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NEUTRAL STOCHASTIC PARTIAL FUNCTIONAL

INTEGRO-DIFFERENTIAL EQUATIONS DRIVEN BY

G-BROWNIAN MOTION

BINGJUN WANG, HONGJUN GAO

Abstract. In this article, we define the Hilbert-valued stochastic calculus

with respect to G-Brownian motion in G-framework. On that basis, we prove
the existence and uniqueness of mild solution for a class of neutral stochastic

partial functional integro-differential equations driven by G-Brownian motion
with non-Lipschitz coefficients. Our results are established by means of the

Picard approximation. Moreover, we establish the stability of mild solution.

An example is given to illustrate the theory.

1. Introduction

Neutral stochastic partial functional differential equations driven by Browniam
motion (or Lévy process ) arise in many areas of applied mathematics. For this
reason, the study of this type of equations has been receiving increased attention
in the last few years (see [2] and references therein). In [2], Bao and Hou stud-
ied a stochastic neutral partial functional differential equation. Then Diop et al.
[5] extended the results to stochastic neutral partial functional integro-differential
equations. In this paper, we focus on the study of neutral stochastic partial func-
tional integro-differential equations in G-expectation framework.

Motivated by uncertainty problems, risk measures and the superhedging in fi-
nance, Peng systemically established a time-consistent fully expectation theory. As
a typical and important case, Peng introduced the G-expectation theory(see[12, 13,
14, 15]), which provides a unified tool for stochastic analysis problems that involve
non-dominated family of probability measures. In the G-expectation framework,
the notion of G-Brownian motion and the corresponding stochastic calculus of Itô’s
type were established. On that basis, many results about the stochastic ordinary
different equations driven by G-Brownian motion are studied(see[1, 6, 7, 9, 11, 17,
18, 19]). However, so far as we known, there is no result about stochastic partial
differential equations driven by G-Brownian motion. The main difficulty is that the
infinite dimension G-Brownian motion and infinite dimension stochastic calculus in
G-framework are undefined.

Motivated by the above mentioned works, in this paper, we first define H-valued
stochastic calculus with respect to one-dimensional G-Brownian motion, where H
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is a real separable Hilbert space. On that basis, we study the existence, unique-
ness and stability of mild solution for the following neutral stochastic partial func-
tional integro-differential equations driven by G-Brownian motion in the space of
L2
G(ΩT ,H),

d(u(t) + g(t, ut))

= A(t)(u(t) + g(t, ut))dt+

∫ t

0

R(t− s)(u(s) + g(s, us))ds

+ f(t, ut)dt+ h(t, ut)d〈B〉t + σ(t, ut)dBt, t ∈ [0, T ],

u0(·) = ϕ ∈ C([−r, 0];L2
G(ΩT ,H)), r > 0,

(1.1)

where A(t) : D(A(t)) ⊂ L2
G(ΩT ,H) → L2

G(ΩT ,H), R(t) : D(R(t)) ⊂ L2
G(ΩT ,H) →

L2
G(ΩT ,H) are linear, closed, and densely defined operator on the space L2

G(ΩT ,H),
ut(θ) = u(t+ θ) for θ ∈ [−r, 0]. (〈B〉t)t≥0 is the quadratic variation process of the
G-Brownian motion (Bt)t≥0. The coefficients f, g, h, σ : [0, T ] × L2

G(ΩT ,H) →
L2
G(ΩT ,H) are jointly continuous functions will be proposed in section 3.
The rest of this article is organized as follows. In section 2, we introduce some

preliminaries and define the Hilbert-valued stochastic calculus with respect to G-
Brownian motion . In section 3, we prove the existence and uniqueness of mild
solution. The stability of mild solution in the mean square is discussed in section
4. Finally, we give an example in section 5.

2. Preliminaries

In this section, we introduce notation and preliminary results in G-framework
that are needed in the sequel. More details can be found in [4, 10, 14, 15].

Let ΩT = C0([0, T ];R), the space of real valued continuous functions on [0, T ]
with w0 = 0, be endowed with the distance

d(w1, w2) :=

∞∑
N=1

2−N
(
( max
0≤t≤N

|w1
t − w2

t |) ∧ 1
)
,

and let Bt(w) = wt be the canonical process. Denote by F := {Ft}0≤t≤T the natural
filtration generated by B. Let Lip(ΩT ) := {ϕ(Bt1 , . . . , Btn) : ∀n ≥ 1, t1, . . . , tn ∈
[0, T ],∀ϕ ∈ Cb,Lip(R

n)}, where Cb,Lip(R
n) denotes the set of bounded Lipschitz

functions on Rn. A sublinear functional on Lip(ΩT ) is defined as follows: for all
X,Y ∈ Lip(ΩT ),

(i) Monotonicity: E[X] ≥ E[Y ] if X ≥ Y.
(ii) Constant preserving: E[C] = C for C ∈ R.
(iii) Sub-additivity: E[X + Y ] ≤ E[X] + E[Y ].
(iv) Positive homogeneity: E[λX] = λE[X] for λ ≥ 0.

