractional differential equation via the corresponding
fractional integral equation the definition Dα

∗ should be used, as is done in
the well-known books [7] and [17].

This supports the maxim ‘Read the masters’, Hardy and Littlewood
answered the question nearly a century before the answer was wanted by
those studying Caputo fractional derivatives.

(4) Some typos:
page 11, In the sentence ‘The result is a special case of the result given

for fractional derivatives of all orders in [7, Theorem 3.1], and which is
proved below in Lemma 4.10.’, Lemma 4.10 here should be replaced by
Lemma 4.12.

page 18, In Theorem 6.10, the sum should go from k = 1 to k = m+ 1.
page 19, 1/Γ(α) is omitted in front of the integral sign in the proof of

Proposition 7.2 step (2).
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