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NONLOCAL APPROACH TO PROBLEMS ON LONGITUDINAL
VIBRATION IN A SHORT BAR

LUDMILA S. PULKINA, ALEXANDER B. BEYLIN

Abstract. In this article, we consider a problem with dynamic nonlocal con-
ditions for a forth-order PDE with dominating mixed derivative. This problem

is closely related to vibration problems, in particular, to longitudinal vibra-

tion in a short bar. The existence and uniqueness of a generalized solution are
proved.

1. Introduction

We study a nonlocal problem for a forth-order PDE with dominating mixed
derivative

Lu ≡ σ(x)
∂2u

∂t2
− ∂

∂x

(
a(x)

∂u

∂x

)
− ∂

∂x

(
b(x)

∂3u

∂t2∂x

)
= f(x, t). (1.1)

This equation is closely related to the problem of longitudinal vibration of a short
thick bar. Vibration problems are of great importance in engineering and have
been studied by many researches. The majority of works deals with second order
hyperbolic equation. Initial-boundary problems for wave equation has been studied
comprehensively and became classical [19].

However this model is not strictly correct for vibration of a thick short bar as
is shown by Rayleigh [18]. But many machine components may be interpreted just
as a thick short bar. For a more precise analysis of the longitudinal vibrations
in a thick short bar we need to take into account the transverse deformations.
Mathematical model of longitudinal vibration considering the effect of transverse
movements in a thick short bar is called Rayleigh bar and is based on the equation
(1.1). Some results of studying of initial-boundary problems for (1.1) can be find
in [3, 6].

In this article we do a next step to make this model more precise. To this end we
propose to define more exactly boundary conditions from the following reasoning.
The assumption on dimension of the bar suggests that there exists certain con-
nection between values of a required solution in different boundary points. Such
effect was found by Steclov [20] for heat equation. A relation connecting values of
a solution to a PDE in various boundary points is a nonlocal condition.

Thus we suggest a nonlocal approach to study longitudinal vibration of a short
thick bar. Note that nonlocal approach is in agreement with survey and results of
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experiments analyzed in [2] and turn out to be often more precise in mathematical
modeling. Motivated by this, we consider the problem with nonlocal dynamical
boundary conditions [1, 5, 7, 8, 9, 10, 11, 12, 14, 16, 21].

Note that there is close connection between nonlocal boundary conditions of the
form to be dealt with below and nonlocal integral conditions [4].

2. Statement of the problem

Consider the longitudinal vibration of a thick short bar. Suppose that the bar
represents the solid of revolution around the axis Ox. Denote by u(x, t) the longi-
tudinal displacements subject to determination. Let the exciting distributed force
be f(x, t). Suppose that the left and right ends of the bar, x = 0 and x = l, are
attached to the immovable ground with the help of the point masses M1,M2 and
springs. In addition we take into account the resistance of medium. The latter
implies the presence of ut in the boundary conditions. Lagrangian of Rayleigh bar
is constructed in [17, p. 158-184]. Hamilton variational principle and elementary
manipulation lead to the equation

σ(x)utt − (a(x)ux)x − (b(x)uttx)x = f(x, t), (2.1)

where

σ(x) = ρ(x)A(x), a(x) = A(x)E(x), b(x) = ρ(x)ν2(x)Ip(x),

A(x) is the cross-section area, ρ(x) is the mass density of the bar, E(x) is Young’s
modulus, Ip(x) is the polar moment of inertia, ν is the Poisson coefficient.

The main object of this article is the following problem: find in QT = (0, l) ×
(0, T ) a solution to (2.1) satisfying the initial conditions

u(x, 0) = 0, ut(x, 0) = 0 (2.2)

and the nonlocal boundary conditions

a(0)ux(0, t) + b(0)uxtt(0, t) =

α11u(0, t) + α12u(l, t) + β11ut(0, t) + β12ut(l, t) +M1utt(0, t),

a(l)ux(l, t) + b(l)uxtt(l, t) =

α21u(0, t) + α22u(l, t) + β21ut(0, t) + β22ut(l, t)−M2utt(l, t).

(2.3)

Some particular cases of the problem (2.1)–(2.3), namely when α12 = α21 = βij =
0 and for special form of coefficients of (2.1), are considered in [6]. In [3] the
generalized solvability of (2.1)–(2.3) when α12 = α21 = βij = 0 is proved. The
main goal of our paper is to determine conditions under which there exists a unique
solution to the problem (2.1)–(2.3), that is to the problem with nonlocal dynamical
conditions.

To prove solvability of nonlocal problem (2.1)–(2.3) we suggest an approach
which enables us to use many well-known techniques. We define a notion of a weak
solution for (2.1)–(2.3) and show that under some assumptions on data there exists
a unique weak solution.

It is convenient here to list main assumptions on the data.
(H1) a, b, σ ∈ C1[0, l], a(x) ≥ a0 > 0, b(x) ≥ b0 > 0, σ(x) ≥ σ0 > 0;
(H2) f, ft ∈ C(Q̄T );
(H3) Mi > 0, i = 1, 2.
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Remark 2.1. Positiveness of coefficients a, b, σ and Mi is a consequence of physical
significance of them.