The triplete (Ω, Lip(ΩT ),E) is called a sublinear expectation space and E is called a
sublinear expectation. X ∈ Lip(ΩT ) is called a random variable in (Ω, Lip(ΩT ),E).

Definition 2.1. A random variable X ∈ Lip(ΩT ) is G-normal distributed with
parameters (0, [σ2, σ̄2]), i.e., X ∼ N(0, [σ2, σ̄2]), if for each ϕ ∈ Cb,Lip(R), u(t, x) :=

E[ϕ(x+
√
tX)] is a viscosity solution to the following PDE on R+ ×R:

∂u

∂t
−G(

∂2u

∂x2
) = 0,

ut0 = ϕ(x),
(2.1)
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where G(a) := 1
2 (a+σ̄2 − a−σ2), a ∈ R.

Definition 2.2. We call a sublinear expectation Ê : Lip(ΩT )→ R a G-expectation

if the canonical process B is a G-Brownian motion under Ê[·], that is, for each
0 ≤ s ≤ t ≤ T , the increment Bt − Bs ∼ N(0, [σ2(t − s), σ̄2(t − s)]) and for all
n > 0, 0 ≤ t1 ≤ . . . ≤ tn ≤ T and ϕ ∈ Lip(ΩT ),

Ê[ϕ(Bt1 , . . . , Btn−1 , Btn −Btn−1)] = Ê[ψ(Bt1 , . . . , Btn−1)],

where ψ(x1, . . . , xn−1) := Ê[ϕ(x1, . . . , xn−1,
√
tn − tn−1B1)].

Let us define the conditional G-expectation Êt of ξ ∈ Lip(ΩT ) knowing Lip(Ωt),
for t ∈ [0, T ]. Without loss of generality, we can assume that ξ has the repre-
sentation ξ = ϕ(B(t1), B(t2) − B(t1), . . . , B(tn) − B(tn−1)) with t = ti, for some
1 ≤ i ≤ n, and we put

Êti [ϕ(B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1))]

= ϕ̃(B(t1), B(t2)−B(t1), . . . , B(ti)−B(ti−1)),

where ϕ̃(x1, .., xi) = Ê[ϕ(x1, . . . , xi, B(ti+1)−B(ti), . . . , B(tn)−B(tn−1))].

Definition 2.3. Quadratic variation process of G-Brownian motion defined by

〈B〉t := B2
t − 2

∫ t

0

BsdBs

is a continuous, nondecreasing process.

For p ≥ 1, we denote by LpG(ΩT ) the completion of Lip(ΩT ) under the natural

norm ‖X‖p,G := (Ê[|X|p])1/p. For all t ∈ [0, T ], Ê and Êt are continuous mapping
on Lip(ΩT ) endowed with the norm ‖ · ‖1,G. Therefore, they can be extended
continuous to L1

G(ΩT ) under the norm ‖X‖1,G.

Theorem 2.4 ([4]). There exists a weakly compact subset P ⊂ M(ΩT ), where
M(ΩT ) is the set of probability measures on (ΩT ,FT ), such that

Ê[ξ] = max
P∈P

EP (ξ) ∀ξ ∈ L1
G(ΩT ).

P is called a set that represents Ê.

Let P be a weakly compact set that represents Ê. For this P, we define capacity

C(A) = sup
P∈P

P (A), A ∈ FT .

A set A ⊂ ΩT is a polar set if C(A) = 0. A property holds quasi-surely (q. s.) if it
holds outside a polar set.

Let H be a real separable Hilbert space equip with the norm ‖ · ‖ and the inner
product (·, ·)H . We consider the following space of random variables:

Lip(ΩT ,H) := span{X ∈ H|‖X(w)‖ ∈ Lip(ΩT )}, (2.2)

where span indicates that the space of all linear combinations of the correspond-
ing random variables is considered. We denote by LpG(ΩT ,H) the completion of

Lip(ΩT ,H) under the norm ‖X‖p := (Ê[‖X‖p])1/p. Then (LpG(ΩT ,H), ‖X‖p) is a

Banach space and the operator Ê[·] can be continuously extended to the Banach
space LpG(ΩT ,H).
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Next, we introduce H-valued Itô integral of G-Brownian motion. We consider
the following type of simple process: for a given partition πT = t0, t1, . . . , tN of
[0, T ], set

η(t) =

N−1∑
k=0

ξk(w)I[tk,tk+1)(t),

where ξk ∈ LpG(Ωtk ,H), k = 0, 1, . . . , N − 1 are given. The collection of these pro-

cesses is denoted by Mp,0
G (0, T ;H). We define the following norm on Mp,0

G (0, T ;H):

‖η‖Mp = (
1

T

∫ T

0

Ê[‖η(t)‖p]dt)1/p = (
1

T

N−1∑
k=0

Ê‖ξk(w)‖p(tk+1 − tk))1/p.

Finally, we denote by Mp
G(0, T ;H) the completion of Mp,0

G (0, T ;H) under the above
norm. Moreover, Mp

G(0, T ;H) ⊆Mq
G(0, T ;H) for p ≥ q.

