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NECESSARY AND SUFFICIENT CONDITIONS FOR

HYPERBOLICITY AND WEAK HYPERBOLICITY OF SYSTEMS

WITH CONSTANT MULTIPLICITY, PART 1

GIOVANNI TAGLIALATELA, JEAN VAILLANT

ABSTRACT. We consider a linear system of partial differential equations, whose
principal symbol is hyperbolic with characteristics of constant multiplicities.
We define necessary and sufficient invariant condition in order the Cauchy
problem to be well-posed in C*°. These conditions generalize the Levi condi-
tions for scalar operators. The proof is based on the construction of a new non
commutative determinant adapted to this case (and to the holomorphic case).
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Let = (x9,2") = (w0, 1, ...,7,) € Q, and Q be a neighborhood of 0 in R™*1.

We consider an N x N linear first order system of differential operators

h(z, D) = a(z, D) + b(x),
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2 G. TAGLIALATELA, J. VAILLANT EJDE-2019/130
where D = (Do, D’') = (D, Dy,...,Dy), Do = 3%, D; = % a(z,€) is the
principal symbol of h, £ = (£0,&") = (£,&1,.-.,&n), a and b are N x N matrices
with analytic coeflicients.

In the proof of the necessity part, we suppose the coefficients are C* [25]. We
consider the Cauchy problem, for h,

h(z, Dyu(z) = f(z),

= ug(x').

(1.1)

|wo:@

Definition 1.1. The operator h is called hyperbolic if the Cauchy problem (1.1
is uniformly well-posed in C*(2), see [17].

In the analytic case, let O[¢] be the ring of homogeneous polynomials in £, with
coefficients from the ring of analytic germs in x at x = 0, and let MN(O[f]) be
the set of the N x N matrices, whose entries belong to O[¢]. In O[¢] we have the
decomposition

deta(x;€) = H{" (25€) - Hyy ° (3€). (1.2)
where H., 7 = 1,..., 7, are irreducible polynomials, homogeneous of degree s, in
¢, with analytic coefficients in z, and my,...,m, € N do not depend on (z,¢&) €

Q x R™\ {0}.

We assume that det a(z;€) is a hyperbolic polynomial of constant multiplicity:
the polynomial Hj --- H, is strictly hyperbolic with respect to (1,0,...,0) for any
x € Q, i.e. the solutions in &y of the equation

H1(x;§0,§/) T HTo(m;é-OuS/) =0

are real and distinct for any (z,¢&’) € Q x R™\ {0}. This assumption is equivalent
to the decomposition
deta(z; ) = ] (& — Ag)(a: €)™,

j=1

where the A(;)’s are real analytic functions with

inf Ay (z: € = Xy (23 € 0,
. ‘g,‘zlvj#\ o (@3 €') = Ay (2:€)] #
and the m;)’s are constant integers (see [15]).

To simplify the presentation, we assume that in (1.2 there is only one multiple
factor H, of degree s and multiplicity m, and a simple factor K, of degree x. The
general case can be treated in a similar or equivalently way.

det a(z;€) = (& — Ay (@:€))™ -+ (0 — Ay (: €)™
X (€0 = A1) (25€)) -+ (€0 = Mo (2:€1)) -

We consider the problem: What are the conditions on a and b in order for h to
be hyperbolic?

To answer this question, we use a set of conditions (L) previously defined in [26].
Before to state them, we recall some notation.

Let (H) be the prime ideal of O[{] defined by H, we consider O[] =
O[¢]/(H), the localized ring of O[¢] with respect to (H). Om[€] is a principal
ring, whose elements are the fractions whose denominators are not divisible by

(1.3)
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H; its ideals are generated by the powers of H. In O¢g)[¢] the matrix a(z,§) is
equivalent to the diagonal matrix:
diag[H?, H™,...,H" 1,...,1],
where p, g1, ..., q are such that
pz2qpz2-2q@>0, prg=m, ¢=qa+--+q.

The sequence (p,qi,-..,q¢) will be called the type of the operator. In other
words, the minors of a of dimension m — k are divisible by H%+ %4 [4] §4 no. 6,
Prop. 6]. Let A be the cofactor matrix of a, so that

aA =Aa=detal = H"KlIy . (1.4)
Since A is divisible by HY, we set
1

The entries of 7 (z;¢) are polynomials in &, with analytic coefficients in 2, homo-
geneous of degree g := ps + x — 1. From (1.4]), we have

aof = o/a=HPKIy. (1.5)
We denote

o fro vt (Zlgkgjqk—j)s, for0<j<¢,
’ po +jv + (g —0)s, forj >/4+1,

where v := s+ x — 1.

For a scalar or matrix-valued differential or classical pseudo-differential operator
A (x; D), of order < v, we denote by A = ¢, (A’) the homogeneous symbol of order
v, which is equal to the principal part of A’, if A’ is of order v, and 0 if not. It
is clear that o, is an additive function. Conversely, to a matrix symbol A(z;¢)
of polynomials or homogeneous symbols of order v we associate matrix valued
operators denoted by A’(z; D) so that o, (A") = A. If A(x; &) is scalar, we associate
to A a matrix operator A’(x; D), such that o, (A") = Aly, Iy being the N x N
identity matrix.

Thus, for example, H' is any N x N matrix operator of order s such that os(H') =
HlIy, K' is any N x N matrix operator of order x such that o, (K') = Kly, &/’ is
any N x N matrix operator of order pg such that o, (') = .

We are ready to state conditions (L), which are defined by induction.

(L1) There exist differential operators o', H', and K’, and a symbol A;(x,&) €
Mn (0[5]) whose entries are homogeneous of degree pq in € such that

S()EMJMO(}L%/—HWK/):Hp_qlAl. (16)

In other words, using the division algorithm by the hyperbolic polynomial
HP~% we have

So=H'"" A + 1Ty,
and condition (L;) is equivalent to 77 = 0. Thanks to (|1.6) we have

ahy = H" Ko, (het' — HPK') .
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Assuming (L) is satisfied and 7', H', K’, A| chosen, there exists As(x, &) €
M (O[€]) whose entries are homogeneous of degree y in € such that
S1=do,, (hA] —ha'H"K' + H'K'H'" K') = HP "% A, .

Here also, using the division algorithm by the hyperbolic polynomial HP~
we have

S1=HP 2 Ay + 1T,

and condition (Ls) is equivalent to Th = 0.

Assuming conditions (Ly), ..., (Ly—1) are satisfied, there exists a symbol
Ay(x,€) whose entries are homogeneous polynomial of degree u, with ana-
lytic coefficients such that

Sp1= Aoy, 1 (hA, | — hA, JH'“ 'K + ...
+ (_I)Zflh%/H/qlK/HIQ‘zK/ o H/qz*lK/
+ (-)'HPK'HK' .. H'" 'K') = HP~9A,.
As before, we have
Se—1=H"" " N+ 1T,

and condition (L) is equivalent to Ty = 0.

Assuming (L1), ..., (L) are satisfied, there exists a symbol Ayyq(z,§)
whose entries are homogeneous polynomial of degree 11 with analytic
coefficients such that

S = oo, (hAg —hA, H'K' + ...
+(-1)‘he’'H'"K' ... H'"K'
L (D HHPR HT K H"”K')
=HP 1A, .
As before, we have
Sg=HP7U 2 Npyy + Ty,

and condition (Lg41) is equivalent to Tyy1 = 0.

Assuming conditions (Lj), ..., (Ly/—1) are satisfied, there exists a symbol
A (2,€) whose entries are homogeneous polynomial of degree g, with
analytic coeflicients such that

Sy 1 = Aoy, 1 (hA;n,l L —hA

my—oH' K + ...
+ (=)™ "' HPK' .. H'Y“K'(H'K')™ 1
F ()™ HPKHT K. H"”K’(H’K)ml‘é‘l)
= HP7'AL,.
my
As before, we have
Sy —1=H"""% Ny + Tt

and condition (L) is equivalent to T),,; = 0.



EJDE-2019/130 NECESSARY AND SUFFICIENT CONDITIONS FOR HYPERBOLICITY 5

Definition 1.2 ([27]). m) is the smallest integer such that all conditions (L),
with m{ > m], are consequences of conditions (L), ..., (Lyy).

The number mj} is made precise by the study of Newton’s diagram and the
Gevrey index (cf. §4.1). Note that Conditions (L) are invariant, since they are
defined on principal symbols.

Proposition 1.3. Conditions (L) do not depend on the choice of the operators H',
K, o N, ..., N

m/—1°

This proposition and Proposition [2.:4] below, have been proved in the case p = m
(or £ = 0) in [25] Chap. II]. The proof in the general case require only some
additional technicalities.

Remark 1.4. As a consequence of Proposition choosing H' = H(z,D) I,
K' = K(z,D)I, &' = o/(x,D), ..., we can express conditions (L) explicitly as
differential relations between the coeflicients of h, by using calculus of the symbols
and elementary calculus of division.

Remark 1.5. If m = 2 conditions (L) reduces to the single (L;), and this condition
is equivalent to the cancelation of the subcharacteristic symbol on the characteristic
manifold [[7, 22, [24):

1
ASA+ 3 A-{H,A} isdivisible by H .
The case ¢ = 0 (¢ = 0) is well-known, see [25] [9] and the references therein.

Remark 1.6. The sufficiency of conditions (L) were studied in [28], and a more
precise proof will be obtained by the present method.

The necessity of conditions (L) has been stated up to multiplicity 5 in [27]. For
the necessity we assume only that the coefficients are in C*> .

In the complex domain these conditions characterize the solutions with polar
singularities on the characteristic manifold when the data have polar singularities.

Theorem 1.7. We assume { = 1, that is a is equivalent in O(m[€] to the diagonal
matric

diag[H?, H9,1,...,1],
where p,q are such that
p=2q¢>0, ptg=m.
(1) Assuming that the coefficients are C*°, Conditions (L) are necessary to the
hyperbolicity of the operator h.
(2) Assuming that the coefficients are analytic, Conditions (L) are sufficient to
the hyperbolicity of the operator h.
(3) Assuming that the coefficients are analytic, Conditions (L) are partially
satisfied and h is weakly hyperbolic, we obtain existence and unicity of the
solution in a Gevrey class which will be made precise later.

Definition 1.8. An operator A’ with principal symbol A is defined as
A/:d’H’q+d{+...+%’+...+%&_17

where Jz{j' is a differential operator of order N — j — 1 that we can assume homoge-
neous.
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Also we define
k=hoA =(a+0b)oA.
Then we obtain
k=K H™+K{+ - +K,+ -+ Ky,

where K/, is a differential operator of order N —w that we can assume homogeneous.

2. MICROLOCALIZATION AND STRATEGY OF THE PROOF

To prove Theorem [I.7] we first reduce h to a simple form thanks to the following
Proposition, which allows to block diagonalize h (cf. Kajitani [10]).

Proposition 2.1 (Separation of the characteristic roots). For any (xg,&) € € X
R™\ {0} there exists a conical neighborhood I' = I'(z0,&o) and a pseudo-differential
operator A(x,&’) such that

hoA=Aoh, mod S™>(T),

where h is block diagonal, each block corresponding to a characteristic root (cf.
(1L.3)):
h=h @ - Qhs@hs41® - @ hgpy,
where
o for1 <j<s, Ej is the m X m operator
}Nlj =1,,Dy— 53'(33, D/) +gj (.13, D,),
a; has the unique eigenvalue \j(z,&'), and bj(x,D’) is a m x m operator
in D' of order <0,
o for j > s, h; is the scalar operator
TL]‘ =Dy — )\j(l‘7 D/) —&—Ej(m, D/)
and bj(x,D’) is a scalar operator in D' of order < 0.

To prove Theorem [I.7] a more refined reduction is needed. The normal form by
Arnold-Petkov [11, [19] 12} 25 [13] is stated as follows.

Proposition 2.2. There exists an analytic set & C Q x R™\ {0} of codimension
less than of equal 1 such that for any (zo,&) € (2 x R™\ {0}) \ & there exists a
conical neighborhood T' = T'(xg, &) C (2 x R™\ {0}) \ &, and a pseudo-differential
operator A(x, &) such that

hoA=Aoh, mod ST\ %),

where h is block diagonal, each block corresponding to a characteristic root (cf.
(1.3)):
h=h1® - Qhs@hsp1® - @ hgpy,

where ﬁj are pseudo-differential operators such that
o for 1 < j <s, h; is the m x m matriz

hj = (Do — \j(x, D)) Ly + J |D'| + bo(z, D) + -+ bj(x, D) + ...,
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J is a Jordan nilpotent matriz, with block of size p = qo and q1 = q,

0 1 ... 0
_ Jo O . Lo , ]
J<0 Jl) Ji = 1 0> 9X4a
0 1
0 0 0 0

and gj are pseudo-differential operators of order less than or equal to 0 in D' having
the Arnold’s normal form

0

Pt line

(2.1)
0

1% col. (p 4+ 1) col.
the non-zero elements are only on the indicated lines;

e for j > s, h; is the scalar operator
le]' =Dy — /\j(l‘,D/) + bj(.%‘, D/)

and bj(z, D) is a scalar operator in D' of order < 0.

(0 + )™ line

Thanks to Proposition [2.1| we can assume that h has only one characteristic root
A, and, by using Egorov’s theorem, we can also assume that A = 0 and the diagonal
elements of b are zero. This means that we can reduce the general case to the case
in which H(z,£) =& and K(z,€) = 1:

deta(€) = €.
Example 2.3. If p =4 and ¢ = 3, then

& & 0 0 0 0 0 00 00 0 0 0
0 & & 0 0 0 0 00 00 0 0 0
0 0 & & 0 0 0 00 00 0 0 0
a=[0 0 0 & 0 0 0] b=|0b4 b4 b2 0 b2 b2 b3
0 0 0 0 & & O ¥ 00 0 0 0 0
00 0 0 0 & & ¥ 0 0 0 0 0 0
00 0 0 0 0 & I 0 0 0 b bl 0

The reduction to this simple case is made possible by the following statement.

Proposition 2.4 ([28]). Let A(x; D’) be an elliptic classical pseudo-differential
operator of order 0. Then h satisfies conditions (L), if and only if every localized
transformed operator h := A~'hA satisfies the same conditions (L).