Remark 2.2. We consider homogeneous initial conditions only to simplify calcu-
lations and without loss of generality.

Denote

Γ0 = {(x, t) : x = 0, t ∈ [0, T ]}, Γl = {(x, t) : x = l, t ∈ [0, T ]},
W (QT ) = {u : u ∈W 1

2 (QT ), uxt ∈ L2(QT ), ut ∈ L2(Γ0 ∪ Γl)},
V (QT ) = {v : v ∈W (QT ), v(x, T ) = 0}.

Now we define a solution of the problem using a standard method [13, p. 92]:
integrating by parts an identity

∫ T
0

∫ l
0
(Lu − f)v dx dt = 0 where u(x, t) satisfies

(2.1)–(2.3), v ∈ C2(QT ) ∩ C1(Q̄T ) we obtain the equality∫ T

0

∫ l

0

(−σ(x)utvt + a(x)uxvx − b(x)uxtvxt) dx dt

+
∫ T

0

v(0, t)[α11u(0, t) + α12u(l, t) + β11ut(0, t) + β12ut(l, t)]dt

−
∫ T

0

v(l, t)[α21u(0, t) + α22u(l, t) + β21ut(0, t) + β22ut(l, t)]dt

−M1

∫ T

0

ut(0, t)vt(0, t)dt−M2

∫ T

0

ut(l, t)vt(l, t)dt

=
∫ T

0

∫ l

0

fv dx dt.

(2.4)

Note that all integrals in (2.4) exist also for u ∈ W (QT ), v ∈ V (QT ). Hence, (2.4)
is suitable for a definition of a generalized solution to the problem (2.1)–(2.3).

Definition 2.3. A function u ∈W (QT ) is said to be a weak solution to the problem
(2.1)–(2.3) if u(x, 0) = 0 and for every v ∈ V (QT ) the identity (2.4) holds.

3. Main results

Theorem 3.1. Under assumptions (H1)–(H3) there exists a unique weak solution
to problem (2.1)–(2.3) if

α11ξ
2
1 + 2α12ξ1ξ2 − α22ξ

2
2 ≥ 0, ξ = (ξ1, ξ2) ∈ R2.

Proof. Uniqueness. Let u1, u2 be two weak solutions of (2.1)–(2.3). Then u =
u1 − u2 satisfies u(x, 0) = 0 and the identity∫ T

0

∫ l

0

(−σ(x)utvt + a(x)uxvx − b(x)uxtvxt) dx dt

+
∫ T

0

v(0, t)[α11u(0, t) + α12u(l, t) + β11ut(0, t) + β12ut(l, t)]dt

−
∫ T

0

v(l, t)[α21u(0, t) + α22u(l, t) + β21ut(0, t) + β22ut(l, t)]dt

−M1

∫ T

0

ut(0, t)vt(0, t)dt−M2

∫ T

0

ut(l, t)vt(l, t)dt = 0

(3.1)
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holds. Let

v(x, t) =

{∫ t
τ
u(x, η)dη, 0 ≤ t ≤ τ,

0, τ ≤ t ≤ T
(3.2)

where τ ∈ [0, T ] is arbitrary. After integrating (3.1) by parts we obtain∫ l

0

[σu2(x, τ) + av2
x(x, 0) + bu2

x(x, τ)]dx

+ α11v
2(0, 0)− α22v(0, 0)v(l, 0) +M1u

2
t (0, τ) +M2u

2
t (l, τ)

= −2β11

∫ τ

0

u2(0, t)dt− 2(β12 − β21)
∫ τ

0

u(0, t)u(l, t)dt

+ 2β22

∫ τ

0

u2(l, t)dt− 2(α12 + α21)
∫ τ

0

u(0, t)u(l, t)dt.

(3.3)

Under the assumptions of this Theorem,

α11v
2(0, 0)− α22v

2(l, 0) + 2α12v(0, 0)v(l, 0) ≥ 0, M1u
2
t (0, τ) +M2u

2
t (l, τ) > 0.

We consider the right side of (3.3) and estimate each term. To this end we use
Cauchy inequality and obtain

2
∣∣ ∫ τ

0

u(0, t)u(l, t)dt
∣∣ ≤ ∫ τ

0

[u2(0, t) + u2(l, t)]dt, (3.4)

2
∣∣ ∫ τ

0

u(0, t)v(l, t)dt
∣∣ ≤ ∫ τ

0

[u2(0, t) + v2(l, t)]dt. (3.5)

Thus from (3.3),∫ l

0

[σu2(x, τ) + av2
x(x, 0) + bu2

x(x, τ)]dx

≤ (2|β11|+ |β12|+ |β21|+ |α12|+ |α21|)
∫ τ

0

u2(0, t)dt

+ (2|β22|+ |β12|+ |β21|)
∫ τ

0

u2(l, t)dt+ (|α12|+ |α21|)
∫ τ

0

v2(l, t)dt.