Definition 2.5. For η ∈M1,0
G (0, T ;H), the related Bochner integral is∫ t

0

η(t)dt :=

N−1∑
k=0

ξk(w)(tk+1 − tk).

Lemma 2.6. Let η ∈M1
G(0, T ;H), then we have

Ê‖
∫ t

0

η(s)ds‖ ≤
∫ t

0

Ê‖η(s)‖ds.

Proof. According to the real-valued Bochner integral defined in [14] and the prop-
erty of sublinear expectation, we have

Ê‖
∫ t

0

η(s)ds‖ ≤ Ê
∫ t

0

‖η(s)‖ds ≤
∫ t

0

Ê‖η(s)‖ds. �

Definition 2.7. For η ∈M2,0
G (0, T ;H) of the form η(t) =

∑N−1
k=0 ξk(w)I[tk,tk+1)(t),

define

I(η) :=

∫ T

0

η(s)dB(s) :=

N−1∑
k=0

ξk(B(tk+1)−B(tk)).

The mapping I : M2,0
G (0, T ;H) → L2

G(ΩT ,H) can be continuously extended to
I : M2

G(0, T ;H)→ L2
G(ΩT ,H). Moreover, we have the following Lemma.

Lemma 2.8. Suppose η ∈M2
G(0, T ;H), then for t ∈ [0, T ], we have

Ê[‖
∫ t

0

η(s)dB(s)‖2] ≤ σ̄2

∫ t

0

Ê‖η(s)‖2ds.

Proof. Let us consider the case

η(t) =

N−1∑
k=0

ξk(w)I[tk,tk+1)(t) ∈M
2,0
G (0, T ;H).
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Then

Ê[‖
∫ t

0

η(s)dB(s)‖2]

= Ê[‖
N−1∑
k=0

ξk(B(tk+1 ∧ t)−B(tk ∧ t))‖2]

= Ê[

N−1∑
k=0

‖ξk(B(tk+1 ∧ t)−B(tk ∧ t))‖2

+ 2

N−1∑
j<k,j=0

(ξj(B(tj+1 ∧ t)−B(tj ∧ t)), ξk(B(tk+1 ∧ t)−B(tk ∧ t)))H ]

≤ Ê[
N−1∑
k=0

‖ξk(B(tk+1 ∧ t)−B(tk ∧ t))‖2]

+ 2Ê[

N−1∑
j<k,j=0

(ξj(B(tj+1 ∧ t)−B(tj ∧ t)), ξk(B(tk+1 ∧ t)−B(tk ∧ t)))H ].

(2.3)

However, since Ê[(B(t)−B(s))2] = σ̄2(t− s) and ξk is independent from B(tk+1 ∧
t)−B(tk ∧ t), we have

Ê[

N−1∑
k=0

‖ξk(B(tk+1 ∧ t)−B(tk ∧ t))‖2]

= Ê[

N−1∑
k=0

∑
l

(ξk(B(tk+1 ∧ t)−B(tk ∧ t)), el)2H ]

≤
N−1∑
k=0

Ê[
∑
l

(ξk, el)
2
H(B(tk+1 ∧ t)−B(tk ∧ t))2]

≤
N−1∑
k=0

[σ̄2Ê[
∑
l

(ξk, el)
2
H ](tk+1 ∧ t− tk ∧ t)]

= σ̄2

∫ t

0

Ê‖η(s)‖2ds.

(2.4)

Here, {el} is the standard orthonormal basis of space H.
On the other hand, by the property of sublinear conditional expectation, we have

Ê[

N−1∑
j<k,j=0

(ξj(B(tj+1 ∧ t)−B(tj ∧ t)), ξk(B(tk+1 ∧ t)−B(tk ∧ t)))H ]

≤
N−1∑

j<k,j=0

Ê[(ξj(B(tj+1 ∧ t)−B(tj ∧ t)), ξk(B(tk+1 ∧ t)−B(tk ∧ t)))H ]

=

N−1∑
j<k,j=0

Ê[(ξj , ξk)H(B(tj+1 ∧ t)−B(tj ∧ t)) · (B(tk+1 ∧ t)−B(tk ∧ t))] (2.5)
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=

N−1∑
j<k,j=0

Ê[Êtk [(ξj , ξk)H(B(tj+1 ∧ t)−B(tj ∧ t)) · (B(tk+1 ∧ t)−B(tk ∧ t))]]

=

N−1∑
j<k,j=0

Ê[(ξj , ξk)H(B(tj+1 ∧ t)−B(tj ∧ t)) · Êtk [(B(tk+1 ∧ t)−B(tk ∧ t))]]

= 0.

Then by (2.3)–(2.5), we have

Ê[‖
∫ t

0

η(s)dB(s)‖2] ≤ σ̄2

∫ t

0

Ê‖η(s)‖2ds.

