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APPROXIMATE CONTROLLABILITY OF EULER-BERNOULLI
VISCOELASTIC SYSTEMS

ZHIFENG YANG, ZHAOSHENG FENG

Abstract. In this article, we study an Euler-Bernoulli viscoelastic control

system which is dissipative due to the presence of the viscoelastic term. The

main feature which distinguishes this paper from other related works lies in
the fact that we no longer impose traditional conditions such as complete

monotonicity and decay property on the kernel function g. Without loss of

generality, we study the system in the case of g ≡ 1. By means of the duality
principle and the Hahn-Banach theorem, we show that the system with g = 1

is approximately controllable in the appropriate function space.

1. Introduction

With the development of applied mathematics and materials science, more and
more research has been devoted to the study of the mathematical models of vis-
coelastic materials which have both instantaneous elastic response and sustained
internal friction effects under the action of a load. The mechanical response of these
materials is to be influenced by the previous behavior of the materials themselves.
This memory property is usually described by an integro-differential operator in
mathematics. So, the so-called viscoelastic model is usually an integro-differential
equation with various initial-boundary conditions. A number of theoretical issues
concerning mathematical theory of viscoelasticity have received considerable atten-
tion, for example, see [5, 6, 11, 12, 13, 18] etc. In particular, the Hilbert uniqueness
method (HUM), proposed by Lions in [13, Chapter 4] has been widely used in the
study of the exact controllability of distributed parametric systems.

Let Ω be a bounded domain with a smooth boundary Γ, and T > 0 be the
time variable. Lions [13] considered the exact controllability of the Euler-Bernoulli
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system
utt + ∆2u = 0, (x, t) ∈ Ω× (0, T ),

u(x, 0) = u(0)(x), ut(x, 0) = u
(0)
t (x), x ∈ Ω,

u =

{
0, (x, t) ∈ Γ\Γ0 × (0, T ),
v0, (x, t) ∈ Γ0 × (0, T ),

∆u =

{
0, (x, t) ∈ Γ\Γ0 × (0, T ),
v1, (x, t) ∈ Γ0 × (0, T ),

(1.1)

by using the HUM framework, where Γ0 is a part of the boundary Γ, and the two
control functions v0 and v1 act on the boundary. Here, v0 and v1 are dependent
each other. Up to now, how to use a single control function (v0 = 0 or v1 = 0) to
achieve the exact controllability of system (1.1) is still an interesting problem. Ex-
ponential decay rates for the solutions of Euler-Bernoulli equations with boundary
dissipation occurring in the moments only was investigated by Lasiecka [11], and
the exact controllability of the Euler-Bernoulli equation with boundary controls for
displacement and moment was established by Lasiecka and Triggiani [12].

For the study on the control problem of the viscoelastic heat equation

ut −∆u+
∫ t

0

g(t− s)∆u(x, s)ds = f(u), (1.2)

we refer the reader to [17, 9, 22, 21, 7, 23, 1, 4] and the references therein. For exam-
ple, the controllability and identification problem for heat equations with memory
were studied by Pandolfi [17]. Based on the theory of interpolation, Ivanov et al [9]
showed that the one-dimensional heat equation with memory cannot be controlled
to rest for large classes of memory kernels and controls. The approximate con-
trollability of a parabolic equation with memory was studied by using the duality
method [22]. As we know, the null controllability property of the heat equation with
a memory term fails for a special set of initial data [7]. The null controllability of
the heat equations with memory was also discussed by developing a new weighted
Carleman inequality [21, 4]. Moreover, a characterization of the set of nontrivial
initial data which can be driven to zero with a boundary control was described in
[23].

For the hyperbolic equation with memory

utt −∆u+
∫ t

0

g(t− s)∆u(x, s)ds = f(u), (1.3)

the reachability, observability and controllability of a viscoelastic string were pre-
sented in [15, 14]. The exact controllability and the boundedness of the control func-
tion was shown in [19]. Moreover, the memory-type null controllability property
of vicoelastic wave equations with exponential decay kernel function was consid-
ered by the duality principle and an observability inequality [10]. The approximate
controllability of semilinear beam equations with impulses, memory and delay was
studied in [2].

