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EXISTENCE OF INFINITELY MANY SMALL SOLUTIONS
FOR SUBLINEAR FRACTIONAL
KIRCHHOFF-SCHRODINGER-POISSON SYSTEMS

JOSE CARLOS DE ALBUQUERQUE, RODRIGO CLEMENTE, DIEGO FERRAZ

ABSTRACT. We study the Kirchhoff-Schrédinger-Poisson system
m([u]3)(=A)%u+ V(z)u + k(z)¢u = f(z,u), =R’
(-8)%¢ = k(z)u®, z€R’,
where []o denotes the Gagliardo semi-norm, (—A)® denotes the fractional
Laplacian operator with «, 8 € (0,1], 4o 428 > 3 and m : [0, +00) — [0, +00)
is a Kirchhoff function satisfying suitable assumptions. The functions V()
and k(z) are nonnegative and the nonlinear term f(z, s) satisfies certain local
conditions. By using a variational approach, we use a Kajikiya’s version of

the symmetric mountain pass lemma and Moser iteration method to prove the
existence of infinitely many small solutions.

1. INTRODUCTION

In recent years, systems of the form
—Au+V(z)u+ ¢u= f(z,u), zR>

1.1
—Ap =1’ xcR3 (1)

have been widely studied by many researchers. In system , the first equation
is a nonlinear Schrédinger equation in which the potential ¢ satisfies a nonlinear
Poisson equation. In this context, it is well known the study of existence of solu-
tions for system by using variational methods, under suitable conditions. For
instance, we refer the readers to [I, [l 6] 19, 21] and the references given there.
Particularly, we call attention to the work by Bao [4], where it was studied the
existence of infinitely many small solutions for with sign-changing potential
V(x) and without require any global growth condition on the nonlinearity f(z, s).

We mention that a great attention has been focused on the study of problems
involving fractional Sobolev spaces and corresponding nonlocal equations, both
from a pure mathematical point of view and their concrete applications. In fact,
fractional Schrédinger equations naturally arise in many different contexts, such as,
obstacle problems, flame propagation, minimal surfaces, conservation laws, financial
market, optimization, crystal dislocation, phase transition and water waves. The
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literature is quite large, here we just refer the reader to the important works [13] 9]
and references therein.

There are some works concerned with the existence of solutions for the following
class of nonlinear fractional Schrédinger-Poisson systems,

(=AU + V(2)u + k(z)pu = f(z,u), =R,

(Ao = k(z)u?®, xcR3 (1-2)

where a, 8 € (0,1]. For instance, Liu [I7] studied the case when «,5 € (0,1),
V(z) =1, f(x,u) = [ulP~ u, k(z) = V(Jz|) and 1 < p < (3 + 2a)/(3 — 2a). The
author obtained the existence of infinitely many nonradial positive solutions for
, based on Lyapunov-Schmidt reduction. By considering a general nonlinear
term, Li [16], studied the case when k(z),V(z) = 1 and o, 8 € (0,1] with 4a +
28 > 3. The author has obtained the existence of non-trivial solutions based on
the perturbation method and the mountain pass theorem, supposing that f(x,s)
is a subcritical nonlinearity satisfying an Ambrosetti-Rabinowitz type condition,
precisely, there exists p > 4 such that

0 < pF(x,s):= ,u/os f(z,7)dx < f(x,s)s, forall (z,5) € RN xR. (1.3)

In a similar fashion, Duarte et al. [12] studied (1.2]) under more general conditions,
where it is assumed a positive potential V(z) is bounded away from zero, and a
general autonomous nonlinearity with 4-superlinear growth, namely inf cgs V(z) >
0,

F
lim (s = oo and the function s +— () is increasing for |s| # 0. (1.4)

oo 54 [s[3

For more works in this direction, we refer the readers to [25, 22 27]. To the
best of our knowledge, there are few works concerned with the class of fractional
Schrédinger-Poisson equations in the presence of Kirchhoff term with general

€ (0,1]. Here we cite [2], where the author used a minimax type argument to
prove the existence of a non-trivial solution for a fractional Kirchhoff-Schrédinger-
Poisson system in R? involving a Berestycki-Lions type nonlinearity.