For a general η ∈M2
G(0, T ;H), choose {ηn, n ≥ 1} ∈M2,0

G (0, T ;H) such that∫ T

0

Ê[‖η(s)− ηn(s)‖2]ds→ 0,

Ê[‖
∫ T

0

ηn(s)dB(s)−
∫ T

0

ηdB(s)‖2]→ 0,

as n→∞. Then we have

Ê[‖
∫ T

0

η(s)dB(s)‖2]

≤ Ê[‖
∫ T

0

(η(s)− ηn(s))dB(s)‖2] + Ê[‖
∫ T

0

ηn(s)dB(s)‖2].

(2.6)

It is easy to get the result when n→∞ on (2.6). �

Definition 2.9. For η ∈M1,0
G (0, T ;H) of the form η(t) =

∑N−1
k=0 ξk(w)I[tk,tk+1)(t),

define

Q(η) :=

∫ T

0

η(s)d〈B〉s :=

N−1∑
k=0

ξk(〈B〉tk+1
− 〈B〉tk).

The mapping Q : M1,0
G (0, T ;H) → L1

G(ΩT ,H) can be continuously extended to
Q : M1

G(0, T ;H)→ L1
G(ΩT ,H). Using a similar discussion as in Lemma 2.8 and the

fact that 〈B〉t − 〈B〉s ≤ σ2(t − s) in L1
G(ΩT ) for 0 ≤ s ≤ t < ∞, it is easy to get

the following lemma.

Lemma 2.10. Let η ∈M2
G(0, T ;H), then there exists a constant C1 > 0 such that

Ê[‖
∫ t

0

η(s)d〈B〉s‖2] ≤ C1Ê[

∫ T

0

‖η(t)‖2dt].

Lemma 2.11 ( Bihari’s inequality [3]). Let H(y) be a continuous, nondecreasing,
and concave function in y ∈ R+ such that H(0) = 0. Let y(·) be a Borel measurable
bounded nonnegative function on [0, T ], and let v(·) be a nonnegative integrable
function on [0,T]. If

y(t) ≤ c+

∫ t

0

v(s)H(y(s))ds, t ∈ [0, T ].

Then

y(t) ≤ J−1(J(c) +

∫ t

0

v(s)ds)
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holds for t ∈ [0, T ] such that J(c)+
∫ t
0
v(s)ds ∈ Dom(J−1), where J(τ) =

∫ τ
0

1
H(s)ds,

on τ > 0, and J−1 is the inverse function of J . In particular, if c = 0 and∫
0+

1
H(y)dy = +∞, then y(t) = 0 for t ∈ [0, T ].

Lemma 2.12 ([16]). Let the assumptions of Lemma 2.11 hold. If for ∀ε > 0, there

exists t1 ≥ 0 such that for 0 ≤ y0 < ε,
∫ T
t1
v(s)ds ≤

∫ ε
y0

1
H(y)dy. Then for t ∈ [t1, T ],

the estimate y(t) < ε holds.

3. Existence and uniqueness of the solution

In this section, we aim to study the existence, uniqueness of mild solution for
equation (1.1) in the space of L2

G(ΩT ,H), where A(t) : D(A(t)) ⊂ L2
G(ΩT ,H) →

L2
G(ΩT ,H), R(t) : D(R(t)) ⊂ L2

G(ΩT ,H) → L2
G(ΩT ,H) are linear, closed, and

densely defined operator on the space L2
G(ΩT ,H), ut(θ) = u(t + θ) for θ ∈ [−r, 0].

The coefficients f, g, h, σ : [0, T ] × L2
G(ΩT ,H) → L2

G(ΩT ,H) are jointly continuous

functions. In other words, we have sup0≤t≤T Ê[‖φ(t)‖2] < ∞, which implies that

φ ∈M2
G(0, T ;H) for φ = f, g, h, σ. Thus the stochastic calculuses appeared in (1.1)

are meaningful.
Let C([−r, 0];L2

G(ΩT ,H)) be the family of all continuous functions in L2
G(ΩT ,H).

Let ‖ϕ‖2C := sup−r≤θ≤0 Ê[‖ϕ(θ)‖2]. Let A be the infinitesimal generator of a

strongly continuous semigroup on L2
G(ΩT ,H) and (St)t≥0 be the corresponding

resolvent operator on L2
G(ΩT ,H). Regarding the theory of of partial integro-

differential equations and resolvent operator we refer the readers to [8], we omit it
in this paper. Now, we give the definition of mild solution for equation (1.1).

Definition 3.1. A process {u(t),−r ≤ t ≤ T} is said to be a mild solution of (1.1),
if u(t) = ϕ(t) on [−r, 0], and the following conditions hold:

(i) u(t) ∈ L2
G(ΩT ,H) is Ft-adapted and continuous in t ∈ [0, T ] q.s.;

(ii) For t ∈ [0, T ], we have q.s.

u(t) + g(t, ut) = S(t)(ϕ(0) + g(0, ϕ)) +

∫ t

0

S(t− s)f(s, us)ds

+

∫ t

0

S(t− s)h(s, us)d〈B〉s +

∫ t

0

S(t− s)σ(s, us)dBs.

(3.1)

To prove the required results, we assume the following conditions.