It is notable that the results on equation (1.3) are derived usually through im-
posing some restrictions on the kernel function g, such as completely monotonicity
or decay properties. If g ≡ 1, that is, the kernel function has no support and it
does not satisfy the conditions like those in the above references, the methods used
in the previous works become invalid for equation (1.2) or (1.3).
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In this article, we consider an Euler-Bernoulli viscoelastic control system

utt + uxxxx −
∫ t

0

uxxxx(s)ds = 0, (x, t) ∈ (0, π)× (0, T ),

u(x, 0) = u(0)(x), ut(x, 0) = u
(0)
t (x), x ∈ (0, π),

u(0, t) = uxx(0, t) = uxx(π, t) = 0, t ∈ (0, T ),

u(π, t) = v(t), t ∈ (0, T ),

(1.4)

where u(0), u
(0)
t are the given initial data, and v is the control function acting on

the boundary. Compared with system (1.1), this viscoelastic system contains an
integro-differential term (i.e. the viscoelastic term with the kernel function g ≡ 1)
and only one control function v. Because of the role of the viscoelastic term,
the energy of system (1.4) is not conserved, but decayed. As we know, the so-
called observability inequality is the key to prove the exact controllability in the
HUM framework. But, the conservation of energy provides a great convenience to
establish the observability inequality. So, from the perspective of system control,
it is difficult for us to make effective control to the system behavior if we can not
catch the energy which is decayed. Moreover, in the process of estimating the norm
of the solution for system (1.4), the viscoelastic term is very difficult to be absorbed
by other global integral term. It always stays in the side of the local integral term.
Thus, the classical Carleman estimate can not be attained. As a result, one can not
use the local term to control the global term. So, the problem becomes challenging
while we study the exact controllability of system (1.4).

Inspired by this fact and the results described in [4, 11, 12, 13, 21], in this
study we first attempt to work on the expression of the solutions to the associated
dual system of the viscoelastic system, then explore the observability inequality by
making appropriate estimates to the solutions, and finally prove the approximate
controllability. Before processing our discussions, we have to figure out two issues:
(i) Which functional space is the dual system represented in? and (ii) can we
return to some classical functional spaces in which we can deal with the approximate
controllability of the original system? Fortunately, there have been helpful attempts
to such a problem. For example, the duality method was applied to consider the
approximate controllability of a perturbed wave system [20, 22]:

yt − yxx − εutxx = 0, (x, t) ∈ (0, 1)× (0, T ),

y(x, 0) = y(0)(x), yt(x, 0) = y
(0)
t (x), x ∈ (0, 1),

y(0, t) = 0, y(1, t) = h(t), t ∈ (0, T ),

(1.5)

and a partial integro-differential system

yt − yxx +
∫ t

0

y(x, s)ds = 0, (x, t) ∈ (0, 1)× (0, T ),

y(x, 0) = y(0)(x), x ∈ (0, 1),

y(0, t) = 0, y(1, t) = h(t), t ∈ (0, T ),

(1.6)

respectively. As we know, the eigenvalues of classical heat equations are less than
zero and have the negative infinity as the limit. This property guarantees that
the solutions of the heat equation will naturally decay. In other words, after a
sufficiently long time, the solutions of the heat equation will naturally decay to
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zero without any control to the system. For the viscoelastic parabolic system, like
(1.6), the eigenvalues of its principal operator are also less than zero. But there is
a class of eigenvalues which tend to zero, while others tend to −∞. Thus, this fact
motivates us to think of adding an appropriate control to the system, then we might
able to obtain the approximate controllability of the viscoelastic parabolic system.
It is worth mentioning that the method used in [20, 22] works in the case where
the system possesses negative eigenvalues. It may not be applicable for the case
of positive eigenvalues or complex eigenvalues which arise from some systems like
(1.4) as we had attempted. Nevertheless, it provides us some useful insight which
encourages us to analyze system (1.4) by appropriately expanding the function
space.

The rest of this article is organized as follows. In Section 2, we introduce some
preliminary definitions and state our main results. In Section 3, by defining a
Hilbert space Hθ,k for all θ ∈ R and k ≥ 0, we derive the expression of solutions of
the corresponding dual system and present the properties of solutions in the space
Hθ,k. Section 4 is dedicated to the approximate controllability of system (1.4) by
means of the duality method and the Hahn-Banach theorem in the product space
Hθ,k ×Hθ,k.

2. Preliminaries and statement of main results

Throughout this article, we use the standard Lebesgue space Lp(Ω) and Sobolev
space Hs(Ω) with the usual norms ‖ · ‖p and ‖ · ‖Hs(Ω), respectively. We denote
Hs

0(Ω) by the complete space of C∞c (Ω) according to the norm ‖ · ‖Hs(Ω), and
(·, ·)L2(Ω) by the inner product in L2(Ω). In addition, X and V are the state
space and the control space, respectively. O(x; d) denotes a neighbourhood with
the center x and the radius d.

To make the paper sufficiently self-contained and present our discussions in a
straightforward manner, let us briefly recall the definitions of exact controllability
and approximate controllability of system (1.4).