Motivated by the above discussion, we study the existence of infinitely many
small solutions for the following class of fractional Kirchhoff-Schrodinger-Poisson
equations

m([ul2)(=A)%u + V(z)u + k(z)pu = f(z,u), = €R?, (L5)
(—2)%¢ = k(z)u®, =z €R? '

where «, 8 € (0,1] such that 4o+ 28 > 3 and (—A)® denotes the fractional Lapla-
cian operator which can be represented by the singular integral

(=A)*u(z) = C(a) P. V. /R Mdy,

s Jo—gfFeee

for u sufficiently smooth (see [13]). Henceforth, we omit the normalization constant

C(a). The term
fulw) —u()l? ;| \V2
o= (o L )
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is the so-called Gagliardo semi-norm of the function u. In Section [2] we give more
details about the fractional setting. In the present paper, k(z) and V(z) are non-
negative functions, where the potential V(x) is locally integrable. In addition, we
assume the following hypotheses:

(H1) k € L"(R3) U L*>°(R3) such that

6
4a+26 -3
r=r,=o00, ifda+206=3.

(H2) There exists 6y > 0 such that for the level set Gs, := {x € R? : V(x) < do},

r> = if da 420 > 3,

we have 0 < |Gs,| < 00, where | - | denotes the Lebesgue measure.
(H3) For each § > 0 and level set G5 := {z € R®: V(z) < &}, we have 0 < |Gs| <
0.

(H4) m(t) > mg > 0, for all ¢ € [0, +00).
(H5) There exist constants aq,az > 0 and to > 0 such that for some o >0

i
M(t) := /0 m(r)dr < ait + %2#’*2, for all t < t.

(H6) f € C(R? x [~d1,61],R) for some d; > 0 and there exist v € (1,2), u €
(3/(20),2/(2 — v)) and a nonnegative function £ € L*(R3) such that

|f(z,s)] < vé(x)|s|”™t, forall (x,s) € R® x [~61,81].
(H7) There exist o € R® and a constant 79 > 0 such that

F
liminf( inf @) > —00,
s—0 z€Br (z0) S

F
lim sup ( inf M

= 400
s—0 {L’EBTO (z0) 82 ) ’

where F(z,s) := [} f(z,7)dr.
(H8) There exists 6o > 0 such that f(z,—s) = —f(z,s), for all (z,s) € R3 x
[—02, d2].

From the nature of the problem, it is well known that system can be reduced
to a nonlinear Schrodinger equation with an additional nonlocal term (see Section
. This new term has forth order homogeneity and it is usual to apply variational
arguments for nonlinearities which behave like |s[P~2s, for 4 < p < 2% = 6/(3—2a)
by considering hypothesis or (see [III, 12 M6l 25] and the references
therein). In order to get the strictly inequality 4 < 2%, it is necessary to impose
the lower bound « > 3/4 in the fractional Laplacian operator. Differently from this
case, and similar ones, our assumptions (H6)-(HS8) allow the fractional parameter
« to vary in (0, 1] submitted only to condition (H1) (see [12]).

Another interesting feature of our assumptions is that the function £(x) in (H6)
may not be bounded (see Remark [1.2] (iii) below). Thus, the nonlinear term f(z,s)
may not be uniformly bounded in z. For this reason, unlike [4], we consider general
nonnegative potentials. However, we mention that our arguments also permit to
consider sign-changing potentials provided that £(x) is bounded. In fact, in this
case, under (H2) and(H3), we can assume inf cgs V() > —oo and Vj > 0 such that
V(x) = V(z) + Vo > 0, in order to apply our approach to the equivalent problem

m([u)2)(=A)u + V(z)u + k(z)du = f(z,u) + Vou, =€ R3,

[e3%
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(—A)¢ = k(x)u?, = eR3

In this new framework, it is possible to follow the arguments contained in the proof
of [l Theorem 1.1] and [28, Lemma 3.3], to get a suitable L>°-estimate, which is an
important part of our main result. To do this, it is crucial the use of a cut-off type
argument and the boundedness of £(z) to conclude that the truncated nonlinear
term fr(z,s) := (f(z,s) + Vos)h(s) is uniformly bounded. The main result of this
work can now be stated as follows.

Theorem 1.1. Suppose (H1)—(H8) hold. Then, system (1.5 has infinitely many
non-trivial solutions (un, ¢n)nen such that

1 oo 1 ) 1
M)+ [ Veydderg [

E(x) by, u? do — / F(z,u,)dz <0.
R3

R3

Moreover, u,, — 0 as n — 400.

We mention that our result extends some papers in the literature, since we
are considering a general class of fractional Kirchhoff-Schrédinger-Poisson systems.
Precisely, we deal with a class of potentials V' (x) under assumptions which induce
compactness of the corresponding Sobolev embedding, the nonnegative term k(x)
is bounded or belongs to a suitable Lebesgue space and we are assuming that the
nonlinear term f(x,s) satisfies only local conditions. To prove the existence of
infinitely many small solutions to ystem , we use a Kajikiya’s version of the
symmetric mountain pass lemma (see [14]). One shall also notice that the novelty
of our result also provides a regularity type result for ystem , showing that
the solutions have a priori L*-bound (see Lemma , which is crucial to obtain
more regularity for solutions of elliptic problems involving the fractional Laplacian
(see [§]). For this purpose, we use the a-harmonic extension jointly with a Moser
iteration method. To the best of our knowledge, there seems to be no similar results
in the current literature for the class of equations studied here, even in the local
case a = 3 = 1.