(H1) A is the infinitesimal generator of a strongly continuous semigroup on
L2
G(ΩT ,H). (S(t))t≥0 is the corresponding resolvent operator which sat-

isfies S(0) = I and ‖S(t)‖L ≤ Neβt for some constants N and β, where
‖ · ‖L denote the operator norm.

(H2) f, g, h, σ : [0, T ] × L2
G(ΩT ,H) → L2

G(ΩT ,H) are jointly continuous func-
tions and satisfy the following non-Lipschitz condition: for any ξ, η ∈
C([−r, 0];L2

G(ΩT ,H)),

Ê‖f(t, ξ)− f(t, η)‖2 ∨ Ê‖h(t, ξ)− h(t, η)‖2 ∨ Ê‖σ(t, ξ)− σ(t, η)‖2 ≤ H(‖ξ − η‖2C),

where H(y) is continuous, nondecreasing, and concave in y ∈ R+ such that
H(0) = 0 and

∫
0+

1
H(y)dy = +∞.

(H3) For each t ∈ [0, T ], there exists a positive constant K ′ such that

‖f(t, 0)‖2 ∨ ‖h(t, 0)‖2 ∨ ‖σ(t, 0)‖2 ≤ K ′.
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(H4) For ξ, η ∈ C([−r, 0];L2
G(ΩT ,H)), there exists a positive constant K < 1,

for ∀t ∈ [0, T ], we have

Ê‖g(t, ξ)− g(t, η)‖2 ≤ K2‖ξ − η‖2C .

Moreover, g(t, 0) = 0 for t ∈ [0, T ].

We construct a sequence of successive approximations defined as follows:

u0(t) =

{
ϕ(t), t ∈ [−r, 0],

S(t)ϕ(0), t ∈ [0, T ]
(3.2)

and for n ≥ 1,

un(t) =


ϕ(t), t ∈ [−r, 0],

S(t)(ϕ(0) + g(0, ϕ))− g(t, unt ) +
∫ t
0
S(t− s)f(s, un−1s )ds

+
∫ t
0
S(t− s)h(s, un−1s )d〈B〉s

+
∫ t
0
S(t− s)σ(s, un−1s )dB(s), t ∈ [0, T ].

(3.3)

Lemma 3.2. If (H1)–(H4) hold, then there exists a constant C > 0 which is
independent of n ≥ 1, such that

sup
0≤t≤T

Ê‖un(t)‖2 ≤ C.

Proof. Form the elementary inequality (a+ b+ c+ d)2 ≤ 4(a2 + b2 + c2 + d2), we
have

sup
0≤t≤T

Ê‖un(t) + g(t, unt )‖2

≤ 4 sup
0≤t≤T

Ê‖S(t)(ϕ(0) + g(0, ϕ))‖2 + 4 sup
0≤t≤T

Ê‖
∫ t

0

S(t− s)f(s, un−1s )ds‖2

+ 4 sup
0≤t≤T

Ê‖
∫ t

0

S(t− s)h(s, un−1s )d〈B〉s‖2

+ 4 sup
0≤t≤T

Ê‖
∫ t

0

S(t− s)σ(s, un−1s )dBs‖2 =: 4

4∑
i=1

Ii.

(3.4)

From (H1) and (H4), we have

I1 ≤ 2M(1 +K2)‖ϕ‖2C , (3.5)

where M = sup0≤t≤T ‖S(t)‖2L. On the other hand, in view of (H2), we obtain from
the Hölder inequality that

I2 ≤ T sup
0≤t≤T

Ê
∫ t

0

‖S(t− s)f(s, un−1s )‖2ds

≤ 2TM [K ′T +

∫ T

0

H(‖un−1s ‖2C)ds].

(3.6)
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According to Lemmas 2.8 and 2.10, and (H2) and (H3), we have

I3 ≤ C1 sup
0≤t≤T

∫ t

0

Ê‖S(t− s)h(s, un−1s )‖2ds

≤ C1M

∫ T

0

Ê‖h(s, un−1s )− h(s, 0) + h(s, 0)‖2ds

≤ 2C1M [K ′T +

∫ T

0

H(‖un−1s ‖2C)ds],

(3.7)

and

I4 ≤ sup
0≤t≤T

σ̄2M

∫ t

0

Ê‖σ(s, un−1s )‖2ds ≤ σ̄2M

∫ T

0

Ê‖σ(s, un−1s )‖2ds

≤ σ̄2M

∫ T

0

Ê‖σ(s, un−1s )− σ(s, 0) + σ(s, 0)‖2ds

≤ 2σ̄2M [K ′T +

∫ T

0

H(‖un−1s ‖2C)ds].