Definition 2.1 (Exact controllability). The control system (1.4) is said to be ex-
actly controllable if, for the given target state

(
u(1)(x), u(1)

t (x)
)
∈ X, there exist t∗ ∈

(0, T ) and a control function v(t) ∈ V which drives the solution
(
u(x, t; v), ut(x, t; v)

)
from the initial state

(
u(0), u

(0)
t

)
to the prescribed target, that is,

(u(x, t∗; v), ut(x, t∗; v)) =
(
u(1)(x), u(1)

t (x)
)
.

Definition 2.2 (Approximate controllability). The control system (1.4) is said to
be approximately controllable if, for the given target state

(
u(1)(x), u(1)

t (x)
)
∈ X,

there exist t∗ ∈ (0, T ), ε > 0 and a control function v(t) ∈ V which drives the solu-
tion

(
u(x, t; v), ut(x, t; v)

)
from the initial state

(
u(0), u

(0)
t

)
to the ε-neighbourhood

of the prescribed target; that is,

(u(x, t∗; v), ut(x, t∗; v)) ∈ O
((
u(1)(x), u(1)

t (x)
)
; ε
)
.

Denote by Φ the input mapping of the control system (1.4). We know that
the well-posedness of system (1.4) can be established by using the Faedo-Galerkin
method [3, 16], and Φ is unique under the given initial data

(
u(0), u

(0)
t

)
and the

control v. The range of Φ is the so-called reachable set:

R(T ) :=
{

(u(T, x), ut(T, x)) : u(T ) = u
(
T ;u(0), u

(0)
t , v

)}
,
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where T is a given positive constant, and u is the solution of system (1.4). The
controllability can also be described from the perspective of the input mapping [8].

Definition 2.3. The control system (1.4) is said to be approximately controllable
if the reachable set R(t) is dense in the state space X. Moreover, system (1.4) is
said to be exactly controllable if R(T ) ≡ X.

Remark 2.4. Let

R̃(T ) := {(ut(T, x),−u(T, x)) : u(T ) = u
(
T ;u(0), u

(0)
t , v

)
}.

Note that the mapping Γ : R(T )→ R̃(T ) given by(
u(T, x), ut(T, x)

)
7→
(
ut(T, x),−u(T, x)

)
is an isomorphism, and the two sets R(T ) and R̃(T ) are equivalent in the sense of
algebraic structure.

For any integrable function u : (0, π) → R, the n-th Fourier coefficient (with
respect to the orthonormal basis {sin(nx)}n≥1 of L2(0, π)) of u is defined by

ûn =
∫ π

0

u(x) sin(nx)dx,

from which it is easy to deduce that

u(x) =
∞∑
n=1

ûn sin(nx).

For all θ ∈ R and k ≥ 0, let

Hθ,k :=
{
u : (0, π)→ R :

∞∑
n=1

n2θ|ûn|2e−kt <∞
}
,

endowed with the inner product

(u, v)θ,k =
∞∑
n=1

n2θûnv̂ne
−kt.

Then Hθ,k becomes a Hilbert space. Furthermore, when k2 > k1 > 0, we have

0 < e−k2ϕnt < e−k1ϕnt < 1.

So, we obtain
∞∑
n=1

n2θ|ûn|2e−k2t <
∞∑
n=1

n2θ|ûn|2e−k1t <
∞∑
n=1

n2θ|ûn|2,

which implies
Hθ,0 ⊂ Hθ,k1 ⊂ Hθ,k2 .

In addition, for any θ ≥ 0, one can verify that H−θ,k is the dual space of Hθ,k with
respect to the central space H0,k. Hence, we can define the dual product of the
product spaces H2

θ,k := Hθ,k ×Hθ,k and H2
−θ,k := H−θ,k ×H−θ,k by

〈(u1, u2), (w1, w2)〉H2
θ,k,H

2
−θ,k

:=
∫ π

0

(u1w1 + u2w2)dx.
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Remark 2.5. From the equivalence of norms, one can verify that

H0,0 = L2(0, π), H1,0 = H1
0 (0, π),

H−1,0 = H−1(0, π), H2,0 = H2(0, π) ∩H1
0 (0, π).

To prove our main result, we need the following technical lemma.

Lemma 2.6 ([22, 20]). Let {βn} and {λn} be two sequences of complex numbers
such that

∞∑
n=1

|βn| <∞, Reλn < Θ,

for each n ≥ 1 and some number Θ ∈ R. Assume that the λn’s are pairwise distinct,
and that

∞∑
n=1

βne
λnt = 0

for a.e. t ∈ (0, T ). Then βn = 0 for all n ≥ 1.

Denote

V :=
{
ϕ ∈ L2(0, T ) :

∫ T

0

ϕ(t)etdt = 0
}
. (2.1)

Now, we are ready to summarize our main result.