Remark 1.2. Now we give some remarks and examples of functions which satisfy
our assumptions:

(i) It is important to mention that the potential considered here may null in
nonempty interior sets of R3. This class of potentials is somehow inspired by
[24, B], where it first appeared for the local case. Examples of potentials which
satisfy (H2) and (H3) are given by Vi(z) = |z| + 1/|z| — 2 and Va(x) = |z, if
|x] > 1, and Va(x) = 0, if |x] < 1. We emphasize that our arguments are general
and thus, it allow many other classes of nonnegative potentials whose may go to
infinity as |z| — oo (see the local case [23]).

(ii) A typical example of m : [0, +00) — [0, +00) verifying (H4) and (H5) is given
by m(t) = mg + ast, az > 0, which is the one considered in the classical Kirchhoff
equation, see [I5]. More generally, the following function

k
m(t) =mo + azt + Z bit?,
i=1
with b; > 0 and d; € (0,1) for all 7 € {1,2,...,k} satisfies assumptions (H4) and
(H5).
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(iii) One can see that the following function satisfies conditions (H6)—(HS8). More
precisely, consider

£(z)|s|? sin?(|s[%), if # = (21, 29,23) € R? and 0 < |s| < 1,
B9 =10 if s =0

a primitive of the function f(z,s), where &(x) = |z|=¢ for 0 < d < 3/pu if |z < 1,
and &(x) = 0, if |x] > 1. We take ¢ > 0 small enough, 6 € (1+¢,2), § =1 and
v =6 — ¢. Notice that £ € L*(R3), for p € (3/2,2/(2 — v)).

The remainding of the paper is organized as follows: In the forthcoming section
we present some preliminary results and we set up the variational framework to
our problem. In Section [3] we prove the existence of a sequence of solutions for the
modified problem associated to . In Section |4} we introduce the a-harmonic
extension and we apply Moser iteration method in order to prove that our sequence
of solutions converges to zero in L°°-norm. Throughout this paper, the symbols C,
Cy, Cy, ...represent several (possibly different) positive constants.

2. PRELIMINARY RESULTS

In this Section we collect some basic results of fractional Sobolev spaces and we
introduce the variational framework of system (|1.5)). For 0 < a < 1, the fractional
Sobolev space is defined as

)2
R3—eL2R3// lulz) = ul)” 4 g < :
{U Rr3 JR3 |$—y|3+20 vy +OO}
For u,v € H*(R?), we define

/R3 /R o ))ﬁ;}gl —2W) g, qy.

It is well known that H*(R?) is a Hilbert space when endowed with the standard
inner product

(u,v) = (u,v)q —|—/ uv dx,
R3
and the correspondent induced norm

1/2
l[ull o rey = ([l + Hu”%%R?’)) -

To introduce a variational approach to our problem we define the suitable subspace
of H*(R3),
E:={ue H*R%: / V(z)u® < 00},
R3

In view of assumptions (H2) and (H3) it is not hard to check that E is a Hilbert
space when endowed with the inner product

(u,v)g = (U, v)o + /}R3 V(x)uw dx,

and the corresponding induced norm ||u|? = (u,v)g (see Proposition [2.2). For
u € E and a subset Q C R? we denote

2
ul|? ::/ dedy—i—/Vﬂ;ugdx.
= [ ] [ Vi)
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For any 3 € (0, 1), we recall the homogeneous fractional Sobolev space D%2(R3) as
DP2(RY) = {u € L2 (R%) : [u]s < oo},

which is the completion of C§°(R?) with respect to the norm

1/2
, = —A)P2y2d .
fullpsqes) = ( [ 1020l )
We recall that 27 := 6/(3 — 2f3) is the critical Sobolev exponent for HP(R?).

Lemma 2.1. For any 3 € (0,1), the space D?2(R3) is continuously embedded into
L% (R3); that is, there exists Sg > 0 such that

(f 1
R3

For a more information about fractional Sobolev spaces we refer the readers to
[13]. Next we prove an embedding result involving our space of functions.

i 2/2;
2 dm) ‘< Sg /R3 (=AY 2u2dz,  for all u € DP2(RY).