(3.8)

Notice that H(u) is a concave function on u ≥ 0, thus there exists a pair of positive
constants a, b such that H(u) ≤ a + bu. Putting (3.5)—(3.8) into (3.4) yields for
some positive constants C2 and C3, such that

sup
0≤t≤T

Ê‖un(t) + g(t, unt )‖2 ≤ C3 + C2

∫ T

0

‖un−1s ‖2Cds. (3.9)

By (H4), for K < 1, it follows that

sup
0≤t≤T

Ê‖un(t)‖2

≤ 1

1−K
sup

0≤t≤T
Ê‖un(t) + g(t, unt )‖2 +

1

K
sup

0≤t≤T
Ê‖g(t, unt )‖2

≤ 1

1−K
sup

0≤t≤T
Ê‖un(t) + g(t, unt )‖2 +K sup

0≤t≤T
Ê‖un(t)‖2 +K‖ϕ‖2C ,

(3.10)

which implies

sup
0≤t≤T

Ê‖un(t)‖2 ≤ 1

(1−K)2
sup

0≤t≤T
Ê‖un(t) + g(t, unt )‖2 +

K

1−K
‖ϕ‖2C . (3.11)

Thus we have

sup
0≤t≤T

Ê‖un(t)‖2 ≤ C3

(1−K)2
+ [

C2T

(1−K)2
+

K

1−K
]‖ϕ‖2C

+
C2

(1−K)2

∫ T

0

sup
0≤θ≤s

Ê‖un−1(θ)‖2ds.
(3.12)

Observing that

max
1≤n≤k

sup
0≤t≤T

Ê‖un−1(t)‖2 ≤ ‖ϕ‖2C + max
1≤n≤k

sup
0≤t≤T

Ê‖un(t)‖2. (3.13)

Then there exists positive constants C4, C5 such that

max
1≤n≤k

sup
0≤t≤T

Ê‖un(t)‖2 ≤ C5 + C4

∫ T

0

max
1≤n≤k

sup
0≤θ≤s

Ê‖un(θ)‖2ds. (3.14)
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By Gronwall’s inequality, we derive that

max
1≤n≤k

sup
0≤t≤T

Ê‖un(t)‖2 ≤ C5 exp(C4T ). (3.15)

This completes the proof since k is arbitrary. �

Theorem 3.3. Let the assumptions of Lemma 3.2 be satisfied, then there exists a
unique mild solution to (1.1).

Proof. Applying (3.3), (H1)–(H4) as in the proof of Lemma 3.2, for all t ∈ [0, T ]
and m,n ≥ 1, we can show that there exists a positive constant C6 such that

sup
0≤s≤t

Ê‖un+m(s)− un(s) + g(s, un+ms )− g(s, uns )‖2

≤ C6

∫ t

0

H( sup
0≤θ≤s

Ê‖un+m−1(θ)− un−1(θ)‖2)ds.
(3.16)

By (H4), we have

sup
0≤s≤t

Ê‖un+m(s)− un(s)‖2

≤ 1

1−K
sup

0≤s≤t
Ê‖un+m(s)− un(s) + g(s, un+ms )− g(s, uns )‖2

+K sup
0≤s≤t

Ê‖un+m(s)− un(s)‖2

≤ C6

1−K

∫ t

0

H( sup
0≤θ≤s

Ê‖un+m−1(θ)− un−1(θ)‖2)ds

+K sup
0≤s≤t

Ê‖un+m(s)− un(s)‖2.

(3.17)

Then we have

sup
0≤s≤t

Ê‖un+m(s)− un(s)‖2

≤ C6

(1−K)2

∫ t

0

H( sup
0≤θ≤s

Ê(‖un+m−1(θ)− un−1(θ)‖2))ds.
(3.18)

Let

Z(t) = lim sup
m,n→∞

sup
0≤s≤t

Ê‖un+m(s)− un(s)‖2.

From Lemma 3.2, (H2) and Fatou’s lemma, we get

Z(t) ≤ C6

(1−K)2

∫ t

0

H(s, Z(s))ds.

By Lemma 2.11, we get

Z(t) = 0. (3.19)

So there exist a subsequence still denoted by {un}n∈N such that for any n > 1

sup
0≤s≤t

Ê[‖un+1(s)− un(s)‖2] ≤ 1

2n
.

Then

Ê[

∞∑
n=1

‖un+1(t)− un(t)‖2] ≤
∞∑
n=1

Ê[‖un+1(t)− un(t)‖2] ≤ 1.
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By the Chebyshev inequality in G-framework, it is easy to see that

∞∑
n=1

‖un+1(t)− un(t)‖ <∞, q.s.

Set u(t) = u0(t) +
∑∞
n=0(un+1(t) − un(t)). From (3.19), {un}n∈N is a Cauchy

sequence in L2
G(ΩT ,H). Consequently, we can conclude that sup0≤s≤t Ê(‖un(s) −

u(s)‖2)→ 0 as n→∞. Hence in what follows, we claim that u(t) is a mild solution
to equation (1.1). In fact, by (H2), the Hölder inequality, Lemmas 2.8 and 2.10 and
letting n→∞, we obtain

sup
0<t≤T

Ê‖
∫ t

0

S(t− s)[f(s, uns )− f(s, us)]ds‖2 → 0,

sup
0<t≤T

Ê‖
∫ t

0

S(t− s)[h(s, uns )− h(s, us)]d〈B〉s‖2 → 0,

sup
0<t≤T

Ê‖
∫ t

0

S(t− s)[σ(s, uns )− σ(s, us)]dBs‖2 → 0.