Because of the reduction, the operator his pseudo-differential in D’ and differ-
ential in Dy. To simplify the writing of the proofs, in the following, we omit the
tilde, and we assume that H(z,&) = &, K(x,§) =1 and M = m. For o € N" we
denote

olel glel
Da:DalnnnDanzi, a:ﬁ-
! T oo ot ... o
Proposition 2.5 (|21 p. 34]). (1) If (bo)g+1 # 0, we obtain (bo);ZJr1 =1.
(2) If (bo)psy == (bo)byp,_y =0 and (bo)},,, # 0, we obtain (b)), = 1.
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Definition 2.6 ([25], 22]). For b=15b9 + b1 + ...:

(1) Let
(z,6,D) = > 0%a(§)D” + bo(x, ),
lal=1
by (x,¢,D') Z 0 a(e)D* + > 0 bo(,€) DY + by (,€),
|oz’| 2 |la/|=1

/b\k(l‘,f,Dl) = ( ) Z 80{
'|a/\ k+1
> 0% by(a,&)DY +
\a’\ k—u
+ Z 0% b1 (2, €)D" + by (2, €)),

o’ |=1

where the last operator is Bm,l(x, ¢, D).
(2) Let

where the last operator is £, _1.

The coefficients of the operators Ly use & only in /. The by with k > m — 1
are not used. In the following we denote & = Ay.
Proposition 2.7. With H(z,£) =& and K(z,§) = 1, Conditions (L) are equiva-
lent to the following conditions

(L1) There exists an homogeneous symbol A1 (z, &) polynomial in &y, with analytic
coefficients in (x, &) in the conical neighborhood considered, of degree m—2,
such that

So = Lo() = o/byd = &N
In other words, if we write
So = Lo(#) =& "M+ T,
and the degree in & of Ty is less than p—q, then condition (Ly) is equivalent
to Ty =0.
Then by induction, we have

(Lx41) Fork >0, there exists an homogeneous symbol A11(z, &) polynomial in &,
with analytic coefficients in (x,£') in the conical neighborhood considered,
of degree m — 2 such that

Sk = Lo(Ax) = EoLr(Ap—1) + -+ (=1)"E Lu(Ag—u) +
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+ (DR T L (Ar) + (DR Ly ()

=& Mg
As before, if we write
Sk =& Appr + Tepa

and the degree in & of Tk11 is less than p — 1, then condition (Lxy1) is equivalent
to Tp41 =0.

Proposition 2.8. When conditions (L) are microlocalized they become Ty = - -+ =
T, = 0.

Definition 2.9. Let
A'=d'Di+ ] +-- ]+ + ),
o(') = =€,
Operator Jz%j’ is of total order m — j — 1, differential in Dy, and pseudo-differential
in &',
k=hoA =(a+bos =Dg'I+---+K;+---+ K,,

and K7 is of order m — j.

In the following we denote z = p — ¢, and in the first part we assume that z > 0.
Definition 2.10. (1) For |a| = m — u — j we denote £* = [¢/]™~%77, and

Kj = Kjol€]" 7 ook K€ o K65

(2) When we consider homogeneous symbols in £, to make easier the redaction we
set €] = 1,

Ti= Y Tiu=Tio+ 4T+ +Ti.1& ",

0<u<Lz—1
A= S A= Aot AL+ A2
0<u<m—2

Proposition 2.11. By a suitable choice of A’ the symbols K; can be obtained
diagonally,
Kj:KjI, 1§]§m7]
If u <gq, then K1, =0. If g<u<p-—1, then
Ky = (1" (Tiu-g)p
So
Kiq=(-1)"(T10)}, - Kip-1 = (T1,.21)),
(L) (Tio)y=-=(T1z1),=0.
If p<u<m-—2, then
Kip = (=1 [(Avo)y + (=1) (Ar )5 ],
Ky = (-1 [(Ara—p)y + (CD*(Arug)h ],
Koz = (=17 (A1 ga)y + (-1 (A1 p-2)57 ]
I?l,mfl =1.
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If (bo); .y # 0, and (L) is satisfied, then

7> (TQ 2)1
KL — (_1)2 ) ’I”I'L7
? (bo)p i1
7> (T2 u—q)l
I(l7 = (71)Z ; ma
h (50)§+1
~ Ty o)k
Ko = (_1)z( 2,p Q)m )

(b0)1€+1

If (bo)p 11 = 0, we consider (bo)}, , # 0, etc., we will show explicitly the calculus in
detail in the proof.
Assume j > 1. If u < z — j + 2, then

Kju= (1P (Tjusj—2)) -
Here and in the following, P ~  mod L; means that P — @ is equal to a linear

combination of the terms 71 9,...,7T1 1.

Ifz—j+2<u<p-—j+1 and (bo)p,, #0, then

; (bo)% .
Kjou ~ (=1)P [(Tj,u+j—2);1) 0 S Ttz | ~ Tj)y, v <u+j—2.
0)p+1

~

If (bo)b 1 =0 and (bo)y o # 0, we will get in an analogous manner the terms.

Ifp—j+1<u<m—j—1and (b) , #0, then

= T; u+j—q— ,
Kju = (_1)z+1+s( J+1(7b ';Jp q 1)m
0/)p+1

Example 2.12. For (b)), # 0, we have

7> z S(T 1, *2)}71
Kjm—j—1=(-1) h J(Z )1;
0)p+1

If (bo)p 1 = 0 and (b)), » # 0, we obtain analogous results in the same manner.

Proposition 2.13. Assume the coefficients of h are in C*. For the Cauchy prob-
lem to be well-posed in C* it is necessary that conditions (L) be satisfied.

Proposition 2.14. Assuming that the coefficients of h are analytic, for the Cauchy
problem to be well-posed in C*, it is sufficient that conditions (L) be satisfied.

Proposition 2.15. Assume the coefficients of h are analytic. If the coefficients
are partially satisfied, we obtain existence and unicity of the solution in a suitable
Gevrey class.

Remark 2.16. (1) Proposition concerns, at first, with the calculus of sym-
bols and it is essentially algebraic. The proof of Proposition [2.13] is completely
independent of the Proposition 2.11] and is based on the closed graph’s theorem.

Because of its length, the study of Proposition is divided in two parts. In
this article (part I), we prove the necessity of (L;) and (Lg). In a forthcoming
article (part II), we consider (L3) and the general case.

(2) The algebraic part defines a determinant over a non-commutative graded
ring, adapted to the problem and also to the holomorphic cases.

(3) The construction of the determinant is interesting by itself.



EJDE-2019/130 NECESSARY AND SUFFICIENT CONDITIONS FOR HYPERBOLICITY 11

Proposition 2.17. With H(xz,§) = &, K(x,£) = 1 and q = q1, operator h is
diagonalizable with a good decomposition with respect to &y if there exist o = o,
o, oy, ..., o Ki{, K, ..., K/ such that

m—1 m
ho o' Di+ o + -+ ]+ + ]
=IDy'+ KDy '+ + K/, Do+ K}, ,

where ord(&/]) =m—j—1 forj=1,...,m—1, andord(K}) <0, forj=1,...,m.

(2.2)

Our bibliography is reduced to the essentials; a more extensive one can be found
in [22, 27].
3. STUDY OF K
Wehave p>2,p>q,z2=p—q>1.
3.1. Conditions (Ly), (Lz2).

Lemma 3.1. Let JP = 0. Assume 0 < u < p—1, and1 < v < p—wu or
p+1<v<m-—u. Then
[JY]° =[]+
As a =&+ J|£'| we have
Moo= A= T4+ (CDPGEP (1 ,

0<u<p—1,Agy = (PPt Pl alg = &1, and [T Ao, =
AO,uJ‘£/| = _AO,u71~
For easier writing, we consider homogeneous symbols in £, and let [£'| = 1.

3.1.1. Study of (L1). Note taht
(Aoo)y = (1P (Aou)r, =0, (Apu)b™ =0, (Ag.)BTH = (=1)9H,
So = Zo(Ao) = AbpAo =Th + E§A = Z T+ & Z A u&p -

0<u<z—1 0<u<m—2
Then (L;) is the set of conditions
Tiw=0, 0<u<z—1, Tyo=J""thJ? !,
so that (Tl,O);; = (bo)¥,
(—1)P" Ty = JP b Ag — JP2boAgu1 + - .-
(=) TP R b Ag g1 4 4 (1P oA, (3.1)
JT =T 4 = =T u-1,
(Tl,u>p+1 =0, (TLU)'}n =0,
(=DP " (T1u)y = (00)P (Mo,u)p = (Do) 41 (=1)PFHHY,
(T12-1)F = (=1)*"(bo)2, (3:2)
(L) s (b)Y ="+ = (bo)? =0.
For 0 <u<m—2,
(=1)P7 Ay = JP oMo sz — JP 2000wt F -
+ (=D TP FooAg s k1 + - (= 1)P o Ag u g1 -
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‘We have
JA = =M1 +FboMNoju—g, Mpud = A1, JAog=A1oJ =0.
If0<u<gqg—1, then

(Aru)p = (=17 (bo)h s .oy (3.3)
If u>q—1, then (Ay,), =0. If 0 < u < ¢, then
(At w)im = (17 (00)p i - (3.4)

If u > g, then (Ay,)L, = 0.
Moreover if 1 <k —1<p—1, then

(Aro)f = A g) ! (3.5)
and
(=P (Aru)P
= (—=1)*|(b0)™Mou — (b0) 7" (Aou—1)' + -+ (=1 (b0)E T (Ao u—gr1)'| -
Ifp+1<k—-—1<m-—1, then
(Aru)® = =(A1 1) 7"+ (00)F " (Aou—g)' (3.6)
and
(1P (AL )R = ()T (bg) ™ (I ) = (= 1) (B0) gt -
If u < z, then (A1 ,)2 = 0. If u > z, then
(A5t = (=177 (bo) g1 (3.7)
(ML)t = (1) (bo) " (3.8)
Example 3.2. Let (A10)5™ = (=1)%(bo)?* and (Ay 1) = (=1)PF1(bo)y*. If
u > g, then (Ay,)2* = 0.
3.1.2. Study of (Ly). Assuming (L;) is satisfied, we have
Sy = Z(A1) — 8L (M) = To + €57 Ay
If0<u<p-—2, then
(—1)P" Ty = JP"(bo + Do + JD1)Avu — JP~*(bo + Do + JD1) A1 1
+ (=) 1JP7*(bg + Do + JD1) A1 01

1 (3.9)
+ (—1)*JP74 " (bg + Do + JD1)A1 0
— P Ny g+ (1) g A
JTy = Ty = —Tol, (3.10)
(=12~ H(To0)' = (b0)P A1,y — (b1)PAou—q- (3.11)
‘We have also
(1P (Tow)y = (00)" (A1), — (b1)P (Aou—gq), - (3.12)

Example 3.3. Let
(—1)P~ ! (T2,0)p = (b0)P(A1,0),, = (b0)T(A1,0)p, + (bo)p iy (Aro)b ™
= (=1)*(bo)p41(bo)T",
(D" (Do) = (0)” (A1) — (01)P (Ao,u—g) i -
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If u < 2z, then
(=1)P " (Tou)hy = (b0) (Atu)my = (b0)5 (At u—1)my — -+ = (=1)"“(bo) 11 (A1,0)r,
So if (bo)]; == (bo)g = O, then

(Tou)h, =0, Yu<z. (3.13)
If z <u <p-—2, then using and
(=1)PH(Ta,2)5, = (00)2 41 (B0)p 41 + (B0)p sy (bo)p
= (b0)p41[(b0)Z 41 + (bo)pha]
= (=1)* (bo)p41 [(Ar0)p + (=1)* (A12)B ]
(P (Tt )m = = (B0) 41 [(00) 24 + (bo) el = (B0)p42[(B0)2 41 + (bo)pya] -
Afterwards,
(=D)P (Do), = (1) {(bO)ZH((bO)ﬁH + (b0) i qr1)
+ (bo)p 42 ((bo)% + (bo)isy) + - -
(o) g ((50)4 + (o)) | (3.14)
(~ 1M (Tap-2)hy = (=17 | G0 (b)) + (o)) + -
+ (bo)p, 1 ((bo)2,y + (bo);n-i-l)] .
If (bo)b,, = 0, then (T3.),, = 0 and

(—1)PH(Taeg1)y = —(b0)5 2 ((b0)2 41 + (Bo)py) -

(bO)p+1 = = (bo )p+q =0, then
(=1)7~ (T2 “) = (= 1)u+z(b0)u+q+l ((bO)z+1 + (bo)p+1)
If (bo)y, p+l = (bo) _o =0, then

(—=1)P " (Top-2)sn = (=1)7(bo)h, 1 ((b0)? 41 + (bo)pr)

and

(—D)PH(Tou)P T = (=1)7 | (b0) ™ Atz — (b0) 7" (A u—zan)' + -

(3.15)
(=1 00) P (M)’
If u < z, then
(Tz.0)P*t = 0. (3.16)
We have
_1\p—1 p+1 __ m
(=1 (To2)5 = (bo) T [(b0)2 11 + (bo)p1] ) (3.17)
= (=1)% (bo) " [(A1,0)p + (=1)* (A1 )5 ]
If u > z, we obtain
(P (o) = (1) [G0) (o)1 + (b)) + -
(3.18)

(o) 2 ((bo) i + (b0))] -
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Example 3.4. Let
(=1 N (Tap2) ™ = (= 1) ()7 ((bo)}—y + (o)1) + -
+ (00) % (B} + (b)) ] -
If (bo)7* = 0, then (T3 .)P*! = 0 and

(1P (Toe1)5 T = —(b0) T ((B0)2 41 + (bo)ptia) -

If (b)7* = - = (b)) “T' =0, then
(To,u)Et = (=1)" % (bo) 3" ((b0)? 4y + (bo)iy) -
If (bo)* = --- = (bo)? % = 0, then

(Tap-2)5 ™" = (=1)%(b0)7 " ((b0)2 1 + (bo)pr) -
3.2. Linking the coefficients of K, to 77 and 75. Let
k=hoA = (a+0b)(FD§+ o+ +d).
Then we identify the homogeneous parts of the symbols
ad{d =" = Ko,
A+ by =K1 =Ko+ + K &+ + Kim1 &,
and for u < q we let
Ki,=0. (3.19)
We identify the terms of degree u in &.
Joh =0 ifu<yq,

T+ s +bohoug = Kiu ifqg<u<m—2, (3.20)
()" + (1) = (Kr)"h 1<k —1<p, (3.21)
(JZ{I,ufl)p + <b0>pA07ufq = (Kl,u)pa
(1,0)" + (P u-1)" " 4 (00)" M Aou—g = (K10)* 1 p+1<k—1<m, (3.22)
(1 u—1)" + (b0) " Nou—q = (K1,u)™
3.2.1. Case (1): 0<u<p-—1. (a) u<gq,let
(70" =0, k#1Lp+1,

Jah 1+ ho+boho1—q=0,(1) = —(0)", (#1)°=0, ..., (1)’ =0,

(e11)PT? = —(ho)PTH e )PP = = ()" =0

Generally u < g — 1, (@4 ), (@4 )P are free at this step.
B)g<u<p-—1,(z>1). At first u = q,

JA g+ g1 +bo(-1)P 1 IPT = K
line k: 1 <k—1<p,
()" + (1) = (K1) Y

line p:
(1,q-1)" + (=1)P 7 (bo)? I = (K1,q)" .
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Then using (3.19)), (3.20) and (3.21)) we have
(=D)P (b)) = (K1,9)h = (=) (T 0),,
k 7£ Db, (Kl,q)£ = (%74—1)£ = 07
(152717q>2 + (“Zfl,qfl)1 = (Kvl,q)1 :

So that
(f‘yl,qﬁ + (*‘Zfl,qfl)% = (Kl,q)% :

Definition 3.5. We let
(9)1 = (=17 (bo)] — (P,4-1)1
so that (K7 ,4)i = (K1,4)P.
We let £ # 1 and
(P,0)k = —(F4-1)k
So that (K1 4)5 = 0. In the same manner, we obtain
(Kl,q)g = (K1,4)p forj<p.