Proposition 2.2. If (H2) holds, then E is continuously embeeded into H*(R?). In
addition, if (H3) holds, then E is compactly embedded into LP(R3), for p € [2,25).

Proof. We start by proving that E — H%(R3), i.e., there exists C > 0 such that
[ull7a gsy < Cllull?, for all u € E. To do that, we use Holder inequality and Lemma
2.1l to see that

/ u?dr < |950|2Wa5a[u]i, for all u € H*(R?).
Gsg

By using this estimate, assumption (H2) and the fact that V(z) is nonnegative, we
have that
1 1 o
flul|? > f[u]i+—|g§0|—2ﬁ5;1 uzdx+50/ u? dz + V(z)u? dz
2 2 Gso R3\Gs, Gso

> CllullFoge)s

where C' = min{1/2, (1/2)|Gs,|~2*/V S, !, o}, which implies the continuous embed-
ding.

Now we prove the compact embedding E <» LP(R3), for 2 < p < 2%. Let
(un)nen C E be such that u, — u weakly in E. In view of an interpolation
inequality, it suffices to show that u, — u strongly in L?(R3), up to subsequence.
To prove this fact, we claim that for any € > 0, there exists R > 0 such that

/ u?dr <e, foralln €N (uniformly in n), (2.1)
R3\Bg

where Br denotes the open ball with radius R centered at zero. In fact, let us
consider p € (1,3/(3 — 2«)) and constants M,C > 0 satisfying

isupHu << and ”“”%w] <cC
M pen' " 2 wernfoy - lul> 1T
On the other hand, note that there exits R > 0 such that
S ’ 1 1
zeR3\Br:V(z) < M} < [————]7, where -+ — =1
e € B\ B V() < MY < [ e
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If A={r €R*\Br:V(z) > M} and B = {r € R*\ B : V(x) < M}, then one
has
/u2 dx<i/V(z)u2 dac<iSUlpHun||2<E
A " - M A " _MnEN 2’
13

a a
/ u? dz < |B|¥’ ||un||2L2p(BR) < C|B|7 sup ||lun|?® < 5
B neN

which proves (2.1). Let 6 = lim,, oo ||un|\%2(R3). By the semicontinuity of the norm
we have ||u||2L2(R3) < 6. On the other hand, using (2.1)) and the fact that u, — u
strongly in L?(Bg), we see that

leulZe sy = lulZeqza) + lllZe o2y
> nh_{lolo [HUnH%Z(R’d) - ||u7l||L2(R3\BR)}
>0—e.
Therefore, [[ul|7>gs) > 0, which implies that [[upl|7sgs) — [lull72gs), up to a
subsequence.

For any u € HY(R3), let L, : D?2(R?) — R be the linear functional defined by

L,(v) = . k(x)u?v da.

By using (H1), Lemma and Holder inequality we deduce that

(@)oo @) 1l i oy 101 25 gy 3 K € L2°(RE),

ILu(v)] < D
" )l oyl g ol 25 g 3 B € L (RP),

(2.2)
for all v € D?2(R?), where loo = 2-25/(25 — 1) and I, := 12r/((3 + 2a)r — 6).
Condition 4o 4+ 38 > 3 implies that 2 < l,l, < 2%. It follows from (2.2)) that

L, is continuous. Thus, in light of Lax-Milgram Theorem, there exists a unique
¢ € DP2(R?) such that

/ (=AY 20, (=A)P Py de = k(z)u?vdz, for all v € DP2(R?), (2.3)
R3 R3
that is, ¢, is a weak solution of the problem
(=AY o, = k(x)u?, = eR
It is well known that the following representation formula holds
k(y)u?(y) 3
w(T) = — " dy, for allr € R,
¢u(x) Cg/]RS P27 y, for allx
which is called -Riesz potential, where
_ T(3-20)
VT WA ()
Since we only required local assumptions on the nonlinear term f(z, s), we use
a cut-off argument similar to the one introduced in [I4]. Let us consider 0 <

r < (1/2) min{dy,d2,1}. We define an even function h € C*®(R,R*) such that
0 < h(t) <1, h(t) =1 for [t| < r, h(t) = 0 for |[t| > 2r and h is decreasing in
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[r,2r]. Let fn(z,u) = f(z,u)h(u) and Fy(z,u) = [’ fa(z,t)dt. We introduce the
modified problem
m([u]s)(=A)%u+V(z)u + k(z)pu = fr(z,u), =R’
(=AP¢ = k(z)u?, zeR>.