Theorem 2.7 (Approximate controllability). There exists a boundary control func-
tion v(t) ∈ V such that system (1.4) is approximately controllable in H2

θ,k, where
θ < − 7

2 and k > 0.

3. Spectral properties

In this section, we are concerned with an explicit solution of the following ho-
mogeneous initial boundary value problem

utt + uxxxx −
∫ t

0

uxxxx(s)ds = 0, (x, t) ∈ (0, π)× (0, T ),

u(x, 0) = u(0)(x), ut(x, 0) = u
(0)
t (x), x ∈ (0, π),

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0, t ∈ (0, T ),

(3.1)

by the method of separation of variables. Then we discuss its properties in the
space Hθ,k.

3.1. Explicit solutions in the homogeneous case. Let u(x, t) = T (t)X(x) 6= 0.
Substituting it into the first equation of system (3.1), we have

T ′′(t)∫ t
0
T (s)ds− T (t)

=
X(4)(x)
X(x)

.

Obviously, this identity is true if and only if both sides are equal to the same
nonzero constant µ. That is,

X(4)(x) = µX(x), x ∈ (0, π),

T ′′(t) + µT (t)− µ
∫ t

0

T (s)ds = 0, t > 0.
(3.2)
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By the boundary value conditions in (3.1), it induces an eigenvalue problem,

X(4)(x) = µX(x), x ∈ (0, π),

X(0) = X(π) = X ′′(0) = X ′′(π) = 0.
(3.3)

A direct calculation yields

µ = µn = n4, n = 1, 2, . . . ;

Xn(x) = B0 sin(nx), n = 1, 2, . . . ,

where B0 is an arbitrary constant.
Consider the resulting integro-differential equation

T ′′n (t) + µnTn(t)− µn
∫ t

0

Tn(s)ds = 0, t > 0. (3.4)

Taking differentiation on both sides of equation (3.4) with respect to the variable
t, we obtain a 3rd order linear differential equation

T ′′′n (t) + µnT
′
n(t)− µnTn(t) = 0 (3.5)

with the characteristic equation

λ3 + µnλ− µn = 0, µn > 0. (3.6)

In view of the fact that σ = y + z is a solution to the equation

σ3 − 3yzσ − (y3 + z3) = 0, (3.7)

for equation (3.6), we can try to find the solution in the form λ = y + z. So, the
coefficient µn must satisfy

µn = −3yz = (y3 + z3).

To find y and z satisfying the above equation, we note that y3z3 = −µ3
n/27 and

y3 + z3 = µn, so y3 and z3 must be the roots of the quadratic equation

r2 − µnr −
µ3
n

27
= 0. (3.8)

Let

∆n :=
∆
4
,

where ∆ = µ2
n + 4

27µ
3
n is the discriminant of equation (3.8). Since ∆ > 0, two

solutions of equation (3.8) can be expressed as

r1,2 =
µn
2
±
√

∆n.

By making the transformations:

yn =
(µn

2
+
√

∆n

)1/3

, zn =
(µn

2
−
√

∆n

)1/3

,

three sets of solutions of equation (3.6) are

λ1,n = yn + zn, (3.9)

λ2,n = yne
2πi/3 + zne

−2πi/3 = −1
2

(yn + zn) + i

√
3

2
(yn − zn), (3.10)

λ3,n = yne
− 2πi

3 + zne
2πi/3 = −1

2
(yn + zn)− i

√
3

2
(yn − zn). (3.11)
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Hence, the general solution of equation (3.5) reads

Tn(t) = B1e
λ1,nt +B2e

− t2 (yn+zn) sin
(√3

2
(yn − zn)t

)
+B3e

− t2 (yn+zn) cos
(√3

2
(yn − zn)t

)
= B1e

ϕnt +B2e
−ϕn2 t sin

(√3φn
2

t
)

+B3e
−ϕn2 t cos

(√3φn
2

t
)
,

(3.12)

where ϕn = yn + zn, φn = yn− zn, and Bi (i = 1, 2, 3) are arbitrary constants. So,
direct calculations give

T ′′n (t) = B1ϕ
2
ne
ϕnt +

(
B2

ϕ2
n − 3φ2

n

4
+B3

√
3ϕnφn

2

)
e−

ϕn
2 t sin

(√3φn
2

t
)

+
(
B3

ϕ2
n − 3φ2

n

4
−B2

√
3ϕnφn

2

)
e−

ϕn
2 t cos

(√3φn
2

t
)
.