On the other hand, by applying (H4), we can also claim, for t ∈ [0, T ], that

Ê‖g(t, unt )− g(t, ut)‖2 ≤ K2 sup
0≤s≤t

Ê‖uns − us‖2 → 0,

as n→∞.
Hence taking limit in both side of (3.2), we obtain that u(t) ∈ L2

G(ΩT ,H), t ∈
[0, T ] satisfy equation (3.1). Moreover, u(t) in continuous in t ∈ [0, T ] q.s., since the
stochastic calculuses appeared in (3.1) have quasi-continuous modification. Thus
u(t) is a mild solution to (1.1). This shows the existence.

Denote by u1(t) and u2(t) the mild solutions to (1.1). In the same way as (3.18)
was proved, we can show that for some constant D > 0,

sup
0≤s≤t

Ê‖u1(s)− u2(s)‖2 ≤ D
∫ t

0

H( sup
0≤θ≤s

Ê‖u1(θ)− u2(θ)‖2)ds,

this leads to sup0≤s≤t Ê‖u1(s)− u2(s)‖2 = 0, which also implies u1(t) = u2(t) q.s.
for any 0 ≤ t ≤ T . This shows the uniqueness. �

4. Stability of the solution

In this section, we study the stability through the continuous dependence of mild
solutions on the initial value by means of Lemma 2.12.

Definition 4.1. A mild solution uϕ1(t) of equation (1.1) with initial value ϕ1 is
said to be stable in the mean square if for all ε > 0, there exists δ > 0 such that

sup
0≤s≤t

Ê‖uϕ1(s)− uϕ2(s)‖2 < ε,

whenever ‖ϕ1−ϕ2‖2C < δ, for all t ∈ [0, T ]. Here uϕ2(t) is another mild solution of
equation (1.1) with initial value ϕ2.

Theorem 4.2. Let uϕ1(t) and uϕ2(t) be mild solutions of (1.1) with initial values
ϕ1 and ϕ2, respectively. If the assumptions of Theorem 3.3 are satisfied and K <
1√
5

, then the mild solution of equation (1.1) is stable in the mean square.
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Proof. Estimating as before, we can show that

sup
0≤s≤t

Ê‖uϕ1(s)− uϕ2(s)‖2

≤ 5 sup
0≤s≤t

Ê‖S(s)(ϕ1(0)− ϕ2(0) + g(0, ϕ1)− g(0, ϕ2))‖2

+ 5 sup
0≤s≤t

Ê‖
∫ s

0

S(s− l)[f(l, uϕ1

l )− f(l, uϕ2

l )]dl‖2

+ 5 sup
0≤s≤t

Ê‖g(s, uϕ1
s )− g(s, uϕ2

s )‖2

+ 5 sup
0≤s≤t

Ê|
∫ s

0

S(s− l)[h(l, uϕ1

l )− h(l, uϕ2

l )]d〈B〉l‖2

+ 5 sup
0≤s≤t

Ê‖
∫ s

0

S(s− l)[σ(l, uϕ1

l )− σ(r, uϕ2

l )]dBl‖2

≤ (10M + 10MK2 + 5K2)‖ϕ1 − ϕ2‖2C + 5K2 sup
0≤s≤t

Ê‖uϕ1(s)− uϕ2(s)‖2

+ 5(Mt+ C1M +Mσ̄2)

∫ t

0

H( sup
0≤θ≤l

Ê‖uϕ1(θ)− uϕ2(θ)‖2)dl.

Thus,

sup
0≤s≤t

Ê‖uϕ1(s)− uϕ2(s)‖2

≤ (10M + 10MK2 + 5K2)

1− 5K2
‖ϕ1 − ϕ2‖2C

+
5(Mt+ C1M +Mσ̄2)

1− 5K2

∫ t

0

H( sup
0≤θ≤l

Ê‖uϕ1(θ)− uϕ2(θ)‖2)dl.

(4.1)

Let

y0 =
(10M + 10MK2 + 5K2)

1− 5K2
‖ϕ1 − ϕ2‖2C ,

y(t) = sup
0≤s≤t

Ê‖uϕ1(s)− uϕ2(s)‖2,

H̃(y) :=
5(Mt+ C1M +Mσ̄2)

1− 5K2
H(y),

and v(t) = 1. Then (4.1)can be rewritten as y(t) ≤ y0+
∫ t
0
v(l)H̃(y(l))dl. Moreover,

by (H2), H̃(y) is continuous, nondecreasing and concave in y ∈ R+ such that

H̃(0) = 0 and
∫
0+

1
H̃(y)

dy = +∞. So, for ε > 0, we have lims→0+
∫ ε
s

1
H̃(y)

dy = +∞.

Thus, there exists a positive constant δ < ε, such that
∫ ε
δ

1
H̃(y)

dy ≥ T . Then for

y0 ≤ δ ≤ ε, we have∫ ε

y0

1

H̃(y)
dy ≥

∫ ε

δ

1

H̃(y)
dy ≥ T =

∫ T

0

v(t)dt.