Replacing ¢ by ¢,, in the first equation of (2.4]), we obtain the fractional Kirchhoff-
Schrédinger equation

m([u)2)(=A)%u + V(2)u + k(z)pyu = fr(z,u), z &R (2.5)

[e3%

(2.4)

Problem (2.5) admits a variational formulation and its solutions are the critical
points of the energy functional

Iy (u) = %M([u]i) + %/RB V(z)u®dx + i . k(z)puu® dz — /]R3 Fp(z,u)dx.

It follows from (H6) that
|fn(z,s)| < vé(x)|s|*™t, forall (z,s) € R® xR, (2.6)
which implies that
|Fy(z,8)| < &(x)|s]”, for all (z,s) € R® x R. (2.7

Let us define p* := vp/(p—1). Since v € (1,2) and p € (3/(2a),2/(2—v)) we have
that p* € (2,2%). Hence, for any u € E, it follows from (2.7)), Holder inequality
and Sobolev embedding that

|[Fn(, w) de < [1€]l ) el e gsy < O™ W)€ e ooy Jull” < +-o00.
- (&)

Therefore, I, is well defined.

Definition 2.3. We say that (u, ¢,) € H*(R?) x D?2(R3) is a solution of (2.4) if
u is a weak solution of (2.5)); that is,

m([u]?)(u,v)a +/ V(z)uvdx +/ k(x)pyuvde = fn(z,u)vde,
R3 R3 R3
for all v € E.

Note that if u is a critical point of the functional I}, and |lu g ®s) < 7, then u

is a solution of (|1.5)).
3. KAJIKIYA SYMMETRIC MOUNTAIN PASS LEMMA

Let X be a Banach space and I" be the family of sets A C X \ {0} which are
closed in X and symmetric with respect to the origin, i.e. x € A implies —x € A.
For A € T, the genus v(A) is defined as

Y(A) =inf {N € N: 3 € C(A, RV \ {0}) with ¢(—z) = —¢(2), for all z € A}.

If there is no mapping as above for any N € N, then y(A) = +oo. Here we
summarize the properties of genus whose will be used in the proof of Theorem
A detailed proof can be found in [20].

Proposition 3.1. Let A, B € I' C X\{0}. Then, the following properties hold:

(a) If there is an odd homeomorphism from A to B, then vy(A) = ~(B).
(b) If SN=1 is the unit sphere in RN, then v(S¥~1) = N.
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Definition 3.2. Let X be a Banach space, (u,)nen C X be a sequence and J :
X — R be a C! functional. We say that (u,)nen is a Palais-Smale sequence at
level ¢ € R, if

J(un) — ¢ and  J'(u,) — 0. (3.1)
We say that J satisfies the Palais-Smale condition at level ¢ € R, whenever any
Palais-Smale sequence at level ¢ € R admits a convergent subsequence.

To prove the existence of infinitely many solutions for system (|1.5]), we use the
following version of the symmetric mountain pass lemma which is due to Kajikiya,
see [14].

Theorem 3.3. Let X be an infinite dimensional Banach space, T'y, be the family
of closed symmetric subsets A C X such that 0 ¢ A and the genus v(A) > k,
J € CY(X) be an even functional such that J(0) =0 and

(H9) J is bounded from below and satisfies the Palais-Smale condition;
(H10) For each k € N, there exists an Ay € Ty, such that sup,,¢ 4, J(u) <O0.

Then, J admits a sequence of critical points (un)nen such that J(u,) <0, u, # 0
and limy,_, { o uy = 0.

In the following, we prove that Palais-Smale sequences for I}, satisfy the proper-
ties (H9) and (H10) required in Theorem [3.3

Proposition 3.4. I, is bounded from below.

Proof. For any u € E we introduce the set Q, := {z € R3 : |u(z)| < 1}. By the
definition of h we have

/RS Fi (e, u) de = / Fi(, u) da.

QU/
Hence, in view of (H4), (2.3)) and (2.7)) it follows that
1
) = P+ 5 [ Vetdo- [ g@llas
2 2 Jgs a,
Thus, by using Holder inequality and Sobolev embedding we obtain
. mo 1 * v
() > min {720 23l — Ot v)€l ol (32)
Since v € (1,2) we conclude that Ij, is bounded from below. O

Lemma 3.5. If (uy)nen s a Palais-Smale sequence for Iy, then (uy)nen 18 bounded
in F.