(3.13)

Substituting (3.12) and (3.13) into (3.4) yields

A1e
ϕnt +A2e

−ϕnt2 sin
(√3φn

2
t
)

+A3e
−ϕnt2 cos

(√3φn
2

t
)

+A4 = 0,

where

A1 =
(
ϕ2
n + µn −

µn
ϕn

)
B1,

A2 =
(ϕ2

n − 3φ2
n

4
+ µn +

2ϕnµn
ϕ2
n + 3φ2

n

)
B2 +

(√3ϕnϕn
2

− 2
√

3φnµn
ϕ2
n + 3φ2

n

)
B3,

A3 =
(ϕ2

n − 3φ2
n

4
+ µn +

2ϕnµn
ϕ2
n + 3φ2

n

)
B3 +

(2
√

3φnµn
ϕ2
n + 3φ2

n

−
√

3ϕnϕn
2

)
B2,

A4 =
(B1

ϕn
− 2
√

3φnB2

ϕ2
n + 3φ2

n

− 2ϕnB3

ϕ2
n + 3φ2

n

)
µn .

Note that λi,n (i = 1, 2, 3) are the eigenvalues of equation (3.6), then we can derive
that Ai = 0 (i = 1, 2, 3). This indicates that A4 = 0. Since µn = n4 > 0, there
holds

B1 =
2
√

3ϕnφn
ϕ2
n + 3φ2

n

B2 +
2ϕ2

n

ϕ2
n + 3φ2

n

B3.

Thus, the solution of the second equation of (3.2) reads

Tn(t) =
(2
√

3ϕnφn
ϕ2
n + 3φ2

n

B2 +
2ϕ2

n

ϕ2
n + 3φ2

n

B3

)
eϕnt

+B2e
−ϕnt/2 sin

(√3φnt
2

)
+B3e

−ϕnt/2 cos
(√3φnt

2

)
.

Taking differentiation gives

T ′n(t) =
(2
√

3ϕ2
nφn

ϕ2
n + 3φ2

n

B2 +
2ϕ3

n

ϕ2
n + 3φ2

n

B3

)
eϕnt

+
(
− ϕn

2
B2 −

√
3φn
2

B3

)
e−ϕnt/2 sin

(√3φnt
2

)
+
(√3φn

2
B2 −

ϕn
2
B3

)
e−ϕnt/2 cos

(√3φnt
2

)
.
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Thus, we can deduce the following lemma.

Lemma 3.1 (Representation of solution). If the initial data u(0) and u
(0)
t can be

expanded to the following sine series

u(0)(x) =
∞∑
n=1

cn sin(nx), u
(0)
t (x) =

∞∑
n=1

dn sin(nx), (3.14)

where {cn}n≥1 and {dn}n≥1 are two sequences of complex numbers, then the solu-
tion of system (3.1) can be expressed as

u(x, t) =
∞∑
n=1

f(cn, dn, ϕn, φn, t) sin(nx), (3.15)

where

f(cn, dn, ϕn, φn, t) = (D1cn +D2dn)eϕnt + (D3cn +D4dn)e−ϕnt/2 sin
(√3φnt

2

)
+ (D5cn +D6dn)e−ϕnt/2 cos

(√3φnt
2

)
with

D1 =

(
6− 10

√
3
)
ϕ4
nφn +

(
6− 6

√
3
)
ϕ2
nφ

3
n

−9
√

3ϕ4
nφn − 30

√
3ϕ2

nφ
3
n − 9

√
3ϕ5

n

,

D2 =
−4
√

3ϕ3
nφn − 12

√
3ϕnφ3

n

−9
√

3ϕ4
nφn − 30

√
3ϕ2

nφ
3
n − 9

√
3ϕ5

n

,

D3 =

(
3ϕ3

n + 3ϕnφ2
n

) (
ϕ2
n + 3φ2

n

)
−9
√

3ϕ4
nφn − 30

√
3ϕ2

nφ
3
n − 9

√
3ϕ5

n

,

D4 =
−6
(
ϕ2
n + φ2

n

) (
ϕ2
n + 3φ2

n

)
−9
√

3ϕ4
nφn − 30

√
3ϕ2

nφ
3
n − 9

√
3ϕ5

n

,

D5 =

(
−5
√

3ϕ2
nφn − 3

√
3φ3

n

) (
ϕ2
n + 3φ2

n

)
−9
√

3ϕ4
nφn − 30

√
3ϕ2

nφ
3
n − 9

√
3ϕ5

n

,

D6 =
4
√

3ϕnφn
(
ϕ2
n + 3φ2

n

)
−9
√

3ϕ4
nφn − 30

√
3ϕ2

nφ
3
n − 9

√
3ϕ5

n

.

3.2. Properties of solutions in Hθ,k. In this subsection, we will deduce some
properties of the solutions in the Hilbert space Hθ,k.

Proposition 3.2. Assume that θ ∈ R. If the initial data u(0), u
(0)
t ∈ Hθ,0 and the

given condition (3.14) in Lemma 3.1 holds, then we have

u ∈ C(R+;Hθ,2), ut ∈ C(R+;Hθ,2).