In this step (% 4—1)* is free.
Now consider line m, using (3.22)), we have

(1,g-1)™ + (bo) ™ TP TH(=1)P T = (Ko )™,
(=D (o) T+ ()P o) "I = (K™
So that
(=D (o) = (K1q)m -
Definition 3.6. We let
(1000 = (1) (Th0)p = (—1)7(bo)7 - (3.23)
Then
(K1,9)m = (K1,4)5s
and
(DTN 0)y ™+ (P bo)T = (K
Definition 3.7. We let
(0)bT = —(A10)b™ = (=1)"T(bo)T" (3.24)
So (K1,4)," = 0. We let also

(Ao =0 j#pm
then (K 4)7" = 0.
Ifp+1<k—-—1<m-—1, then
(.9)" + (Fq-1)" "+ (b0) oo = (K1),
(.9)" % 4 (Fg-1)P T+ (00)7 T (Mo0)! = (K19)PH
We set
(%,q)iﬁ + (dl,qfl)gi% = (Kl,q)g = (_1)p_1(b0)117v
so that
(Kl,q)gi% = (Kl,q)g‘
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We set
(1.5 + (g-1)p ™+ (=177 H(bo)] T = 0
so that
(KLq)gJrl =0.
We let
J#EP+Lp, ()" + (A1)t =0,
so that

i#Ep+1, (K™ =0
In the same manner,
pH1<j<m—1, (Kig))= (Kb,
i'# 3, (Kl =0.
Finally (@ ,—1)PT! is free, and
Kiq= (1" (T10),1.
To simplify the redaction we replace D’ by Dy and |£’| by &;.
Now we have
k= IDy + (=1)P~Y(T1 )L DADY " + K{ .\ DS DY 2 + ..

+ K}y oDy 2Dy + K1, DY (3.25)

+ Ky oD% + K DD 4+ K+ -+ K},
and we know that

K, = Z Ky &5er

g<u<m—1

K= Y K& forj>1.
0<u<m—j
As in the scalar case, we denote the indexes linked to the Puiseux series, Newton’s
diagram and Gevrey’s indexes:
m—j—u

_ _ j
= =1 .
m—u m—u

These indices permit to characterize Gevrey’s classes of indices 1/g;,. In particular

m — 2 2 p—1 1
92,027:1_75 gl,q:7:1_77
m m P D
and it implies g2 0 < g1,4, since we have
2 1
m p

Proposition 3.8. Assume the coefficients of h are C*°. Then the condition
(Th0)p = (bo)i (z) =0

is necessary for the Cauchy problem in C* begin well posed.
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Proof. This propostion is equivalent to state that if (by)] # 0 in an everywhere
dense set, then the Cauchy problem is not well posed.

On the other hand, if the Cauchy problem is well posed near z, we deduce from
the closed graph theorem that there exists a neighborhood U of z, an integer 7, a
compact K C U, a constant C' > 0 such that for any u € C* we have

|U|k0,IC < CHhu‘T,’C + |u(§07xl)|‘r,/€ﬁ{f60:£o}]7

where |u|, x denotes, as usual, a semi-norm of C* (the upper bound of the deriva-
tives up to the order 7 in the compact K) [23] 27].
We know also that

A'=d'Di+ | +---+ . +

(where the order of A’ is m —j —1), and a.e/ = &. We follow Proposition and
we consider, as before, the notation ~,

h =Dyl +J|D'|+bo(z, D) + by (z,D') +
For the sake of simplicity, we denote

bo(x,€') = bo(x),  bi(x,€') = bo() [¢']
and we let [¢'| = 1. Then
Z(x,&) = 42?58 + JZ?;—F
(the order of <7 is m — j — 1)
A = €711 = TG 4 (SR

We follow the proof of the necessity of (by)] = 0 obtained in [25, pp. 306-309],
and Kajitani [10, p. 536], (cf. [8 Bl 27]).

We will construct an asymptotic expansion which contradicts the inequality of
the closed graph’s Theorem. Let

Uy = exp(up(ac & +(x ) Z Yi(z —k/p

0<k<ko
DOQOZ A(an/SQ)a 30(2071‘/7?/) :z/yl7 17[}(20717/) :O
After microlocalization, in a canonical neighborhood

U, —exp(mlfl +¢(z ) Z Vi ()& ™7

0<k<ko

We recall that k = ho A’ and k = ho A’. First we calculate (i, ). The first term
of the expansion is (cf. (3.25))

|: m(p—1) p— 1+q(p 1)

(Doy)™&; ¥ +ip—1(b0) (Dov)%&,
mp—1)

= (Do) 7 [(Do)? + P~ (bo)} ] Yo
We choose 1 so that

|%

Doy = —i"7 [(bo)}]1/?,
U1 (@7 xl) =0,
where Dy is a complex root such that Re Dy > 0.



18 G. TAGLIALATELA, J. VAILLANT EJDE-2019/130

So the coefficients of }70 is zero, }70 is free and can be chosen different from 0.
Then we cancel the following terms in the expansion of (i, ); as usual [27, 22]
we obtain that Y, satisfies an ordinary differential equation of order p — 1 and we
cancel in the same manner the successive terms of the expansion.

For a large enough ko > 0 we obtain an expansion such that, for some k),

p—1

[k (@i,)|, c = 06 ™) exp [supRew(x),” ] when & — +oo.

‘We have also
p—1

[tk loc = exp[s%p Rew(x)ﬁlT] (U + 0(51—1)) as & — +0oo,

for some U # 0, by the choice of Yy(z) # 0 in U, and
p—1
P

|ak0 (207 sEl)|7’,l€ﬁ{axc()=§o} = 0(51—) €Xp [Sllép Re?/)(lo, 1'/)51 ] (U + 0(51_1)) ,

as &1 — +oo.
We apply A’ to the expansion and we obtain an analogous expansion

S° Zu)e

0<k<ko

~ p=1
P

A(iig,) = exp(im& + Y(@)é,

with

(m=1)(p—1)

Zo=¢& " [I(Dop)™ '+ -+ J(Doyp)™ 2Dyt
o (F)P TP (Do) (D)

as before we obtain the terms Zk. Zo is free and can be chosen # 0, as ?0.
For a large enough k, we have

p—1

‘iNL ) E’(ukoﬂﬂ;@ = O(§fN°) exp[s%p Rep(x)&, " ] as £ — +oo,

and we have [tg, |1 and Uk, (2o, ¥')| -, K {z=z,}} as before.
We come back to h and we obtain an asymptotic expansion which contradict the
inequality of the closed graph theorem. (I

The same calculus, correctly interpreted, permits to obtain the following result.
Proposition 3.9. We assume that the coefficients of h are analytic. Then the
condition (Tl,O);, % 0 is sufficient for the Cauchy problem begin well posed in the
Gevrey class 7%_

Sketch of the proof. We construct a parametrix from the previous expansion as in
[27).
If z = 1 then case (1-3) is complete and we have obtained the proof of the

necessity of (Lq).
We assume now (TLO); =0.Ifz>1and ¢ <u<p-—1, we have

JA o+ D1+ boMou—g = Kiu- (3.26)
‘We have
(A 1)P + (1) (b )P g™ = (K, )P, (3.27)

(K1w)h = (=17 (00} g1 = (D" (Thu—q)y - (3.28)
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As before we choose (< ,,) so that

(Kl,u)i == (Kl,u)Z:% = (Kl,u)ga
(Kl,u)é‘) forj#p.=0.

In the same manner (KLU);, =0, for j' # j. By (3.22),
(1,0)" + (Fru-1)" 4 B0)7 (Nou—g)' = (K1)

(6072 (VPP o) M Rag)! = (B )
We let
(A )p it + (Fru-1)pin + 007 (Aou—g)prr = (Kiu)b,
=0
so that
(Kiu)pis = (K-
letting j # p + 1, we have
()5 4 ()] T+ (007 (Aou—g)j = 0.
So that (KLu)?Jr1 = 0. In the same manner,
(Kv)b05 = (Kya)m=t = (Kia)b,
linem: (@A4u—1)"~+ (bo)"Aou—q = (K1,.)™,
(DT () + (A0 = (K -
We let
(ﬁfl,u—q)fnjl = (_1)Z(T1,u—q);17 - (Al,u—q)gjl )
and for 0 < v < z — 1 we define
(K1)hit = (=1)*(T10), — (Ao)b (3.30)

Since
(Kl,u)ﬁ = (Kl,u)ga
it follows that

() () = (007 (Roumg)} 4+ (1) (b0) ] (R0}
= (K1)}
Then for j # p,m, we choose (,Qfl,u,q)i-’ﬂ such that (Kl’u);." =0. We let
(ol = ~(Ara g2

p P
and for 0 < v < z — 1 we define

(00T = —(Ag,)0 (3.31)

So (K1), =0, and
Ky = (1P Ty y—q)pl forg<u<p-1. (3.32)
O

Proposition 3.10. If0 <u <p—1, then
Ki,=0 <= (L) is satisfied.
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3.2.2. Case (2): p<u<m-—2. By with u = p, we have
Jahh p+ A p1+boho = Kip,
line k with 1 <k —1<p: ()" + (FAp-1)"" = (K1),
line p: (@ p1)P + (bo)?(Ao,z), = (K1p)P.

Using ,
(1PN h0)p + (Kip-1)h "+ (Kip2)b 2 4.
+ (1)K )E + (bo)? 1 (o)™ = (Ko p)h,s
and
(—1)P N 0)p + (—1)7(b0)% 1 (M), = (K1p)b
or

(=1)PH(0)p + (Aro)p) = (K1p)h .
Let us define

(“1,0)p = (1) (A1)0 = (=1)*(bo) s - (3.33)
Then
(Kip)h = (1P (=17 (A2)0" + (Ao),]
=(-1)7" [(bo);n+1 + (bo)?,1] -
Therefore,

(K1), = (=1)P " (A,0)p, + (b0)? (Ao,2)m
= (1P [(H,0) 0 + (A10)0,] -

Also we define

(A1,0)m = —(A10)ps  (K1p)h, =0. (3.34)
Using ,

(Kl,p)m = (M,pfl)m + (bO)mAO,z .
Using ,

(K1p)™ = (=1)7 ()Pt + (b)) ™ Ao, — (bo) T (Ao,a—1)"
+ (Kip—1)" ' 4 (Kip-)™ 2+ ..,
(K p)m = (=197 ()0 + (AR

Let us define

()0 = (=1)* (A1) - (3.35)
Then
(K1p)m = (K1p)p
(Kip)y = (1) ()0t + (A1)t
We let

()0 = —(M )5t (3.36)
so that (K1), = 0; we have also (K1)} =0 for j # p,g. Then we obtain
(Kl,p)% = (Kl,p)gj = (Kl,p)gii = (Kl,p)ﬁj = (Kl,p)g~

Finally
Kip = (=17 (bo)phs + (bo)2a]1
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or
Kip = (=1)"[(A10), + (—=1)*(A1,2)5] (3.37)
Now for p < u < m — 2, we have
JA o+ w1+ boNou—q = Ki u,
line p: (=P (A up)' + (00)PAou—g — (K1u—1)P '+ (Kiu—2)P 2 +...
+ ()P (Ku-p11)' = (K1)
So
(_1)p_1 [(ﬁ{l,ufp)]la + (Al,ufp);lz] = (Kl’u)g‘
We let
(Au—p)p = (1) (Aru—g)h
and for 0 < v < g — 1 we define
(A0)p = (1) (A2t (3.38)
Then
(Kra)p = (0P (1) (Aru—o)h™ + (Aru—yp)p) (3.39)
Therefore,
(Kl,u)fn = (71)1)71(%#_(1)}” + (bo)p(AO,u—q)m
= (_1)p_1 [("Z{I,ufq%ln + (Al,ufq)}n]
Then we let () 4—p)t = —(A1up)k,.
For 0 < v < ¢q—1, we define
(A1) = —(A10) - (3.40)
Then (K1 .4)E, =0, and
(K1) =0 for j#p,m,
Line m: (—1)™ ! (A,0-0)" + (bo) ™ Aosu—q — (b0)™ (Ao g1)"
o= (Kpue)™ 4 (K e)™ 2+

)
(Kvu)m = (1) ug) 5+ (=1)7 4 (bo) i

(_1)(171 [(ﬁfl,u—q)fnjl + (Al,u—q)ﬁrl] :
We let

(g = (1) (Atup)y -
So that (Ki..)m = (K1,4)5-
For z < v < p—2, let us define
(K17v)fn+1 = (_1)Z(A1,v—z)11;7 (341)
Then
K1)y = (=D [(@hu—g)b ™ + (Au—g)i ]