Proof. Tt follows from (3.1) and (3.2)) that
. mo 1 * v
€ > Iyfone) = min {52, 2, — O, )€l e e

where Q,, := {z € R® : |u,(2)| < 1}. Since v € (1,2) we conclude that |[u,|q, <

)
Un,

C, where C does not depends on n € N. Moreover, by using (2.7) we deduce that
1 1
- [M([un}i) + / V(z)u? dz + = / k(z) ¢, u? dx]
2 R3 2 R3

< In(un) + O™ )€l e @s)llunlls,, -

Un
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Since [|unllq,, < C and I (u,) < C we have

s M )+ [ Ve [ ke, <c.

where C does not depends on n € N. The above boundedness together with (H4)
implies that

1 1
C> 3 [M([un]i) + / V(x)u? dz] > min {%, §}||un||27
R3
which implies that (u,)nen is bounded in E. O

In view of Proposition and Lemma, we may assume, up to a subsequence,
that

Uy, — u  weakly in E;
u, —u strongly in LP(R?), for p € [2,2%);
un(x) — u(x) almost everywhere in R3.

By using generalized Holder inequality we deduce the following convergences:
k|| Lo u ol — ull e — 0,
| )y tn (11, — ) dz| < *l| oo [ G | 25 et | toe fletm = ]l
1kl 2

as n — +oo. Thus, we conclude that

lim E(2)(du,, un — Pyu) (un, —u)dz = 0. (3.3)

n—-+oo R3

sllunll e lun = ull i — 0,

Moreover, by using (2.6)) and generalized Holder inequality we obtain the estimate
| [ () = ) =)

< wllun 12 gy + Tl g IEl ol — e ),

which together with the fact that p* € (2,2%) and Proposition implies that

lim (fn(z,upn) — frlz,u))(u, —u)de =0. (3.4)

n—+oo Jps
Proposition 3.6. I, satisfies the Palais-Smale condition.
Proof. 1t follows from and the weak convergence that
(I'(up) — I'(u), uy — u) = 0,(1), (3.5)
where o0,, denotes the standard “little o notation”. On the other hand we have

(I (un) = I' (), up — u)

= m([un]?) (Un, tn — w)a — m([u]?) (U, wn — u)o + o V(2)(un —u)? da

4 [ K@) 0,0 = du)n = w)do = [ (o) = foler, ) — ),
R R
which together with (3.3) and (3.4) implies that

<I/(un) - Il(“)?”ﬂ —u) = m([un]i)(umun —U)a — m([u]i)(u,un —U)a

) (3.6)
+ /]R:5 V(z)(uy — u)® dz + 0, (1).
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Notice that

m([un]i)(um Up — U)o — m([u]i)(m Uy — U)o

= m([un]a)fun — ulg, + (m([un]3) — m([u]2)) (u,un — u)a.

(3.7)

Since (up)nen is bounded in E and m is a continuous function, there exists A > 0
such that m([u,]2) — m(A). In particular, (m([u,]?))nen is bounded. Thus, by
weak convergence one has

(m([un}i) - m([u]i)) (U, Uy, — U)o = 0 (1). (3.8)
It follows from (H4), and that
m([un]i)(un,un — U)o — m([u]i)(wun — U)o > moluy, — u]i + on(1). (3.9)

Combining , and we conclude that

0, (1) > min{mg, 1}||u, — ul|* + 0. (1).
Therefore, u,, — u strongly in £ which completes the proof. ([l
Lemma 3.7. There exists a sequence of non-trivial critical points (uy)nen for I.

Proof. The idea is essentially due to [I4, Theorem 2] but for the reader’s convenience
we provide the proof here. For simplicity, we assume that xo = 0 in (HT7), that is,
there exists a constant rg > 0 such that

liminf< inf F(z,s)
5—0 xEBTO 82

F
) > —oo and limsup< inf (1;’ S)> = +00.
s—0 TEBr S

In the following we denote

C:= {($1,$2,$3> eR3: —%0 <gz; < %O, where 1 <3 < 3}.

By (HT7), there exist constants 9,¢ > 0 and two sequences of positive numbers
¥, — 0 and M,, — +00 as n — +oo such that

F(x,u) > —eu?, forall z €C and |u| <9, (3.10)
F(z, o,
(Z;; ) > M,, forallzeCandneN. (3.11)
n

Fix k£ € N arbitrarily and let p € N be the smallest integer satisfying p* > k. We
divide C equally into p? cubes by planes parallel to each face of C and we denote
them by C;, with 1 < i < p3. Thus, the edge of each C; has the length of a = 7o /p.
For each 1 < i < k, we make a cube éi C C; such that éz has the same center as
that of C;, the faces of C; and C; are parallel and the edge of C; has the length of
a/2. Now, we define a continuous function p : R — R such that

a a
t)=0 forteR\[-=, =
p)=0 fortc®\[-5, ]
a a
=1 forte[-2%
p)=1 forte[-5.]
a a a a
<p(t)<1 f _E Oy ey
D<o <1 forte (-0 YUl Y
Define 7; : R3 — R such that 71 (2) = p(z1)p(22)p(x3). For each 1 <i <k, let y;
be the center of C; and set ny,(z) = ni(x — y;) for all z € R3. Tt is easy to check
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that, for each 1 <4 <k, 0 <, (z) < 1forallz € R3, suppni, C C; and ny,(z) =1
if x € C;. Set