Furthermore, if θ > 7/2, then we have
∞∑
n=1

n3 (|D1cn +D2dn|+ |D3cn +D4dn|+ |D5cn +D6dn|) <∞

and uxxx(0, ·) ∈ C(R+, Hθ,1).
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Proof. Since u(0), u
(0)
t ∈ Hθ,0, we have
∞∑
n=1

n2θ|cn|2e−2ϕnt <

∞∑
n=1

n2θ|cn|2 <∞,

∞∑
n=1

n2θ|dn|2e−2ϕnt <

∞∑
n=1

n2θ|dn|2 <∞.

From 0 < e−2ϕnt < 1 and the boundedness of sine (cosine) functions, it is easy to
see that

n2θ |f(cn, dn, ϕn, φn, t)|2 e−2ϕnt

≤ 2n2θ
∣∣(D1cn +D2dn)eϕnt

∣∣2 e−2ϕnt

+ 2n2θ

∣∣∣∣∣(D3cn +D4dn)e−ϕnt/2 sin
(√3φnt

2

)∣∣∣∣∣
2

e−2ϕnt

+ 2n2θ
∣∣∣(D5cn +D6dn)e−ϕnt/2 cos

(√3φnt
2

)∣∣∣2e−2ϕnt

≤ 2n2θ
(
|D1cn +D2dn|2 + |D3cn +D4dn|2 + |D5cn +D6dn|2

)
≤Mn2θ

(
|cn|2 + |dn|2

)
,

where M is a positive constant.
Similarly, there exists another positive number M1 such that

n2θ |f ′(cn, dn, ϕn, φn, t)|
2
e−2ϕnt ≤M1n

2θ
(
|cn|2 + |dn|2

)
.

Hence, we have u ∈ C(R+;Hθ,2), ut ∈ C(R+;Hθ,2). Moreover, by (3.15), we can
obtain

uxxx(0, t) =
∞∑
n=1

(−n)3f(cn, dn, ϕn, φn, t).

If θ > 7/2, owing to
∞∑
n=1

n3
∣∣(D1cn +D2dn)eϕnt

∣∣ e−ϕnt
=
∞∑
n=1

n3 |D1cn +D2dn|

≤
( ∞∑
n=1

n−2(θ−3)
)1/2( ∞∑

n=1

n2θ |(D1cn +D2dn)|2
)1/2

,

∞∑
n=1

n3
∣∣∣(D3cn +D4dn)e−ϕnt/2 sin

(√3φnt
2

)∣∣∣ · e−ϕnt
≤
∞∑
n=1

n3|D3cn +D4dn|

≤
( ∞∑
n=1

n−2(θ−3)
)1/2( ∞∑

n=1

n2θ|(D3cn +D4dn)|2
)1/2

,
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and
∞∑
n=1

n3
∣∣∣(D5cn +D6dn)e−ϕnt/2 cos

(√3φnt
2

)∣∣∣e−ϕnt
≤
∞∑
n=1

n3 |D5cn +D6dn|

≤
( ∞∑
n=1

n−2(θ−3)
)1/2( ∞∑

n=1

n2θ|(D5cn +D6dn)|2
)1/2

,

we can deduce that
∞∑
n=1

n3 (|D1cn +D2dn|+ |D3cn +D4dn|+ |D5cn +D6dn|) <∞.

and uxxx(0, ·) ∈ C(R+, Hθ,1). �

4. Approximate Controllability

In this section, we study the approximate controllability of system (1.4). To this
end, we first consider the dual system of (1.4) as follows:

wtt − wxxxx +
∫ T

t

wxxxx(s)ds = 0, (x, t) ∈ (0, π)× (0, T ),

w(x, T ) = w(T )(x), wt(x, T ) = w
(T )
t (x), x ∈ (0, π),

w(0, t) = w(π, t) = wxx(0, t) = wxx(π, t) = 0, t ∈ (0, T ).