We let

(JZfl,u—q)gle = _(Al,u—q)ngl ’

and for z < v < p — 2, we define

()5 = —(A)5H (3.42)
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Also we obtain
(Kl,u);n:o fOI'j;ép7m,
and
(K== (Ei)0"1 = (Ki)hi = = (Ki)mo) = (Kiu)m
Finally for p < u < m — 2, we have
Kiw= (=0T [(Au—p)y + (=1 (Arug)i 1

. - (3.43)
= (=¥t [(bo)fb—q—i-l + (bo)i4 1]
By (3.14), ) X
(=1)PH(Ta.2)p = (bo)h 1 [(B0)2 1 + (bo)pta] -
So that, if (bg),, # 0, then
(T2 2)1
Kip)b = (—1)7 o 25im
Foplyp=(=1) (bo)p+1
We have also (cf. (3.17)))
(1P NI, = (=1)*(bo) 1 [(A1,0)p + (1) (A1 )5 -
So that, if (bg)T* # 0, then
(T2 Z)erl
K P — (—1)? <P
( 1710)17 ( ) (bO)T
If (bo); 1 = 0 or (bo)7* = 0, then
(Lo )m = (T22)57H =0
Then we have
(0P (T2 41)i = (=1)%(b0)p 2 [(A10)p + (—1)7 (A5
So that, if (bo);, 5 # 0, then
(To,241)
K P — (_1)? s m
oy = (1) (bo)p+-2
In the same manner, if (by)™ " # 0, then
(Tzz41)5 ™!
(Kip)y = (1) —= "
PJ/p (bO)l 1
If (bo)?,_; # 0, then
(Ta,p—2)n
K1 ,)P = (—1)722=2m
A Oy
If (bo)2"2 # 0, then
(Do)t
(K1p)h = (1) W
More generally for p < u < m — 2, we have
(Kl,u)g = (_1)p_1 [(_1)Z(A1,u—q)fn+l + (Al,u—p);ln] . (3-44)
If (Tg’z)}n == (Tgyu,qfl)}n =0 and (bo)ZJrl 7é 0, then
Tyuo)l
(Kr)p = (—1) 2 (3.45)

(bo)pia
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If (T )bt = = (Thu—g-1)5"" = 0 and (b)7* # 0 (cf. (3.18)), then
(TQ u—q)p+1
Ky)b = (—1)7 2204
(11 = (1))
If (bo)?,_, # 0, then
(To,4—2)}
K P (_1)? ) m
( 17’U«)p ( ) (bO)ﬁlfl
If (bo)?*? # 0, then
L (Tou—2)b™!
o = 0

4. STUDY OF Ky (K3, FOR u < p — 2)

In this section we assume that (L) is satisfied.

4.1. Study of (Ly). We already know (3.9)), (3.11), (3.15), and (3.14)).

fl1<k—1<p—lorp+1<k—1<m—1, then
(To.u)* = —(To.u1)*",  (Tow), = —(T2,u-1) kg1 -
Now we obtain (T5,,),, explicitly for 0 < u < p — 2.
4.1.1. Case (I): ¢ > z. Subcase (I-1) u < z: We have
(=P (Tzu)p = (b0)par (Aru)B ™ = (bo)pro(Aru—1)p ™ + .. (4.1)
+ (= 1)"(bo)p s r (A1 0)0t

As an example we have:
(=1)P"H(Ta0)p = (bo)h i1 (Aro)s*,
(—1)P" N (Ta1)p = (bo)h iy (A11)5T! = (bo)h o (Ar0)ot,
(=1 (Tam1)p = (Bo)pgr (Maam)B M 4o (1) (00) 2 (Aro)p
Remark 4.1. (1) Assume (bo)h,, # 0, and (Tp0), =0 <= (bo)7* = 0. Then

(—1)P N (To1)p = (bo)b 1 (—1)* T (bo) .

So that
(T21), =0 <= (b)) " =0.
Assume (bo)b, | # 0 and (Ta), = -+ = (Tou—1)p = 0. Then, by induction,
(T27u);1) = (- 1)Z+u(bo)p+1(bo)m Y foru < z.
So that
(T2, u)1 =0 <= (b)) " =0.
If (b )p+1 # 0 and (73, 0) = (Tz,zfz)zl, =0, then

(bo){" =+ = (bo)7" """ = 0.
(2) Assume (bo)y,; =0 and (bo)? 5 # 0. Then

(=1)PH(Ta)p = (bo)pio(=1)*F (bo)T,
(Ten)y =0 < (bo)7* =
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In the same manner as above we obtain: If (T0), = -+ = (T2,2-1); = 0, then
(b)) =--- = (b)) *? =0.

(3) We generalize easily the above process to obtain: If (bo), g = -+ = (bo)} 1 =
0, (bo)hyy #0,v# 2z —1,and (Tpp)p = --- = (T,2-1), = 0, then

BT =0 ... (b)Y =0,
If
(bo)g+1 = (bo) p+z—1 — =0, (bo)p+z 7& 0,
(TQ,O)p == (Tz,z—l)p,

then (bo)7* =
(4) Assume (bo)7" # 0 and (Ta ), =0 <= (bo)b,, = 0. Then

(=P (To1)p = (—=1)*F (bo)} 5 (bo) T

so that
(T21)p =0 <= (bo)h 2 =0.
Assume (bo)" # 0 and (Tz)), = - -+ = (T2,u—1)5 = 0. Then
(TQ,u)p = (bO)p+u+1(b0)1
If (bo)T 75 0 and (T270)11) == (T27Z_1)119 = 0, then
(Bo)yy = -+ = (bo)ly, = 0.

(5) If (bo)7* = 0 and (bo)"~* # 0, then
(Tr2), == (bo)lss =0.
(6) In general, if (bg)* = --- = (bo)7" *T1 =0, then (by)!""* # 0 and
(Taz1)p, =0 <= (bo)p+z =0.
Lemma 4.2. By Remark [4.1}(1), using and (3.18): if
(Ta0)p =+ = (T22-1), = 0, (bo)ZH # 0,
and z < u < 2z, then (Tgu)£+1 =0.

Subcase (I-2) z < u < g: We have
(=1 (To)h = (=1 [(b0) 2y (Aru2)h -+ (— 1) (bo)l 1 (A1 0))
+ 00 (A (42)
o (S bo)p g (A )BT
A+ (=1)"(bo)p 1 (A1, o)p+1 .
Example 4.3. (—1)7~}(T2.)} = [(00)241 ]+ (00)h1 (b0)T -+ -+ (B0 (B0)T'
Assume (bo)b, | # 0 and (Tag), = -+ = (T2,.-1), = 0. Then

(_) T2z (( z+1) bO)p+1(b0)
(—1)P " (Tozg1)p = = [2(00)2 1 (b0)2 o + (b0)b 41 (bo)T" " + (bO)p+z(bO)§nfz]~
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Remark 4.4. Assume (bo)y,; # 0, (Too)y = -+ = (T2z-1), = 0, and v < w.
Then (T2 ,)L = 0.
Using (3.14)) and -, if u> 2z, then
(bo)p+1(T2U+Z)p+1 ( 1)Z(b0)§n7Z(T2u)}n
Subcase (I-3) ¢ < u < p — 2: We have
(=1)P"HTaq)p = (1) [(b0)2 11 (A1 g—2)y + -+ (=1)P(bo)y 1 (A1,0),]
+ (=1)9(1)} — (bo)hyo(Arg—1)2F ! + ... (4.3)
— (=) (bo)?, (A1,1)5F,
12 [(00)% 41 (Aru—z)p + -+ + (=1)" = (bo)1 1 (A1 o))
1)2+U(b1)u g+ + (bo)p+1(A1 u) +1,+_,. (4.4)
1)q+ ( ) (Alu q+1)p+ )

(-
(-

(—1) 7 (Topma) = (1) [(b0) 1 (Arg-2)} + -+ + (~1) (o)} (Aro)}
+

(D" (Taw)y = (=
+
+

(=1)%(by)"_ 1+(bo)p+2(A1,p 2)p+2+m (4.5)
+ (=1)% (bo )b, (Ayz1)BT

4.1.2. Case (II): ¢ < z. Subcase (II-1) u < g: We have

(D" (T2u)p = (bo)par (M) 4 4+ (1) (bo)ppuga (Ar0)p ™ (46)
Subcase (II-2) ¢ < u < z: We have

(_1)p71(T2,u) (bO)p+1(A1 U)erl +..

4.7
+ (1) (b0)2, (At u—qr)5 T+ (=17 (b1)h 1y - @)
Subcase (II-3) ¢ < z < u < p — 2: We have
(=P (Tou)y = (=17 [(00)7 41 (At,u—z)p
+- (bO)p+1(A1 U)p+1 +... (4.8)

+(—1)q+1(bo) (Atu—gr1)p™
+( 1)u+z(b0)u+1(A1 0) ] +( 1)Z+u(b1)u qg+1-

Note that for case (IT), the previous Remark |4.4] H is valuable.
Now we consider (T3, )5 . We have previously obtained (3.15) and (3.16).
If z <u <p-—2. First, we have

(=D)P (T2 )5 = (=1)*(bo) ™ (A1,0)m = (—=1)*(b0)T*(A1,0)y, = (b0)T"(B0)p sy -
So that
(To,2)5 = (=1)*(T20), (4.9)
We replace u by v + z, with 1 < v < ¢ — 2. Then

(*1) (TQ v+2)p+1
= (=1 ((bo) ™ (At} + -+ + (=1)" ()7~ (Ar,0)h )
=(=1) [(bO)T(ALv)}n = (00)7 (A= 1) + -+ (1) (00)7 " (A10)im

(0 (A e (=) (00) g (A )
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By and ([4.6), we have the value of (T3,,)}. Then we compare to obtain
()P (L) = (1) [(-1)P N (To,0),)
+ (=" [(00)p4 1 (00) i pgr + -+ (b0) 74 g1 (Do) ]
Using ,
(0P (Do) = (17 [(1)P 7 (Tho),)

+ (="K [(bo)yyy — (bo)vm+q+1] +.o.
+ (_1)pKl,v+q [(b0)§+1 - (bO)gL+1]

If we assume K; p, =+ = Kj yyq-1 =0, then

(1P oy = (1) (1P (To)t] + (—1)P K g [G0)7s — ()]

Lemma 4.5. Assume that v < u implies (T} ,)}, = 0.
(1) If (bo)py1 # 0, using (B.45), for 1 < v < q—2 we have

bo)?1 — (bo)pya
Tszerl:_]-Z T_vl_( z+1 p+ TU,}ny
(Toura )it = (<1 (T2.0)} oy (Tt
v z 2 (bo)zz)
(Tovsz)in ™t = (1) [(T2,u)119 - Wp“ (T2,U)71n} .
p+1
If (szz)}n = O, then (T2,2z)fn+1 = (71)Z(T27z);.
(2) If (bo)pyy =+ = (bo)zﬂc =0, and (bo)iJrkJrl # 0, then for k < q—3 we
have
2 (bg)?
(Lo = (<17 |(T2,)} = (1) % (To. )|
( 0>p+k+1

(3) When (bo)y'1 = (bo)T* = 0, we can extend easily the above results to the
cases (bo)pyo # 0, ..., (b))t #0, ...

4.2. Study of K3 ,, u < p— 2. We identify the homogeneous part of the symbols
of order m — 2,

agly + boaty + Doty + JD1of1 + b1Aofg =K.
We order this by the powers of &, 0 < u <m — 2:
J%,u + %,u—l + bOfdl,u + DO‘/Q{].,’U, + JleQ{l,u + blAO,u—q = K?,u )

line p:
(@o,u—1)" + (b0)" %1, + Do(1,u)" + (b1)"Noju—q = (K2,4)", (4.10)
linek—-—1,1<k—-1<p-1:
(o) + (ou1)*" + Do(#,u)" " + Di( ) = (Kou)*™,  (4.11)
line m:
(Hau—1)" + (b0)"™ D ,u + Do( 1 ,u)™ + (b1)" Nou—q = (K2,u)™, (4.12)

linek—1,p+1<k—-1<m-1:
(o.u)* + (o 1)¥ 1 4 (bo)¥ LA o + Do(h )"
+ Dy ()" + (b)) (Noju—g)' = (K2)F 1.

We distinguish two cases

(4.13)
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Case: 0 <u <p—2. By (3.6), 3.7, 3.-8), (3-26), (3:27), (3.29), we have
—(bo)py1(A10)htt = (Kao)b,
(K2,0)5 = (=1)" (bo)b 1 (bo) 7" = (=1)P(T0), »
(K20)h, =0, (Kz0))=0;

if 7 # p,m, then
(K2,0)™ = (bo)™ %0 = (bo)T"(#1,0)" + (bo) i1 (1,0)P ",
(K2,0)m = —=(bo)7"(A1,0), = (K2,0)5,
(K2,0)5 = (=1)%(bo) " (A1)t = (bo)yy 1 (Ar,0)B T
= (=1)*[(bo) " (bo) 1 — (bo)y1 (bo)T*]; =10
for j # p,m, we have (K2,)7" = 0. Finally
Kao = (—1)"(T,0),1 -
Case: z<gq. If1 <u<q—1, then

(K2)h = (=1)7| (00)2 41 (Au—2)p — (00)2 2 (A u—zm1)yp

(=) (00)0 1 (F.0)3) + (B (2,005
- (b )p+2(£{1 u— 1)p+1 ot ( ) (bo)u+p+l(£{1 0)p+1 .
If w < %, then
(K2,u) (bO)p+1(£{1,u)g+1 - (b0)£+2(m,u—1)5+1 +eeet (71)u(b0)5+p+1(£{170)£+1 .
Using definitions (3.38), (3.40]), (3.42), (3.37)), (3.39), and (3.12), we have
() = = [0} 1 (A )™+ (C1) () (Ao = (1) (T2)},
(Kzu)i =0, (Kzu)p =0 fork#p,
(K2,0)™ = (b0)™ 1 — (b0) 1™ (A ut) + -+ (b0) 1" (A1,0)m,
(Kza)m = = (00) 7" (A1) + (00)7 ™ (Arum1)y + -+ (1) (b0) "™ (Ar0)im
= (K2,u)£
(K2u)y = (=1)7| (b0)7" (Arurz)i ™+ + (—1)“(1?0)’1717"(/\1,27)%“}
= (b)) o (1) o) (o)™ = 0
(Kou)p' =0 fork#m.