_ k. | —
Ve ={(t1,...,tx) €R .lrgz;gck|tz| 1},

k
Wie = { D tim, : (tr,-., 1) € Vi)
i=1

Since Vj is the surface of the k-dimensional cube, it is homeomorphic to the sphere
S¥=1 by an odd mapping. By Proposition we have (Vi) = k. If we define the
mapping ¢ : Vy — Wy by

k
C(th .. ’tk?) = Ztinliv
=1

then ¢ is an odd homeomorphism between Vj, and Wi, which implies that v(V) =
~v(W4). Since Wy is compact, there exists a constant Cy > 0 such that ||ul] < Cy
for all u € Wy. Thus, using (H5) and (2.2)), for any 8 € (0, min{d,¢,/Ck}) and
k
w=>_._,tm, €Wy we have
,82

I(B0) = M) + 5 [ Vit as

+ %2 /}R:3 k(z)¢yu? dz — /11%3 Fy, (x,ﬁitmh) dz

a2 o g
< B2Culull* + 587 |

(3.12)

k
T B2 Colbull izl — 3 /C Fy (e, Btom,) da.
i=17Ci

On the other hand, by the definition of Vi, there exists some integer 1 < i, < k
such that |t;,| = 1. Then

k
Z/ Fh(xaﬂt’inli)dx
i=17Ci

).

Fh(x7ﬁtinli)d$+/ Fy(z, Btim,) do + Z/ Fy(z, Btim,) da.
Ci

i Ciy\Ciy, iy
Observe that by (3.10)),
/  Fu(x, ftim,) do + Z / Fy(z, Btimy,) doz > —erd 52, (3.13)
Ciy \Ciy i Ci
where we used that the volume of C is r§. We have [J,t;,m, (x)| = ¥, for all

T € C;u and the volume of C;“ is a® /8 . Since ¥,, — 0, we assume that there exists

ng € N such that ¥, < min{d,ty/Cy} for all n > ngy. Thus, using (3.11)), (3.12)
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and (3.13)) with 8 = 9,, we obtain
I(up) < Cs02 (Jlull® + 95 [|ull 72 + | pullps.2 @) ull® + ergd)

- Fp(z,0,t;m,) dx
/C;-u h( nznl,,) (3.14)
a*M,,
< Gt ([lul® + V51l 7+ + [ gullponaen ull® + erf — ),

where u,, = ¥,u. Since u € Wy, one has
|pullps2(msy < Callul] < CyCk.

Since ¥,, — 0 and M,, — +o00 as n — 400, we can choose n € N large enough such
that

3M,
CF+V5CT™ + CuCl + e — =
This implies that the right-hand side of (3.14)) is negative. To complete the proof,
we define

< 0.

A = {Unou:u € Wi}.

Thus v(Ax) = vy(Wx) = k and sup,,¢ 4, In(u, @) < 0. Thus, all the conditions of
Theorem are satisfied. Therefore, there exists a sequence of non-trivial critical
points (uy, )nen for I,. O

4. MOSER ITERATION METHOD

In this section, we focus our analysis for the case 0 < a < 1, since the local
case o = 1 can be treated similarly as [4] [28]. For the reader’s convenience, before
we prove our regularity result, we introduce some preliminary concepts about the
a-harmonic extension (see [I0]). We point out that our arguments are local and, for
this reason, we are able to apply this technique to transform our nonlocal problem
into a local one.

For 0 < o < 1 we define the space X as the completion of C§° (Ri) with respect

to the norm

1 1-2a 2 1/2
lw] xe = [— y |Vwl dxdy] ,
Rq Ri

where ko, = (2172°T'(1 — a))/T(«) and T is the well known gamma function. By
[26], the space X is well defined and there is a continuous trace operator Tr :
X — D*?(R?); that is, there exists C' > 0 such that || Tr(w) | pe.2@s) < Cllwl|xa,
for all w € X*. When w € C(R%), we have Tr(w)(z) = w(z,0), and because of
that we also use the notation w(-,0) = Tr(w). It is also worth to call attention that
considering the continuous Sobolev embedding D*?(R3) < L% (R3), we obtain
that [|w(+,0)|20 < C|lw||x«, for all w € X«

Given u € D*%(R3), we call w = E,(u) the a-harmonic extension of u, the
unique solution of the minimization problem

. { 1 /
min § —
Ko R

We have that E, is a well defined operator acting on D*?(R?) into X“. Moreover,
by [7, Lemma A.2], E, is an isometry, precisely ||Eq(u)|[xe = ||| pa.2(rs), for all

y' 72| Vw|? dzdy : w € X* and w(-,0) = u on RS}.