(4.1)

Assume that w(T ) and w
(T )
t can be expanded as

w(T )(x) =
∞∑
n=1

c̃n sin(nx), (4.2)

w
(T )
t (x) =

∞∑
n=1

d̃n sin(nx), (4.3)

respectively, where {c̃n}n≥1 and {d̃n}n≥1 belong to C. Similar to Lemma 3.1, the
solution of system (4.1) can be expressed as

w(x, t) =
∞∑
n=1

f̃(c̃n, d̃n, ϕn, φn, t) sin(nx), (4.4)

where

f̃(c̃n, d̃n, ϕn, φn, t) = (D1c̃n +D2d̃n)eϕn(T−t)

+ (D3c̃n +D4d̃n)e−
ϕn(T−t)

2 sin
(√3φn(T − t)

2

)
+ (D5c̃n +D6d̃n)e−

ϕn(T−t)
2 cos

(√3φn(T − t)
2

)
,

and Di (i = 1, 2, 3, 4, 5, 6) is the same as given in Lemma 3.1. So, by using an
analogous argument as shown in Proposition 3.2, we obtain the following result.
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Proposition 4.1. Assume that θ ∈ R. If (w(T ), w
(T )
t ) ∈ H−θ,0 ×H−θ,0, then

w ∈ C(R+;H−θ,2), wt ∈ C(R+;H−θ,2).

Furthermore, if θ < −7/2, then we have
∞∑
n=1

n3
(
|D1c̃n +D2d̃n|+ |D3c̃n +D4d̃n|+ |D5c̃n +D6d̃n|

)
<∞,

and wxxx(π, ·) ∈ C(R+, H−θ,1).

Without loss of generality, we assume that the initial data u(0) = u
(0)
t = 0

in system (1.4). We can obtain the following lemma regarding the approximate
controllability of system (1.4).

Lemma 4.2. Assume that for all v = v(t),∫ T

0

v(t)
(
wxxx(0, t)−

∫ T

t

wxxx(0, s)ds
)
dt = 0 (4.5)

holds if and only if u(T ) = u
(T )
t = 0. Then system (1.4) is approximately controllable

in the product space Hθ,k ×Hθ,k(k ≥ 0).

Remark 4.3. The significance of this lemma is somehow similar to the uniqueness
theorem in the HUM framework. It will play a critical role in the proof of the
approximate controllability of system (1.4).

Remark 4.4. From the physical point of view, the term

wxxx(0, t)−
∫ T

t

wxxx(0, s)ds

represents the traction acting on the boundary, and its impact on the system is
equivalent to wxxx(0, t), see [14].

Proof of Lemma 4.2. Let w be the solution of the dual system (4.1). Multiplying
both sides of the first equation of system (1.4) by w and then integrating it on
(0, π)× (0, T ) leads to∫ T

0

∫ π

0

uttw dxdt−
∫ T

0

∫ π

0

uxxxxw dxdt+
∫ T

0

∫ π

0

(∫ t

0

uxxxx(x, s)ds
)
w dxdt = 0.

Using the initial value, terminal value and boundary value, by integration by parts,
we have∫ T

0

∫ π

0

uttw dxdt =
∫ π

0

∫ T

0

u(x, t)wtt(x, t) dt dx+
∫ π

0

(utw − uwt) |T0 dx

=
∫ π

0

∫ T

0

u(x, t)wtt(x, t) dt dx

+
∫ π

0

(
ut(T, x)w(T )(x)− u(T, x)w(T )

t (x)
)
dx,

∫ T

0

∫ π

0

uxxxxw dxdt =
∫ T

0

∫ π

0

uwxxxx dx dt+
∫ T

0

(uxxxw − uwxxx)|π0dt

+
∫ T

0

∫ π

0

(uxwxxx − uxxxwx) dx dt
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=
∫ T

0

∫ π

0

uwxxxx dx dt+
∫ T

0

(uxxxw − uwxxx)|π0dt

+
∫ T

0

(uxwxx − uxxwx)|π0dt

=
∫ T

0

∫ π

0

uwxxxx dx dt+
∫ T

0

v(t)wxxx(0, t)dt,

and ∫ T

0

∫ π

0

(∫ t

0

uxxxx(x, s)ds
)
w dxdt

=
∫ T

0

∫ π

0

(∫ T

t

wxxxx(x, s)ds
)
u dx dt+

∫ T

0

v(t)
∫ T

t

wxxx(0, s)dsdt.

So, we further deduce that∫ π

0

∫ T

0

u(x, t)
(
wtt − wxxxx +

∫ T

t

wxxxx(x, s)ds
)
dt dx

+
∫ π

0

(
ut(T, x)w(T )(x)− u(T, x)w(T )

t (x)
)
dx−

∫ T

0

v(t)wxxx(0, t)dt

+
∫ T

0

v(t)
∫ T

t

wxxx(0, s)dsdt

= 0.

Note that w is the solution of the dual system (4.1). Then we have∫ π

0

(
ut(T, x)w(T )(x)− u(T, x)w(T )

t (x)
)
dx

=
∫ T

0

v(t)
(
wxxx(0, t)−

∫ T

t

wxxx(0, s)ds
)
dt,

which can be rewritten as

〈
(
ut(T, x),−u(T, x)

)
,
(
w(T )(x), w(T )

t (x)
)
〉H2

θ,k,H
2
−θ,k

=
∫ T

0

v(t)
(
wxxx(0, t)−

∫ T

t

wxxx(0, s)ds
)
dt.