Therefore,
Koo = (—1)P(Tou)p I . (4.14)
We set R
Ky = (-1)"(Tou), -
If z <wu < ¢g—1, using definitions and -, we have
(K2,u>£ = (b0)5+1(A1,u)fn+1 +ee+ ( l)u z(bO)qul(Al,Z)fnJrl

(4.15)
— (bo)p 1 (M) 4 (=) (bo) 7y g (M 0)5 ™

Since R
Kl,q-HL = (*1)1771 [(Al,v—Z)zly + (*1)Z(Al,u)£n+1}a
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it follows that
(K2l = (~1"(Tea)} + (=17 [ ()1 K g
- (b0)5+2k1,q+u—1 +oe (*1)u+z(b0)ﬁ+1f?l,p]’
(Kza)h, = (=17 [0} (Arau )iy + -+ + (=1 (00)01 (A0}

- (b0)§+1(A1’u,z)}n +oee (_1)“+Z+1(b0)§+q+1(Al,o);,] =0,
(K27u)% = (KQ,u)£7 (KQ,U)ZL = 07

and finally
Kau = (Ka2u)p1. (4.16)

In general for ¢ <wu <p—2, by (4.10) and (4.4]), we have
(KQ,u)p = (bo)pﬁf’i,u + (bl)pAO,u—q .
As previously
(Kza)y = (=" (Tea)} + (=17 [ (00) 41 Ky g
(0 sKrgruct 4 (1) (b By

(Ko = (<17 [~ 0021 (Ara )by + (o) 5 (A=),
+ (=17 (bo)h s 1 (A1.0)m — (Bo)h iy (Arw)BF!
G0 (Aru )i e (S B (A 2] = 0.
By (4.12)), we have
(K2,u)m = (%’u71)m + (bO)me{l,u + DO('Q{l,u)m + (bl)mAO,ufq
= (1) N (oug)? T+ (b0)" 0 — (b0)]" T Humr +
+ Do(hu)™ — Doy uu1)™ 14+ (1) ™ Ao u—yq
- (bl)rln_l(AO,u—q—l)l +..
By definition we have () ,,)L, = —(A1.4)L,, and by (3.41)),
()it = (1) (Au—z)y -
We set
('Q{Q,ufqy:n—i—l = (—1)p+“+1(b1)§—q+1 )
and for 0 < v < z — 2, we define

(o )o = (—1)H(Bu)T (4.17)

Then we obtain
(o) = (o), (4.18)
(K27u>;n = (—1)‘1_1(%,%(;)5“ + (bl)m(AO,ufq)r (4'19)

We set
(Hau—g)5T" = (=1)%(b1)™ (Aou—q)p »
and for 0 < v < z — 2, we define

(20)p ™ = (=1)7(b1)™ (Noo), -
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The we obtain (Kz,u)zl =0 and

Ko = (~1(Toa)y L + (=) [ 00)2 1 K o
e (21 b)) R | 1

Example 4.6.

Koz = (<1 (T o)l + ()7 [(b0)2 4 Ra s -+ (— )10}, K] 1
Case (2): z > ¢. In the same manner as above we obtain (4.20).

Proposition 4.7. Assuming the necessity of (L), if

Ki,=0 for0<u<m-—2,
Ksu=0 for0<u<p-—2

then (L) is satisfied.
4.3. Study of (T3.)%,. In the following, the expression
A=DB mod LLQ

means that A — B is equal to a linear combination of coefficients of (L;) and (Lz).

4.3.1. Study of Aa,. For 0 < u < m — 2, by the definition of microlocalized Sy (cf.

Proposition :

(_1)p_1A2,u
= JP" (bg + Do + JD1)A1 yip—1 — JP*(bo + Do + JD1) A1 uip—2 + - - -
+ (=1)* L JP*(by 4+ Do + JD1) Ay uspk + - - (4.21)

+ (=1)P" (bg + Do + JD1) Ay o,
- Jp_lblAO,quzfl +--- 4+ (_1)ka_kb1AO,u+sz + -+ <_1)pb1A0,u7q
For u > 1, we obtain easily
JA27U + A27u_1 = (b(] + DO + JDl)Al,u—l — blAO,u—q—la (422)
Aoy +Agp—1=0. (4.23)
By (3.9),
JAQ’Q = A270J =0 mod Ll,g
Sofor1<k—1<p-—1, we have
(AQ,u)k = _(AQ,u—l)k_l + Do(Al,u—1)k_1 + Dl(Al,u—l)k
and for p+1<k—1<m—1 we have
(Ag)f = —(Agu1)* 1 + (bo)lf_l(Al,u—l)l + Do(Aq 1)t (4.24)
+ Dy(Ar 1) = (0D (Rou—g—1)", '

and
(A2.u—1)? = (b0)PA1 -1 — (01)PAo,u—g—1 + Do(A1 u—1)?
(Agu—1)™ = (bo) ™A1 k-1 — (01)™ Ao u—g-1 + (=1)7 ' Do(Ag 0—g)P ™
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Using that (A;,), = 0 for u > ¢ — 2, for u < ¢ — 2 we have

(~1)P " (Aza)b = (=1 (00)2 Ly in (A1 g2)h + ..
—1)FT9(b0)? (At usqei)p + - -

—1)" T (bo)b_ (Ar i)y (4.25)
—1)P" ' pDo(Ar )y + (—1)PD1(Aru-1),,
1) (by)h . mod Ly

Example 4.8.

(A20)p = ()7 [(0)24a(Ar g2l -+ ()7 ()1 (A1)}
+pDo(A10)p + (—=1)*(b1)?
u=q-1, (Apg1)h= (1P (br)o_,. (4.27)

Remark 4.9. If z <u <p—1, then
(Aau—)p = (=)o) o (Ag-2)p -+ (= 1)7(Bo)hpg (Ar0)}

+pD0(A1,u—z);1; - le(Al,u—z—l)[l) + (=1)*(b1), mod Lyz.

(4.26)
mod L1 2,

(4.28)

Note that
(=17 (A2},
(bO)z+1(A1 utq— 1) (bO)z+2(A1 utq— 2)1 +...
(1 00 At + o+ (1) (00)5—y (At ),
(1) [0 (At o) (— (At
()7 (Roumzma)ln) + o (o) (D5 (M)
T (Mo + o+ (CDF G0 (R
+ (bo)n ((*1)q+1(A1,u+z)ﬁf1 + (00)™ (Mot z—1)y + -
(=) (bo) P (oo )
+ (=17 pDo(Ar )y, + (=1)7pDo (A1), + (=1)P7F (b1)p 1, mod Lyo.
Foru+p—k>jandu>k—qk <wu-—q, we have
(~1)7 (A2},
= (1) [ 002 sr (Arg-1)h -+ (ZD B0y (Arus1)
+ (00)p ura(Mrg—2)p + -+ (1) (bo)h, (A1),
+ (=1)" pDo(Aru)h, + (~1) Dy (Mgt + (<17 (1))
For u < ¢ — 1, we have

(A2u)pm = PDo(A1,u)y, — PD1(Aru—1)r, + (=1)*7(b1)b,, mod Ly,
(AQ,O)}n = pDO(ALO)}n mod Ll, LQ.

(4.29)
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For u = ¢, we have (As )L, = —pDi1(A1 g—1)}, + (=1)P(b1)E,; and for u > g, we
have (Az )L, = 0.
Studying (A2.)PT!, we obtain

(=177 (Ag )Pt
= (b0)" At utg—1 — (b0)7"  (Arugg—2)" + -+ (=) (b0) 77 (A1)
— (b1)™ Ao.u—1 + (b1) 7 (Mou2)' 4+ (=1)(bo)T ™ (Aou—g)*
+ Do(Murg-1)" + -+ (=1)"Do(Arurgr-1)" "+ ...
+ (=17 Do(A1u)P T = Di(Atugg2)™ + -+ (1) ID1 (A u—a)
= (b0) 7" (Atutg-1)" = (00) T (Arugg—2)" + -+ (=17 (b0) 77 (A1)

+ (00) 7 1 (At yugg—1)P T+ (00) 7o [~ (Atugg—2)P T + (b0)7 T (Aou—1)"]
(

B0 [ (D A+ B (R m)
+ (1) G0 (Aoumpr)!] + .
(o) [ (=D (A + (B0)7 2 (Nou1)! -
+ () o (Romgi2)' | + -
+ Do(Atugqg—1)" + - = Di(Atugq—2)"+ ...
— (b1)™ Ao w1 + (017 (Agu—a) + .o

Then
(1) (M08 = (b0)T" (A1 g—1)m + -+ (=) (b0) T (A1 o),
+ (bo) i (Arg—1)5 - (1P (bo) i (A )5
By and ,
(1P (Toq-1)y
=(-1)* {(bo)}z’+1(A1 g—z—1)p+ - (=1)PT ()P (A1),
+ (bo)p 41 (A1q— DPFE 4 (1) T ()P, (A1 )BT
So we obtain
(=17 (A 0)h
= (bo) g1 (Arg—1)5 4+ 4 (= 1)PF (bo ) (A1 )5 (4.30)
+ (=17 [(00)2 1 (Atyg—zomt)p + -+ (=1)7  (bo)h(A10)] = 0.
In general, for u > 0, we have
(=17 (Agu)p
= (1) [(B0)7 T (Arg-1)h - + (FD T 00 (Av)]
+ (b0) g1 (M urg—1)0 = (00)pa (M usg—2)h

+ (=) 00) g g (A uqei) B+ - (1) TP (bo) o, (A )BT
+ (=) b))+ (1) gDo (A )5 4 (1) %Dy (Aru—1)5
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‘We remark that
(Mrg1-r)m F = (1) (A )BT

We define (Ag,)EH! according to the values of g, z, u:

4.3.2. Case (I): ¢ > z. Subcase (I-1) u < z:

(—1)7 (M) = (=1)" [(b0) 7" (At ig=1)pm + -+ + (=1)" T (b)) 7T (A1 )1,
+ ()51 (A ugg—1)5 " = (bo) o (A ugg—2)b

( prl g L.
+( 1)u+p+1(b0)u+2q Al Z) ey .

For u > 0 we have (cf. (4.4))
(1P (Tousq—1)p
= (1) (60)41 (A1) + -
(=) (b (g 03] + (1) )
(=1 [00) g (A0 - (1) (o) ()™

and
(M)t = (=1)77"F (by)] (4.31)
Subcase (I-2) z < u < ¢: We have
(=D (A )5
= (1) [ BT T g+ (CD T B (),
+ (=1 [(bo)u+q+2(A1,p 2ot (F1)7(00) g (A1 p—2) (4.32)
- (=1)(b0) g (A1)
+ (1) P )T+ (1) g Do(Aru )b 4 (1) D1 (A u—1)h
Subcase (I-3) u > ¢: We have
(=D (A2 )5f
= (=D)" " (b0) gra (A p—2)i T o + (*1)q(bO)ZT+2q(A1,Z)$n+1} (4.33)
+ (=1 (b)Y + (1) gDo(Ar )b+ (1) %g Dy (A -1 )5

4.3.3. Case (II): z > q. Subcase (II-1) u < ¢: As in case (I-1),
( )q 1(A2 )erl ( 1)z+u+1(b1)ﬁ mod L1’2‘ (434)
Subcase (I1I-2) ¢ < u < z: as in cases (I-1) and (I-3), we have

(=17 (A )t = (=1)* T (by)P mod Ly 5. (4.35)

) m
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Subcase (II-3) u > z: as in case (I3),
(1) (A

= (1) o) g (A1)
P () (A1 B (~D P4 (50

+ (=1)""aDo(Aru ) + (~1)%Dy(Aru-1)b | mod Lyz.

(4.36)

Remark 4.10. By considering (4.17)) and (4.31]), for 0 < u < z — 2, we obtain
(o)t = (Mous)5 ™ 4 (1) (Toyus1), - (4.37)
Lemma 4.11. If u > z, in cases (I-2) and (I-3), we have
(Ao = ()M [0)f ™ (Ango )b+ (17 () (A1)
+ (=17 [(Az )b = mDo(Asu2)h + (= 1) (ba)iy — (b1)7)]

Proof. By ,
(~1) (A5 = (~ 1) [B)T ™ (Aagoa)by o (CD L 0) 7 (A )l

+ (=" [(bo)ﬁﬂ(Al,o)}, +oot (—1)q(50)ﬁ+2(/\1,q72);1)}
+ (71)u+p+1(bl)zz+q + (71)qu(A1,u—z); mod L172 .
Then consider (4.28)) we obtain the result. O

To consider (Ag,)5t!, we first consider (Ag )™ We use the results about
(A1,u)]1g and (Al,u)gJrl in §1 and Ky, =0, u > p. Then

(=1)T H(Ag0)5™ = =(00) 7 (Mg g2)p + -+ (=) (Bo) T (Ar0)p
+ (bo)p 1 (A1g—1)Pt! = (bo) o (A1 g—2)P ! + ...
+ (=D (bo)m_1 (A1, 0)5 ™ + g(=1)7" Do (A1 0)5™,
(A20)b™! = gDo(A10)5*! .
Remark 4.12. If (T ), = 0 and (bg)},; # 0, then
(A2,0)5+1 =0,
(—1)q_1(A2,1)£+1 = (bo)inﬁ(Aquz),l) +-F (—1)‘1_1(170)11)“(/&1,1),1J
+ (=1 g Do(Ar1)BT + (=1)P(by)T"
For ¢ —2 > u > 1, we have
(=D (Ag )b ™
= ()" (o) (A2l + o (1) B0 (M)
+ (=) Do (Ar )BT + (=1)%g Dy (Agu—1)B ™
= (b1)™(Ao,u—1)p — (bl)m_l(Ao’u,g)p. +...
If u>q+1, then (Ag, )2 = 0. If u = g+ 1, then

(Azqr1)B = (=1)7 (by)}

(4.38)
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If u = g, then
(A2 )5t = —gDi(Arg1)5™ + (—=1)P(b1)F™
If u=¢qg—1, then
(Agq-1)5" = qDo(Arg-1)5 ™" = aDi(Arg—2)h " + (1P (b1)F .
Remark 4.13. Note that
(Agq—2)b™ = (b0)§+1(Al,q—2)117 + (=1)P(01)5 + qDy (A1,q—2)P™" = qDo(Aq,g—3)07"
and
(*1)(]71(/\2&)2“
= (—1)**! [(bO)T_Z_l(Al,q—z)}) +o (—1)p(50)'f+1(/\1,z);1)}
+ (=) Do (A, )BT + (=1)9gDy(Ay,.—1)ET = (b1)™(Mo,2—1),, -
Remark 4.14. Considering and , for 0 < u < z — 2 we have
(o)™ = (Agwy1)b ™. (4.39)
4.3.4. Study of the first part of (Ls). We have
Sy = Lo(A2) = & L1(A1) + €07 La(Ao) = Ts + & Ay
and for 0 <u <p—2,
()P ' Ty,
= JP by + Do + JD1)Asy — JP72(bg + Do + JD1)Ag 1 + ...
+ (=1 TP R (bg 4+ Do + JD1)Agu—pi1 + - -
+ (=1)PJ(bo + Do + JD1)A2 yy—pt2
— JPT A g A A (DR TP TR A g
+ (=1)PT?b1 A1y py2 + TP 02 Ng g1 4 A (=1) T T by Ag g -
We remark that
JTs0=0="Ts0J, JTsu=—Tsu1=Tsul
We consider
(=P (T3.0)" = (bo)P A2 + Do(Ag,y)P — Do(Agu1)P ™t + ...
+ (=1)?Do(A2u—pr2)* — D1(Agu1)P + ...
— (01)PA1 =1+ (b2)PAou—g—1
(1PN (Ts0)" = (bo)PAa,0 = (bo)b 4 (A20)P T

The terms in D are related by shift in the term in Dy, so we do not write them to
make the redaction lighter.