4
+
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u € D*2(R3). We also have that E,, satisfies
div(y'?*Vw) =0 inR%,
1

75 yli%{r y172awy(x, y) = (—A)o‘u(:zr) in RS;

in the weak sense, more precisely

1

— [ Y TIVE,(u), Vi)dady = / (—A)2u(—A)*/2p(-, 0) da,

Ko Jri R3

for all ¢ € X*. Consequently we see that u is a weak solution for (2.5)) if, and only
if, w = E,(u) is a weak solution for the problem

div(y' **Vw) =0 in R},
(4.1)

20

—— dim_y 2wy (2, y) = glo,ulx)) in R,

Ka y—07t
where g(z,u) = fr(z,u) — V(z)u — k(x)p,u; that is,

= [ vV EL ), Vuldedy = [ (fule0) - Vie)u— K)o (,0) da.
Re Ri R3

for all vy € X®. In the following lemma, we show that a sequence of critical
points of Problem converges to zero in the L*°-norm. Our proof is based
on the Moser iteration method, a delicate estimate which take into account the
a-harmonic extension and a suitable interpolation of Lebesgue spaces.

Lemma 4.1. Let (un)nen be a critical point sequence of Iy, satisfying u, — 0 in
E, asn — +oo. Then, |[un| o ®s)y — 0 as n — +oo.

Proof. We first recall that w is a weak solution to (4.1)) if w satisfies the equality

m([w(no)]i)/

Ra

v V) dady = [ glauCo)eds, (12)
4 R3

4

for any ¢ € X We set w = Ey(up), u = up, = w(-,0) and g(z,w(-,0)) =
fr(z,u) = V(x)u — k(x)pyu. For each L > 0 we define wy, := min{w, L} and
consider ¢ := w#w € X, where § > 0 will be chosen later. By using v as test
function in (4.2) we obtain

m([ul;

o) [/ y 72w | Vw|? dedy + / 20y ~2w?2? | Vw|? dxdy]
Ra R4 w<L
+ fwst} (4.3)
= fn(x, w)uPuds — V(z)u?u? do — k(x)pyuu?® da.
R3 R3 R3

Taking into account (2.6)), (4.3) and using Holder inequality we deduce that

/ y' 2w Vw|? dedy < V/ E(z)uuf’ da
Ri R3 (44)
< p a2
< VH£||L (RB)HU L ”Lﬁ(RS)

Mo
Ka

Let us denote wy, = wwf. Following [3, Lemma 4.1], one has

et

[0 )55 oy < 4500+ 1D [ o' 0 [Vuldody. (4
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Using (4.4) and (4.5) we deduce that

L (-, 0) 7 2 sy < CO+ 1) E]| (g 0w 29||29+”1 =)’ (4.6)
Now, by passing to the limit as L — +oc0 in (4.6]), Fatou’s Lemma yields
204v
HUHL("“)Z 5 (R3) < C’(e+1> (0 + 1) CE3Y) ||“||szlﬂ)§s), (4.7)

where a,, = 1(20+v)/(u—1). For each n € N, define (0,1 +1)2 = pu(20,+v)/(p—
1). Since u > 3/(2a), it follows that 6, is positive, increasing and unbounded. Thus,
set

= In(co(B: +1)) 20+
Cn:; /61+1 and o, = H2/61+2

Notice that ¢, and o, are convergent sequences (see also [I8, Lemma 3.4]) with
¢n — ¢>0and g, — o€ (0,1). We can now iterate (4.7 to obtain

1wl Lien+v/u-1) @3y < eon ||u||‘£2*(R3), for all n € N. (4.8)

Letting n — 400 in (4.8) follows |jul|pee(ms) < QCHU||L*(R3)~ Therefore, u,, — 0
strongly in L>°(R3) as n — +o0, which completes the proof. (I

Remark 4.2. Note that for the local case a = 1, estimate (4.6) can be directly
obtained by the continous Sobolev embedding H*(R?) — L%(R3).

Proof of Theorem[I.1. We now look back to the modified problem (2.4). In Section
we applied Theorem - to guarantee the existence of a Sequence (un)neN of
critical points for the functional I;. Hence, in view of Lemma there exists
ng € N such that (u,,®,, ) is a solution for , for all n > ng, from which the
assertions of Theorem [[1] follows. O
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