(4.6)

In view of Definition 2.3, to prove the approximate controllability of system (1.4)
in H2

θ,k (k ≥ 0), we just need to show that the reachable set R(T ) is dense in H2
θ,k

in the sense of isomorphism.
By way of contradiction, suppose that R(T ) is not dense in H2

θ,k. By the Hahn-
Banach theorem, there exists

(0, 0) 6= (w(T ), w
(T )
t ) ∈ H2

−θ,0 (4.7)

such that

〈(ut(T, x),−u(T, x)), (w(T )(x), w(T )
t (x))〉H2

θ,k,H
2
−θ,k

= 0,

for all (u(T, x), ut(T, x)) ∈ R(T ). By (4.6) we have∫ T

0

v(t)
(
wxxx(0, t)−

∫ T

t

wxxx(0, s)ds
)
dt = 0.



14 Z. YANG, Z. FENG EJDE-2019/19

However, according to condition (4.5), it is equivalent to

(w(T ), w
(T )
t ) = (0, 0).

This is a contradiction to (4.7). So, R(T ) is dense in H2
θ,k. This implies that system

(4.1) is approximately controllable in H2
θ,k. �

Proof of Theorem 2.7. We first claim that, if θ < − 7
2 and

(
w(T ), w

(T )
t

)
∈ H2

−θ,0,

then there exists a control function v(t) such that R(T ) is dense in H2
θ,k. In fact,

by Lemma 4.2, if ∫ T

0

v(t)
(
wxxx(0, t)−

∫ T

t

wxxx(0, s)ds
)
dt = 0

for all v(t) ∈ V , we only need to prove that (w(T ), w
(T )
t ) = (0, 0). Furthermore, by

(4.2) and (4.3), it is equivalent to prove that c̃n = d̃n = 0 for all n. However, for
all v(t) ∈ span{et}⊥, we have(

v(t),
(
wxxx(0, t)−

∫ T

t

wxxx(0, s)ds
))

L2(0,T )
= 0,

which implies that

wxxx(0, t) ∈ span{et}⊥⊥ = span{et}.
Hence, by (4.4), there exists a real constant C such that

∞∑
n=1

(−n3)f̃(c̃n, d̃n, ϕn, φn, t) = Cet (4.8)

for a.e. t ∈ (0, T ). Let

b1,n = (−n3)(D1c̃n +D2d̃n),

b2,n = (−n3)(D3c̃n +D4d̃n),

b3,n = (−n3)(D5c̃n +D6d̃n).

By Proposition 4.1, equation (4.8) becomes
∞∑
n=1

[
b1,ne

ϕn(T−t) + b2,n Im
(
e−

ϕn(T−t)
2 +i(

√
3φn(T−t)

2 )
)]

+
∞∑
n=1

b3,n Re
(
e−

ϕn(T−t)
2 +i(

√
3φn(T−t)

2 )
)
− Cet = 0.

Take τ = T − t and b0 = −CeT . Then we have
∞∑
n=1

[
b1,ne

ϕnτ + b2,n Im
(
e−

ϕnτ
2 +i(

√
3φnτ
2 )

)]
+
∞∑
n=1

b3,n Re
(
e−

ϕnτ
2 +i(

√
3φnτ
2 )

)
+ b0e

−τ = 0.

for a.e. τ ∈ (0, T ). Since θ < −7/2 and
(
w(T ), w

(T )
t

)
∈ H2

−θ,0, by Proposition 4.1,
we deduce that

∞∑
n=1

(|b1,n|+ |b2,n|+ |b3,n|) <∞.
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According to Lemma 2.6, we have bi,n = 0 (i = 1, 2, 3). Moreover, it is easy to
verify that the system

(−n3)(D1c̃n +D2d̃n) = 0,

(−n3)(D3c̃n +D4d̃n) = 0,

(−n3)(D5c̃n +D6d̃n) = 0.

has only the zero solution. Thus, we obtain c̃n = d̃n = 0 and
(
w(T ), w

(T )
t

)
=

(0, 0). So far, we have found a control function v ∈ V such that the reachable set
R(T ) is dense in H2

θ,k, where θ < − 7
2 and k > 0. Consequently, system (1.4) is

approximately controllable in the Hilbert space H2
θ,k with θ < − 7

2 and k > 0. �

Remark 4.5. It is notable that our approach can also be extended to the dis-
tributed parameter systems with positive eigenvalues of the principal operators.
For the case of parabolic control systems with negative eigenvalues of the principal
operators, we only need to consider the Hilbert space Hθ,0, which is equivalent to
the space Hα in [22].
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