Lemma 4.15. If0 <u <2z —1, then (T3,)., = 0.
Proof. By (I30),

(4.40)

(1P (Ts,0)5, = (bo)b 1 (A2 )b = 0.
For u > 1, we have two cases:
Case 1. ¢ > z: We obtain (T3,,)}, explicitly by [4.24

(=" (Tsu)m
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= (b0 (A2 + (Yo~ (Mo
()7 (M) = 005 Roug-a)ln] + -
= (00) | (D T Az )+ (B0 (A )+
(=D 00)F T Atk )] o G0 [ (1) (Ao )i
(b0 A1)y + o+ (21 (00)T T (M)
- (00)0 g [ (BT (At )y -+ (~1)"F (B0 F ™ (Ao
e (o) [ 00)T T (At )y - (1) (00) T (A o)

— (b)Y (Ar 1), + - + (=1)"(b1)5(A1,0),, mod Ly .

We define the terms (A2 ,—k+1)" according to their values in (4.31)). Then we
simplify the terms (Aq )L, of §2.1.1, to obtain

(TB,u):n =0 mod Ll,g .

Case 2. q < z: The calculations are quite similar to the ones above, and they

are omitted. 0

Lemma 4.16. If z <u < p—2, then
(=1 (T},
= (011 [ ()7 (A2a-2)} = mDo(Ar )} + (-1 (b))
(o) [ (1) (Auam1)} = mDo(Arua 1)}
(=1 (B + DoA™ )] + -
- (00)] g1 [ (1) (A2.0)} = mDo (A o)}
(=) (= 2)Do(Ar,: )i )|
+ (=1)%[a(00)2 41 Do (A=) = (0 = D(bo)? 42 Do(Ar o1y + ..
(10— (b)Yl Do(Aro)l] mod Ly
Consequence 4.17. If (by)2,, = ... (bo)%, .11 =0, then
(T3.,)5, =0, mod L;s.

Proof. First note that
(1P N (Ts.2)pm = (b0)” (A22) = (01)P (A1 z1),y, -

We consider two cases:
Case (1) ¢ > z: From (4.24), it follows that

(~)7 (T30},
= (=1)*(00)%41 ((A2.0)h — 2Do(Ar0)h )

+ (bo)pi1 (M22)5 + (bo)p s {—(/\2,%1)]5rl + (bo)TH (A am)h | + -
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o (00)s [ (-1 (Ao + (B0 (M)
(=1 (b0)T T (Ar)}
(o) [ (B0 (M)l o+ (1) (o (Ar0)1,
(o) [(B0)T (Al o (1P (B (Aol + -
o)

o (b0)2 [ (b0)T ™ (Arema )y + -+ + (<) (B0)7 T (Ao
+ (01)7 (bo) gt + -+ (b1)2(bo)psa

In the second part (from (bg); ;) we exchange the summations, and obtain
(=1 (T5.2)m
= (=1)7(00)% 4 ((A2.0)}, = 2Do(A10)})
o) | (A2 = () o (Go)R ™ () (0T = (00)7) ]

+ (
+ (bo)p42 [ (Aoom)hft =
+ (

(bo)b, . (bo)y ™ + ...
bo)2 (bo) T = (502 )[4+ (o)l | (—1) 7 (A2
<(b0) (bO)m 1 + -4 (bo)p+1(b0) — (bl)f):| .
We use to obtain

(~1P (@525 = (=17 (0021 (Az0)}n = 2Do(Aro))
(o) [ (A2, = (B0)paa (B +.
+ (bo)2 (b0)7" ™ = (b1)?2) | mod L.
by and (£.33).
(=17 (T3 )} = (=) (b0} (A20)} = mDo(Ar0)}) )
+a(bo)? 41 Do(Ar)}|  mod Lyz.

Case (2) ¢ < z: We adapt the calculus and we obtain the same results. (]

Consequence 4.18. (1) If (bo)y,, = 0 then (T3.),, = 0.
(2) If (bo)p 1 # 0, using the reduction in Pmposition

(1P (T.2)p, = (1) [(A2,0), — mDo(A10),] -

Now we consider z < u < p — 2, under the assumption that ¢ > z and u < gq.
We have

(_1)p_1(T3,u)71n
= (_1)Z(b0)zz)+1 ((AQ u— Z) - ZDO(Al u— z) )
+ (—1)”1(60)’;2((Az,u_z_1),1n —(z+ 1)D0(A17u_z_1)}n) +.

(1) (b0)2 1 (A20)hy = uDo(A10)h ) + (B)ha (Ao )i
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b0)§+2[—(A2,u_1)ﬁjl+(b) YAt um1)h + Do(Ad e 1)P+1} +...
o) g | (— D" (A ) 4 (50) T (A1) + -

S )] (A ), — (B)2(=1) (= 2) Do (A, )5
Y gz [ (D" (R e+ (B0) T (M),

~1)" ) (M)l = (02

o) [ (=1 (Ao (0) T (A1)

~1)" (b (M) — (]

00)0 gt [ (B0 (A )b -+ (~D )T (M)
—1)" ) (Aol + -

b0)2 [ (00)T ™ (A1), + (=17 (b) T (A2,

1) (b0)}* " (Ao}

b)Y (Aru—1)gy 4+ (=12 (01)2 (A uz)p + - + (*Uu(bl)ﬂ(ALo)}n}

bl)p.l,_l(Al u— 1)p+1 + -+ ( ) (bl)q-‘ru(Al,Z)frj_l .

+ o+ o+ o+ o+ o+ o+ o+ o+

m~ o~ o~ o~ o~~~ o~~~ o~~~

As previously, we exchange the sums in the part of the previous equality form
(o)1 .41 and we obtain

(~)" ! (Ty)s,
= (=1)*(0)241 ((Aou)by — 2Do(Aru-2) )
1)** (b0)2+2((1\2,u7z71)71n —(z+ 1)D0(A1,u7z71)}n) +..

1) (00)%1 ((Az0)h — uDo(A10)})
boYper [ (Ao 4+ (=175 ((bo) ()7 + ...
bt (O = 0]
~(Az a1+ (=174 (00) ()P

0= 00fo) + Do+
(=" (A2 )5 + (=1 (o) ()7 + -
bo)f e (b0)F ! = (B1)2)

1" (= 2)Do(A )i

o) g [ (1) (e ) 4 (< 1) (bo)2 (o)1

\_//-\

+ o+ 4+ o+ o+ o+ o+ o+ o+
3
IS
Y
*

(=
(=
(
(
(
(
(
(
(=
(
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+ (bo)p+z(b0)p+1 (bl)g_l):| + ...
+ (b0)pa | (1) (A )5 + (—1)”““((%)5;1(()0)?*1 ¥
+ (bo) 2 (bo) i — (bl)i’ﬂ

= (b1)P ey (A )B ™ 4 () () (A )BT

We replace (Ag.—1)E, ..., (A2,1)2 ! by their values in (4.31)) and we combine
the corresponding terms, to obtain

(=1 (T ),
= (=17 (00)%41 ((Azu—2)b = 2Do(Aru—2)h,
(7 002 (Azem)hy = (2 + DDo(Arume)h ) + -
+ (=) (00)%11 (Az0)h — uDo(A1,0)})
(bo>p+1[<A2u>p“ (=17 ((bo ) (bo) " 4.
(bo)p+u+1(b0 )}
+ (o) o[~ (A )P“ (=) (b)) +
o (b0)5 (bR = (5151 ) + Do)l ] + .
o (00) g [ (D (Ao )i (1) (o) (o)
+ (00)] 22 (BT = (B1)2)
+ (=) (= 2)Do(A )5
Considering and Lemma [£.15 we obtain Lemma .16} If z > ¢, we obtain

analogous results.
4.3.5. Study of (Ts.,)5t". For 0 < u < p—2 we have
(=1 (T3.)""!
= (=17 [(bo)mAM_z = (00) 7" Aoy o (1) (b0) T T (Mg )
= (b1)" Atu—zmr + (b)) Ay +
D))" ()
+ Do(Agu—z)™ = Do(Agy—zm1)™ H 4 ...
n (_1)u+z+1D0(A2)1)m—u+z+l + (_1)u+zD0(A2)0)m—u+z:| .
Remark 4.19. We also define the symbols (75 ,_1)?*! and (T3,)5%". They are
not conditions (L), but will be useful in Lemma [4.21]
Lemma 4.20. If u < z, then (T3,,)5+" = 0.
Now if u > z, we replace u by v+ z. For 0 < v < ¢ — 2 we have
(=D)P (T p2)5"
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= ({00 (Aa)} + -+ + (<) (b0) I (M)}
bo)ja (Ao, )2+ (bo)jn [ ~(Azo1)5 ™!

b0)€+1(A1,v—1)1 + DO(Al 11—1)p+1j| + ...

S
(=)
~

p (D Ao+ B0 ()
~1)"(bo); T (A1,1)p + (~1)" (v = 1) Do(Ar,)5* |

bo)aa [ (—1) (A2 0) ™ + (B (Aru-1)p + - .

—1)" (b (Aro)} + (<) wDo(Aro)f

o)z [ (000 (A1) -+ (<) ) (Ar0)}] +
s [B0)P 2 (A + -+ (CDH 0)P " (A0

)" (At 1)y 4+ (007 H(Ar )y + -+ (=1 (b)) " (Ar0),
~1)° [UDO((bO)mfv(Al 0)p) — (0 =1)Do((bo)?* " (A11)})
o (=)D ((bo)i* (Ar-2) )

o (1) D (o) (Ar-)p) | -

+ 4+ o+ o+ o+ o+ o+ o+

S
(=]

— (b1

/\AA/—\A/—\/—\A/—\/—\

+ o+ o+

Gathering the terms (b)%, ,, we obtain

(1PN (T5 04207

= (=17 {( 0) T (Azo)h + -+ (=1)"(bo) " (Azy0)h

ZJFl :7(A27”)£+1 + (71)v+z <(b0)$+v+1(b0)p+1 + ...
bo)m_(bo)] "1 + +1)

bo)? 1o (Az v—1) p+1 1)vte ((bo (bo)? T +

pt+v

)
)
)

bo)™_ (b)Y + (by)T~ v+2) ~ Do(A,, v_l)gﬂ] ¥

o) [ (1) (Ao )+ (1) ((B0)ja (BT ..
1 (b0 + ()T + (=) (0 = D) Do(Ara )
)

D (0 (bo) I e (), ()T

—1)vtt [UDO ((b())?l?liv(AlvO)p) — (v—1)Do ((bO)m_”H(ALl)zl») +..

+ 4+ + + o+ + + o+ + o+

—1)7 22D ((bo) = (A o)p) -+ (=) Do (b))} )| -
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We replace terms (A x)2T! by and simplify to obtain
(1P N (T04)57"
= (0 { o) (Aa)h + (= 1) (b0) T (A20)}
F(B0)2 [~aDo(ha ] + (o) (0~ VDO
+ (00)2 441 [ (=) (g = ) Do(Ar,0)5 ]
+ (-1 {U(bo)ﬂn_vDo(Al,O); + (v = 1)(bo)7" """ Do(A1,1),
+ (1) 2(bo)y" " Do(A1,p—z) + - +
(—1)”“(bO)T*IDO(AM,l)},] + (=) ((bl)?ﬂ(bO)T*UH +...

(bl)p+v(bo)§n> }
= (1 {(bo) " (Az)p + -+ (=) (o) (Az0);
{q b0)% 41 Do(A1)5 ! = (¢ = 1)(bo)% 49 Do(Aro—1)5"" +
+ (=1)"(p = v)(b0)} 1 Do(Ar, )5
+ (=1)" (g = v+ 1)(00) 24, Do(Ar )5
+ (=1)"(q = ) (60)%0 1 Do(Ar,0)5 ™|
+ (= 1)”“{ (bo)1* " Do(A10), — (v = 1) (bo)* " Do(Ar1)
(1) 2(b0)7 T Do (A1)} + -+ (=1)" T (00)7 " Do (A1,0-1)}]
(1)) (b0) 7T -+ (B (b0)T] -

Lemma 4.21. Assumeing (bo)h, | # 0, we have the following:

(1) ZfO S v < z, then (T3,U+Z)g+1 =0.
(2) if v=z, then

(bo)p s 1 (Ts,22)5" = (=1)%(bo) 1" *(T5.2),
(3) ifz<v<q—2and (T3,), == (T3,-1)),, then
(bo)p41(Ts, z+v)”+1 ( 1) (00)7" ™ *(T5,0)m
(4) Using the notation in Remark|4.19 : forv=q—1,
(bo)p s 1 (Tsp1)5 = ( 1) (b0) 7" *(T3.0-1) 1
and for v = q,
(b0)p+1 (T3.p)5 ™ = (=1)7(00) 1" *(T3,9)m
Proof. By Remark [{.1] and conditions (L;), (L2), we have
(bo)i" =+ = (bo)]" " =0.
(1) If 0 < v < 2, the proof is immediate.