Hence, by Lemma 2.12, for all t ∈ [0, T ], we have y(t) < ε. This shows the mild
solution of (1.1) is stable in the mean square. �
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5. An application

In this section, we provide an example that illustrates the obtained theory. We
consider the following neutral stochastic integro-differential equation driven by G-
Brownian motion.

d[v(t, x) +

∫ 0

−r
g̃(t, v(t+ θ, x))dθ]

=
( ∂2
∂2x

[v(t, x) +

∫ 0

−r
g̃(t, v(t+ θ, x))dθ]

)
dt

+
(∫ t

0

b(t− s) ∂
2

∂2x
[v(t, x) +

∫ 0

−r
g̃(t, v(t+ θ, x))dθ]ds

)
dt

+
(∫ 0

−r
f̃(t, v(t+ θ, x))dθ

)
dt+ h̃(t, v(t+ θ, x))d〈B〉t

+ σ̃(t, v(t+ θ, x))dBt, for t ≥ 0, θ ∈ [−r, 0], x ∈ [0, π],

v(t, 0) +

∫ 0

−r
g̃(t, v(t+ θ, 0))dθ = 0, t ≥ 0,

v(t, π) +

∫ 0

−r
g̃(t, v(t+ θ, π))dθ = 0, t ≥ 0,

v(θ, x) = v0(θ, x) ∈ C([−r, 0];L2
G(ΩT , L

2([0, π]))),

for θ ∈ [−r, 0], x ∈ [0, π],

(5.1)

where f̃ , g̃, h̃, σ̃ : R+×L2
G(ΩT , L

2([0, π])) −→ L2
G(ΩT , L

2([0, π])) are jointly contin-
uous functions, b : R+ → R is bounded and C1 function such that b′ is bounded
and uniformly continuous. Let Av(x) = v′′(x), x ∈ [0, π], v ∈ D(A), where
D(A) = {v ∈ L2

G(ΩT , L
2([0, π]))| v′(x) is absolutely continuous on [0, π], v′′ ∈

L2([0, π]), v(0) = v(π) = 0}. Then, A generates a strongly continuous semigroup.
Let R(t)z := b(t)Az for t ≥ 0 and z ∈ D(A). By [5, Theorem 2.2], there exists a
resolvent operator (S(t))t≥0 on L2

G(ΩT , L
2([0, π])).

Moreover, for t ≥ 0, ξ, η ∈ L2
G(ΩT , L

2([0, π])), with ‖ · ‖ the natural norm with
respect to space L2([0, π]), we suppose that:

(i) there exists a positive constant Lg, rLg < 1, such that

‖g̃(t, ξ)− g̃(t, η)‖ ≤ Lg‖ξ − η‖,
(ii) there exists a positive constant Lf , such that

Ê‖f̃(t, ξ)− f̃(t, η)‖2 ≤ LfH(Ê‖ξ − η‖2),

(iii)

Ê‖h̃(t, ξ)− h̃(t, η)‖2 ≤ H(Ê‖ξ − η‖2),

Ê‖σ̃(t, ξ)− σ̃(t, η)‖2 ≤ H(Ê‖ξ − η‖2),

where H(·) is defined in (H2).

For x ∈ [0, π] and ζ ∈ C([−r, 0];L2
G(ΩT , L

2([0, π]))), we define the operators
f, g, h, σ : R+ × C([−r, 0];L2

G(ΩT , L
2([0, π])))→ L2

G(ΩT , L
2([0, π])) as follows

g(t, ζ)(x) =

∫ 0

−r
g̃(t, ζ(θ)(x))dθ, f(t, ζ)(x) =

∫ 0

−r
f̃(t, ζ(θ)(x))dθ,
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h(t, ζ)(x) = h̃(t, ζ(θ)(x)), σ(t, ζ)(x) = σ̃(t, ζ(θ)(x)).

If we put
u(t) = v(t, x), t ∈ [0, T ], x ∈ [0, π],

ϕ(θ)(x) = v0(θ, x), θ ∈ [−r, 0], x ∈ [0, π].
(5.2)

Then we can rewrite equation (5.1) in the abstract form

d(u(t) + g(t, ut))

= A(t)(u(t) + g(t, ut))dt+

∫ t

0

R(t− s)(u(s) + g(s, us))ds

+ f(t, ut)dt+ h(t, ut)d〈B〉t + σ(t, ut)dBt, t ∈ [0, T ],

u0(·) = ϕ ∈ C([−r, 0];L2
G(ΩT , L

2([0, π]))), r > 0.

(5.3)

By the continuity of f̃ , g̃, h̃, σ̃, it is clear that f, h, σ are jointly continuous on R+×
C([−r, 0];L2

G(ΩT , L
2([0, π]))) with values in L2

G(ΩT , L
2([0, π])). On the other hand,

by (i)-(iii), it is easy to show that all the assumptions of Theorem 3.3 are satisfied.
Therefore, there exists a unique mild solution of (5.1). Moreover, this solution
depends on the initial value by Theorem 4.2.
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