(2) If v = z, by (4.41]), we have
(bo)b 1 (Ts2:)0""
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= (1" (0)p 1 [ (00)7 7 ((A20)p = 2Do(Ar0)} ) + (=) q(bo)!41 Do(As )5
= (bo)i"* [ (-1 (@) + (=17 (20000051 Do(Ar0)} — albo)2 1 Do(Aro)y,) |
+ (=1)%g(00)% 1 (bo)p 4 Do (Ar )
We replace (bo)2, 1 (bo) "> by —((bo)?,1)?, and by we obtain
(o)1 (T 2205 = (=1)(b0) (T )k, + (=1)%a(00)2 Do ((00) 7 (o))

+ (=1)924((b0)2 1) Do (bo) 24y = 0.

(3) Let z < v < ¢ — 2. By induction we assume (T3,2+v71)£+1 = 0. We use
Proposition [2.5] E 5l and replace (bo)erl by 1. For u > z,

(=P (T304t =A+B+C+ D,
where
A= [(b0)7 (A u)} = (Bo) P (Mg )b o+ (Z 1) ()7 (Az0)3]
B = (=1 [a(bo)?1 Do(Ara)i ™ 4 -+ (=1)*(p — u)(bo)l1 1 Do (A1,2)5 ],
C = (=1)" 4 u(bo) Do (Ar,0)p + -+ (=) 2(b0)"~* Do(Aru-2)p)
D = (=1)" |5 (bo) P75 - (b0 (b0) 7
We use the assumption in Lemma to obtain
A+ D
= (=1)%(bo) " (=1)P T (Ts,u)p, + (b0) 7" *mDo(Aru—2),
(o)1 *(Do)p 2 [(Az w—z—1)p — mDo(A1u—z—1)p + Do(Aru—1)5 | + ...
(bo) 1" (00) 0 g | (=174 ((A20)p = mDo(A1,0)}
(= 2)Do(Ar,: )5 )]
= (00)7"* [a(b0)? 41 Do a2y = (@ = 1)(00)%2D0(Aru—s-1)hy
(=17 (p = w)(b0)41 Do(Ar0)h | = (b0)7 ™"~ mDo(A1,u2-1);
— (00T (o) [ (M2 s2)} = mDo(Ar ) + -
o DolAnu-2)it '] 4+ = (00)7 7 (B [(=1)7F(A20)h = mDo(Au0)}
+ (=1 (u = 2= 1)Do(A )]
— (bo) 7t [_Q(bO)Iz)leDO(Al,ufzfl)}n +- 4+ (p— U)(bO)ZqDO(Al,l):n}
o (2 1) (bo) P B mDy (A )}
(=) (00) 7 2 0)h o | ((A2)h = mDo (A1)} + Do(Ar )5 )]

(=) (00)7 T2 00)h s |~ (Az0)p — mDo(Aro)y + 2Do(Ar ) ) |

_|_
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+ (=1 (bo)"” u+2[ (b0)241Do(A1,2) 5, — (¢ = 1)(b0)2 2 Do(Ar 1),
+ ( 1)u+z+1( )m u+1mDO(A1 1)
+ (1) (b)) (o) 4o [(Az,o)}) —mDy(A1,0)p + Do(A )5
+ (=1)" 5 (bo) 7T q(bo)? 1 Do (A1), + (1)1 (b1) 7~ “mDo(A1,0),, -
We transform B as
B = (=1)"(b0)" 41 Do (o)} 2 (b0)" ™" 4 -+ + (b0} s (b0)7
o (b2 2 (B0 + - + (B0 (o))
+(-1)"(a - 1><bo>';+2Do((bo>5+2<bo>1"-“+2 e (bo)l g (b0)T

+ (00)% 1 (bo), + -+ - + (bo)h, (b0)2+1>
+ ...

(=1)"(q = w2+ 1)(bo) Do (o)} 4o (00) 7™ + (50)71 (o)
+ (o) (b0)74 )
+(=1)"(q = u+2)(b0) 41 Do [(b0)4]
= (=1)"(bo)p+2 [q(b0)5+1D0(b0)T_u+l + (g = 1)(bo)2 42 Do (bo) 7+
ot (g =t 2+ 1)(00)EDolbo) 7 +
(=1)(00) 4.1 [ (B0} Dolbo) == + (g = 1) (b0)22 Do (bo) "~
(=) (o) g1 |a(b0)? 41 Dobo) '
(=1)" [a(B0)? 41 (Bo) 7" + (g = 1) (Bo)aa (B) "2 4.
(g =+ 2+ 1)(b0)2(b0)" | Do(bo)hyz + -
(=1)"q(b0)% 41 (b0)1" " Dolbo)t 441
(-
(
(
(-

2

1)"2|g(00)?+1 Do (6041 + (4 = 1)(b0)?+2 Do(bo)’ +
q—u+z+1)(bo)}Do(bo)’ o

0= u+2)(b0)0 Do(b0)2 | (b0

1)"2]q(00)%.1 Dobo)t + (4 = 1)(bo) 2 Do(bo)i—; + - -
(g =+ 2+ 1)(00); Do(b0)21 | (b0)2o + -
(=1)"2[g(b0)" 41 Dolbo)2s | (oo -

We use (Tz,), = 0 to transform C,

N
N
N
N
N
.
N
N
N
N
N
N

C=(-1)""u [(bO)erz(bO)i"*“H Ao (B0)h g (00) T A (B0)h g1 (b)Y
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(o) o)y + -+ + (001 (o) | Do(bo)?
(=) (1 = 1) [ (B2 (b0) " - (b0 (b0) T
o (b0)? 41 (b0) -+ (b0)2(bo)? | Do(Bo)2 o + -
(=) (2 1) [ (00)] 2 (B0) T + (5021 (o)

o (b0)?42(00) %1 | Dolbo)? + (—1) 2 [(b0)21]* Do (bo) -

We know by the induction assumption that (T3,)L, = 0, if v < u — 1 and we
know that (T5.), = 0.

We have obtained a linear form in (bo)? ., 2 < k < g+1, Do(bo)j, (2+1 < k < p).
Then we verify that the coefficients cancel and we obtain the proof. ]

4.4. Study of Ky ,, v > p— 1. We assume now that (L;) and (Lg) are satisfied
and that
Kyp=-=Kzp2=0.

and we use Proposition |2.5
We have p — 1 <u <m — z (¢ > 2). First considering u = p — 1, by (4.11) and
(4.10)), we have that for 1 <k —1<p—1,

(o p2)t + (ap2) " + Do( p 1) " + Dy p 1) = (Kap1)"
and
(Ka,p-1)" = (b0)" 1 p—1 + Do(1,p—1)" — Do( 1 p2)" ' + ...
+ (=1 Do(,0)" + (b1)PAo,o—1 -

In this section, we will not write the details of the terms in D;, when they are
deduced automatically from the terms in Dy. Then

(Kzp-1)” = (=1)* | (00)2 41 (F0-1)" = ()4 hq-2)" + -
(=1 (bo)} 1 (,0)" | + (b0)] 41 (,p1 )7
o (b0)0 2 | ~(ap-2)" T+ (b0)T (Roomn)!] + -
(o) [(= )T (A )+ (o) (Roemn)!
+ (=D 00) " (M00)!| + (~1P T pDo(h,0)! + (51" (Ro,e1)
If (bo)p 1 # 0, we set
(Hp-1)p =0, and (A ,-1)0"" = (=1)P"'mDo(A1,0), - (4.42)
By Definitions and we obtain
(Kzp 1) = (=1)% [ (B0)? 4o (A1 -2)p + -+ (1) (Bo)}_y (A1,1)}
+ (@ p—1)E T+ (=1)PpDo(A1,0)p + (1) (Ao,z-1), -
By and Consequence
(Kap—1)h = (=1)F {(Az,o); - mDo(Al,o),l)} = (=1)**NT5..),, - (4.43)
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If (bo)b,, = 0, then (T3.),, = 0. By Example we obtain (bg)? , = 0.
If (bo)h o # 0, using Lemma we obtain

(=1)** <T3,2+1)1177, = (1P (Asy0), -

Therefore,
(K2p b= (D) (Te1)m,
In general, if (bo)p 1 =+ = (bo)p 1 = 0, (bo)p,pq # 0, and 1 <k < g — 2, then
(K2p-1)h = (=1 (T oqn)s, - (4.44)
Now we set
(Wl q,l)l = (Mg, (Fp-1)ht =0, (4.45)
Then by definitions (3.40) and -,

(K2p-1)1,
- (*I)ZH [(b0)5+1(A1 q—l)1 - (b0)£+2(A1 q—2)1 ot (*1)q(b0)gf1(/\1,1)$n
+ (bo)p o (A p2)it + -+ (=1)%(bo), (A1 )5 + (=1)PpDo (A1 o),
= (=1)"pDo(A10), - = 0.
Next we verify : if k # p, m, then

(K2p-1)f = (=1)"(A20);, = 0, (4.46)
(Kaop—1)" = (9 p—2)" + (bo)™ 2 p—1 + Do(h p—1)" + (b1)" Ao -1,

(Kzp1)ip = (— 1) (o) 4+ (=) [(B0)7 7 (A1)l + -
—1)7 (bt (A2

O)pa(Arp- 2>P“+ o (1) (bo) oy (A
oAt 1) -+ (“1)TDo(Ar )| + (b1)™ (Aoe1),

= (- [(%,H)ﬁfl - (e

+ (
+ (b
-D

m

If (b )p+1 # 0, we set
(1)t = (Ao )b+ (= 1)P(T3.2),,

So that

(bO)p+1(K2,p71);n1 = (_1)Z+1(T3,z)}n
and

(K2,p—1)m = (K2p-1)} - (4.47)
If (bo)b o # 0 and (bo)y,; = 0, we set
(o a)b = (Mo )0t = ()PP (T o)

So that

(bO)p+2(K2,p—1)z = (*1)Z(T3,z—1)}n

and
(K2p—1)m = (K2p-1)p - (4.48)
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By definition (£.42), (24 p—1)5" = (=1)P"'mDg(A1,0)}. Therefore,
(Kap1)y = (=17 (. —1)’”Jr1
—1F[G0)7 T (A g+ o (1P G0)T (4,2))
bo) 1 (p1)ht — (bo)p+2(ﬁf’i,p—2)§+1 + ...
—1)%(bo)m_1 (A 2415 + (=1)9qDo (e )T
b1)™(No,z-1),, -
By @3,
(Kap-1)p = (=1 [(a1)bT = (Ag2)2 T + (=1)Pmi(bo)2 1 Do(Ad0), -
If (bo)b 1 # 0, we set
(o 1)t = (M) + (=1)*m(bo)?4 1 Do(Ar0),-

So that
(Kz,p,l)zT =0. (4.49)

With the notation (bo)ngl 7é 07 K27p71 = (—1)z+1(T3’Z) and (KQ p— 1) = KQ p—1)
we obtain

Kop1=Kopal. (4.50)
If (bo)pyy == (bo)byy =0, (bo)b 4 sy # 0, and k > 0, we obtain
f(?,p—l = (1)U Ts ) s (4.51)

Kop 1= fA(Q,p—J-
Now, we consider p < u < m — 3 and assume that
(K2p-1)l =+ = (K2u-1)" = 0.
We set
(Au)p=0 and ()0 = (1) 'mDo(Aru-pi1),-
Then we obtain (cf. (4.10))
(K2u)p = (F2u-1)p + (00)"(#1,u)p + Do(1,u)? + (01)"(Aou—q),p
= (=" N ou—p)p + (b0)"(H1,u), + Do(u )}
— Do(hu1)5" 4+ 4 (=1)PT Do (A u—pi1)y
+ (=1 (bo) g -
It follows from that
(Ko)% = (—1P ()} = Az pet)} + mDo(As )]

If (bo)?., # 0, we set

p+1
(_1)p_ [(%,u*p);}) - (A2,ufp+1);17 + mD0<A1,ufp+1)zla = (_1)Z+1(T3,ufq+1)71na

and for 0 < u < ¢ — 3, we set

(au)p = (M2us1)p + (= 1) (Tsutzt1)m — mDo(A1,us1), -

So that
(Klu)g = (71)Z+1(T3,u—q+1)$n~ (452)
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For u > ¢, we set (@ )., =0 and (# 4, )P = 0. Then by ([#.29) and ([4.10) we

have
(Kzly = (=177 [ (Foamp) = Az )]
For 0 < u < q—3, we set (% 4)p, = (A2,u+1)m,- So that
(K27u)fn =0. (4.53)
‘We have
(K2.u)m = (P2.u—1)p + (00)™ (1 u) ., + Do ,u)m + (b1)™ (Aou—q)m
= (1) N (Gou—g)h " = (00)™ (ML) + - -
+ (=1)9gDo(Aru—gr1)5 " + (00) T (A u—1)p, + -
+ (=1 (b)) (Ar,0) -
From (4.32)),
(Kza)is = (1) ()i = (a1
If (bo)p y # 0 and z < u < p — 3 we set
(a)b = (Ao 1)55 4+ (=1 (Ts 051, -
So that
(Kau)m = (1) (Tsu—gi1)m, = (K2,4)b. (4.54)
By (4.28),
(Kau)y = (-1t [(%,u—q)gﬂ — (A2,u—q+1)£+1:| +(_1)pm(b0)§+1DO(A1,u—p+1)zl).
For 0 < u < p— 3 we set
(42{2,11)Z+1 = (A2,v+1)£+1 + (—l)zm(bo)zz)—o—lDO(Al,v—z-&-l);,l; .

So that
(K2.u), = 0. (4.55)

Also we obtain
(K2u)8 =0 fork#p,
(Kau)p =0 fork+#p,m,
(Kzu)jy =0 for j#p,m, j#7,
(Kau)j = (Kau)y for j #p,

and
Koy = (1" T30 gr1)n1I- (4.56)
Example 4.22. (K ,,-3)" = (—1)*T1(T5 , o)L 1.
If (bo)piy = -+ = (bo)byy = 0, and (bo);" ., # 0, we proceed as before to
obtain

Koy = (=1 " (T g - (4.57)
Example 4.23. Ky, 3 = (=1)* T4k (T3, o)L 1.

Proposition 4.24. We assume (Ly) and (L2) are satisfied. If 0 <u <m — 3 and
Ky, =0, then for 0 < u < p— 2 we have (T3,)L = 0.
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5. NECESSITY OF (L), (L2) AND (T3,)L, =0

We know the necessity of (by)] = 0 by Proposition We state the necessity
of (T,0), = 0 when z = 1,2. Let
k=D +K{ DI DY+ ()P (To0)p DY P 4+ Ky 4 + K,
First for z =1 and m = 2p — z = 2p — 1, we have
-2 -2
p-2_m-2
p—1 m
because p —1 < F as 2p —2 < 2p— 1.
We proceed as in Proposition [3.8] We consider the expansion

Ugy = exp(i x1&1 + w(x)fr%)) Z Yk(gc)g;k/m‘

0<k<ko
We apply K and we obtain the coefficients of Yp:
exp(... ) [§72(Dop)™ + Ka0&1" %] = 0.
We choose
(Dov)™ = (=1)P"H(Tn,0),,
and a complex root different from 0 such that Re Dy > 0,
1/m
Doty = (1) [(Too)}] /"

We continue the identification to 0 of the coefficients of uy, and we obtain an
expansion where Y} is free and an analogous expansion 7'y, where the first coef-
ficient is free and can be chosen different from O.

As before, we deduce that (Tgyo); is necessary in order that the Cauchy problem
be well posed in C*°.

We obtain also that if (Tg,o); # 0, then the Cauchy problem is well posed in
=

Case z = 2: We know that (cf. (3.32)),

(K1,g41)8 = (=1)P(T11),,
k=D ()P, DYDY e K o DY ek K e K

m?

p—2 m-—2 2p—4

p—1 m  2p-2
We choose

—2

p=2 .
up, = exp(im& +¥(@)er ) D Valwlg T
0<k<ko
We identify kug, and obtain

(D(W)mff(p_Q) + (_1)17_1(Tl,l);(Do?ﬁ)p_lff%4 + Kz,off(p_Z) =0,
(Do) 2P~ 4 (—1)P~Y(T1,1) L (Dot)P ™ + (—1)P+ (Tn0)L = 0.

We choose Dy as a complex root different from 0, Re Dy > 0 and obtain
successively that (Ty)), and (T711), = (—1)P(bo), = 0 are necessary in order that
the Cauchy problem is well-posed in C*°.

We obtain also that if (Tz), # 0 or (T1,1), # 0, then the Cauchy problem is

well-posed in ’y% .
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FIGURE 1. Lines with m =6, p=4 and ¢ = 2

Recall that z > 2,
K= ) K&

g<u<m—1

Kj= Y Kj.&&r™" for j>1.

O0<usm—j

Let g, = =4 = 1— —L—. These indices permit to characterize Gevrey’s classes

m—u m

of indices L-. Let i, =
Gju 7>

m—u

Example 5.1. Let

P e
sq p ’ sP— q+1’
il,q =D, Z.1,1)—1 =q+1,

m— 2 1

92,0 = y 92,m-3 = 3

m 3
. m . 3
100 =—, 12.m-3= —.
2,0 5 2m=3 =5

We order the indices by decreasing order that corresponds to the decreasing
slopes of the lines joining the origin to the point (m —u, m —u— j) in the Newton’s
diagram.

So we consider the slopes 4 ,, such that ¢+1 < ¢; ,, < p, and the slopes i3 ,, such
that 3/2 < iz, < m/2. We remark that ¢+ 1 > 3/2. We proceed by induction on
the slopes. We consider the lines (j,u) joining 0 and the point (m — u,m — u — j)
of the diagram.

We assume that for all the points of the diagram above this line we have corre-
sponding K ,» = 0, then we obtain that for all the point of the diagram on the line
(4,u), we have the corresponding Ky i» = 0, and specially K;, = 0. See Figure

5.1. Index i and the corresponding K. Let g <u <m —1. If g =1, then

g=p= " 2lp1=q+1=t1m 2=2>015=11,,1=1,
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Kig= (=1 bo)?,.. . K1 p1=(bo)?,...K1p=Kim1=1.
If ¢ > 2, then
g=p= - 2hp1=q+120,=q> i1 m2=2>01,m1 =1,
Kiq = (=171 (00)} = (=P (T1 ),

Kip1 = (=1)%bo)? = (=" (T1,:-1),

K m z (T2 Z)TTL
Kyip = (-1)7" ((bo)§+1 + (bo)p+1) = (1) ; :
( 0)p+1
~ T }n
Kimo= *<(b0)g+1 + (bo)m—l)f = (—1)2M ,
<b0)p+1
I?l,m—l =1.
If ¢ =1, then
. m ’ . ' . .
2,0 = E Z . 2m—-3 =12 p—2 = 1221 = 5 2 iom_g = l2p 1 = 1’

Koo = (—1)p(T2,0);,I7 Kypo= (_1)p(T2,p72)11;I; Komo=1.
If ¢ > 2, then

. m 2¢+1
20 = 5

> 2, 0=q+1>1d3, 1= >

q+2 qg+1
> 2 2*T>22,p 1= "5 > ...

> 99 m—d =2 >y m_3 = 3 > 49 m—2 = 1,
Koo = (—1)p(T2,0);,I, Ky, 2= (—1)p(T2,272)}DI,
K2 z—1 — (_1)p(T2,z—1)117]a cee 7K2,p—2 = (_1)p(T2,p—2)11)I'
If (bo); 1 # 0, then

Ts..)L T2p—2)m
K2,p—1 = (71)Z+1( 5 ) [a ey K2,m—3 = (71)Z+1( o 2) I7 K2,m—2 =1.
(bo)p-‘rl <b0>p+1

If (o), = 0, then we obtain analogous result for (bo)p,q = -+ = (bo)p s = 0,
(b0)5+k+1 7é 0.
We will adapt the calculus if ¢ = 1. For ¢ > z — 3, we consider the following two

cases:
Case (1) m < 6:

. q+3 5 4
2>Z30—§2 213,p—3:TZ © 213 m— 5—5 13, m— 1=3
Kzo= (=11 Ts1),l, Kspg=(—1)""(Tsp2),1.

Case (2) m > 6:
3
Q+1>Z30—%Z © 20353 %2"'2i3,7rt—6:2
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Kz = (—1)p+1(T3,1)11;I, o, K3 3= (_1)p+1(T3,p—2);117I
If ¢ < 2 — 3, then
Case (1) m < 6:

. m . . +3
130 = — =213, ¢q3=q+1>1i3, 3= ars
3 3
. . 4
> 213,m75: g 213,m74:§>
Kso=(—1)P"NTs1)pl, Kz.g-s3=(=1)""(Ts.q-2)p1,

s Ky = (1P (T poa), 1,

Z 23 —q-3=q+12>...

> i3m—6 = 2 > 13,m—5 = 3 > 13,m—4 = 3
We will study K4, and K, , in the same manner.
Theorem 5.2. Conditions (L1), (L) and the conditions

(T30)m == (T3p—2), =0
are necessary for the Cauchy problem to be well-posed in C*.
The proof uses the following Lemmas.
Lemma 5.3. If z < g+ 2, then condition (L1) and the conditions
(Tz,o);, == (T2,272)11) =0

are necessary for the Cauchy problem to be well-posed in C*°.
Proof. i1,4 = p and K; 4 = (bg)}I = 0 is necessary (cf. Proposition . Then we
consider 1 <k <z—1, Ky g4k, 2—2<k <z-1, Kop. If ¥ =2k — z, then

. m—k  m+z—-2k

laf = —5— = 5 =itk =P —k. g

Example 5.4. Let i1,441 =22, =p—land ¢; 1 =q¢+1=1y, o.

i30 = 5 < ¢+ 1 because z < ¢+ 3.

If z =2, then iz g = i1 441 = p+ 1 and (To0), = (bo)s = 0 are necessary.

If z=1, then iz = § = 2;;1 >p—1=i1441 and (Tho),, = 0 is necessary. In
general, as before, by the construction of an asymptotic expansion and the method

of the closed graph inequality and induction.
Kigr1=Ko0=0,..., K15, 1=Kz, 2=0.

In other words (Ly) and (T), = --- = (I%,2—2), = 0 are necessary.

Lemma 5.5. If z < q + 2, then the conditions
Kl,p == Kl,m—Q = 07
Ky, 1= =Kopo=--=Kypu 3=0m=>6, Kzpg=--=K3;ms
m 2 2q — 2, qul,() == q—1,2+2>

are necessary for the Cauchy problem to be well-posed in C*.
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In other words we have the necessity of (L), (L2) and (T3 .)s, = -+ = (T3 p—2)}, =
0. If m > 6, then we have complementary conditions that we will stated in part 2.

Proof. Let ¢ > 2. (The case ¢ = 1 was studied in the Lemma ) First, we remark
that 45,1 = 2%—“ > q. We have

K=Dp"+ Ky, D 'D} '+

we consider the corresponding asymptotic expansion of the index ¢z .1 and we
obtain the necessity of

Ky, 1=0.
We look at
2qg — k'
S= D = o 2 e =2, 0SK <24,
p=q2 Zlprk=q— k> 2i1m2=2 0<k<qg—2. U

We let k' = 2k, so 2q¢ — k' = 2q — 2k, and i1 p+k = 92+ . Moreover if m < 6,
then iz g = % < 2;if m > 6, then 0 < k" <m —6 and i39 > iz p» > i3,m—6 = 2.
If m > 2w, then iy0 > -+ 2 ty,m-20 = 2. If m > 2¢ — 2, then
Z.qfl,O >z Z‘qfl,qu+2 = Z‘qfl,erZ =2.
Using asymptotic expansions and induction as before, we obtain the necessity of
Kip=Ksy,=0, Kimo=Koma=0.

and directly of Ko ;-3 =0 (i2,m—3 = 2).
In other words, from (3.43)), (4.20), (4.50), (4.56), we have the necessity of (L;),

(La), (T3,,)L, = -+ = (T3 p—2)1,, and of the terms
m=>6, Kzg=-=K3zme=0=K3,_5=0=K3,,_4,
Typ—2)u
m>2q—2, Kyi10= =Ky 1:42=0=K, 1, = (_1)zM
(bo)p+1

(if (bo)py1 7# 0)-

Example 5.6. Let k = 0, k' =, i1, = i2,. Then the conditions (T27z)11, =0 and
K1 p = 0 are necessary in order that the Cauchy problem be well-posed in C*.
Proof. Note that
k= D'+ K1, DfD{ " 44 Ky o1 D'+ K2, DEDY 2 e K 1 Do DY
Then
m—1 2p—2z-—1
3 3
On the line with slope (¢—1)/¢ in Newton’s diagram. we have 2 points correspond-
ing to K, and Ko ,.
We apply k to the expansion

1p=¢q, 131 = <q.

up = e Etv(@8)g T [Yo + Yi&, Va4 ]
to obtain the first term of k[u],

g—1 —1)

‘ a2l m(g-1) ~ =
€1$1€1+¢(w7€1)§1 B 51 a [(Dow)m + Z‘qilKl,p(Dow)p + T + K272(D01’Z})z] !
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Then we cancel the coefficient of Yy (m =p+q¢=2p — 1),
(Dow) =% + 17 Ky p(Doth)P " 4+ + Ko . = 0

by the choice of Dy, Re Doyp > 0, (if IA(LP #0 or IA(ZZ # 0); after we obtain the
other Y; and we can choose Yy # 0 satisfying an ordinary differential equation

DYy + (... )Yy =0.

As in Proposition [3.8] considering the closed graph inequality we obtain the neces-
sity of K1 and (Tb,z), = 0. O

We know that
Kip=(=1)7""((bo)2,, + (bo)) -
So by (3.43), we have also obtained the necessity of (13,:);,, = 0 and (T5.)2™ = 0.
Since
(T2 )5 = (—1)*(T22),,

we have obtained the necessity of T, , = 0.

If I/(\'g,z % 0 or I?l’p # 0, then we interpret the asymptotic expansion, by the
mean of a Fourier integral operator and we obtain that the Cauchy problem is
well-posed in fyq%l.

Lemma 5.7. If z > q+ 2, then conditions (L1) and (Ta)} = -+ = (Tz.—2), =0
are necessary for the Cauchy problem to be well-posed in C>°. Moreover
K3o=-= K3, ¢-3=0;
and if z > q+ 3, then
K3,0 == KB,z—q—4 = 0;
and if z >z —q+1, then
KSz—q,O =0.
In other words, we have also the necessity of (Ts0), = ... (T3,z—g+2) = 0.

Proof. The scheme of the calculus is the same as for Lemma[5.3] Then we consider

i37k = mTik and

—k
m3 >q+1 <= k<z—q-3
As above, we obtain the necessity of
K3o=-=K3. ¢-3=0,
Kyo=-=K4,q-4=0,

Lemma 5.8. If z > q + 2, then we obtain the necessity of

Kip==Kima2=0,
Ky, 1= =Kyp o=-=Kpp_3=0,
(m>6) Ks, qo=-=K3;3_6=Ksms5=2K3m_4.
In other words we have the necessity of (L1), (L2) and (T3,)L, =+ = (Tap—2)i, =

0.
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In other words, we have also the necessity of

(Ts,0) = - (T5,2—q42), = 0.
The proof is similar to that of Lemma [5.5f We remark that i3 . 442 > 2 and then
proceed as before.

Concluding remarks. (1) In a forthcoming article we can simplify section 4.
We follow the order decreasing of the indexes i ; and by induction we obtain the
necessity of the Kj ; and of the conditions (L). We do the calculations easily by
Newton’s diagram.

(2) In this and the forthcoming article, the construction of the asymptotic expan-
sion slightly modified gives in the Gevrey class theorem of existence and uniqueness.
Some examples of this process can be found in [27].

(3) In the forthcoming article we study the case p = q.
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