To proceed with the estimate, we derive some inequalities. As for any u ∈W (QT )
representations

u(0, t) =
∫ 0

x

uξ(ξ, t)dξ + u(x, t), u(l, t) =
∫ l

x

uξ(ξ, t)dξ + u(x, t)

hold we easily get the inequalities

u2(0, t) ≤ 2l
∫ l

0

u2
x(x, t)dx+ 2u2(x, t), u2(l, t) ≤ 2l

∫ l

0

u2
x(x, t)dx+ 2u2(x, t).

Integrating both with respect to x over (0, l) we obtain

u2(zi, t) ≤ 2l
∫ l

0

u2
x(x, t)dx+

2
l

∫ l

0

u2(x, t)dx, i = 0, 1, z0 = 0, z1 = l. (3.6)

Using the same procedure we obtain

v2(l, t) ≤ 2l
∫ l

0

v2
x(x, t)dx+

2
l

∫ l

0

v2(x, t)dx.
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From ((3.2)) it follows that

v2(x, t) ≤ τ
∫ τ

0

u2(x, t)dt, v2
x(x, t) ≤ τ

∫ τ

0

u2
x(x, t)dt,

then

v2(l, t) ≤ 2lτ
∫ τ

0

∫ l

0

u2
x(x, t) dx dt+

2τ
l

∫ τ

0

∫ l

0

u2(x, t) dx dt. (3.7)

Denote A = |α12|+ |α21|, B =
∑2
i,j=1 |βij |,

m0 = min{a0, b0, σ0}, M = 2 max{Bl +AlT,
B +AT

l
}.

Taking into account (3.6) and (3.7) , from (3.3) we obtain

m0

∫ l

0

[u2(x, τ) + v2
x(x, 0) + u2

x(x, τ)]dx ≤M
∫ τ

0

∫ l

0

(u2 + u2
x) dx dt

and therefore

m0

∫ l

0

[u2(x, τ) + u2
x(x, τ)]dx ≤M

∫ τ

0

∫ l

0

(u2 + u2
x) dx dt.

Thus from Gronwall’s inequality, we have u(x, τ) = 0 for all τ ∈ [0, T ]. Hence there
exists at most one weak solution to the problem (2.1)–(2.3).
Existence. We prove the existence part in several steps. First, we construct ap-
proximations of the generalized solution by the Faedo-Galerkin method. Second, we
obtain a priori estimates to guarantee weak convergence of approximations. Finally,
we show that the limit of approximations is the required solution.

Let wk(x) ∈ C2(Ω̄) be a basis in W 1
2 (Ω). We define approximations as follows,

um(x, t) =
m∑
k=1

ck(t)wk(x) (3.8)

and shall seek ck(t) from relations∫ l

0

(
σumttwj + aumx w

′
j + bumxttw

′
j

)
dx+M1u

m
tt (0, t)wj(0)−M2u

m
tt (l, t)]wj(l)

+ [α11u
m(0, t) + α12u

m(l, t) + β11u
m
t (0, t) + β12u

m
t (l, t)]wj(0)

− [α21u
m(0, t) + α22u

m(l, t) + β21u
m
t (0, t) + β22u

m
t (l, t)]wj(l)

=
∫ l

0

fwjdx.

(3.9)

For every m the relations (3.9) represent a system of second-order ODE’s with
respect to ck(t) and after substituting (3.8) we can rewrite it in the form

m∑
k=1

[Akjc′′k(t) +Bkjc
′
k(t) +Dkjck(t)] = fj(t), (3.10)

where

Akj =
∫ l

0

(σwkwj + bw′kw
′
j)dx+M1wk(0)wj(0) +M2wk(l)wj(l);

Bkj = β11wk(0)wj(0) + β12wk(l)wj(0)− β21wk(0)wj(l)− β22wk(l)wj(l);
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Dkj =
∫ l

0

aw′kw
′
jdx+ α11wk(0)wj(0) + α12wk(l)wj(0)

− α21wk(0)wj(l)− α22wk(l)wj(l);

fj(t) =
∫ l

0

f(x, t)wj(x)dx.

Adding the initial data,
ck(0) = 0, c′k(0) = 0 (3.11)

we obtain Cauchy problem for (3.10). Now we show that Cauchy problem (3.10)–
(3.11) is solvable.

Consider a matrix A = (Akj)mk,j=1 and verify that it is positive definite. To this
end we introduce a quadratic form

q =
m∑

k,j=1

Akjξkξj ,

where ξk, ξj are coefficients of sums ξ =
∑m
i=1 ξiwi(x). Rearrange this quadratic

form using representations of the coefficients Aij :

q =
m∑

k,j=1

∫ l

0

(σwkwjξkξj + bw′kw
′
jξkξj)dx+M1wk(0)wj(0)ξkξj +M2wk(l)wj(l)ξkξj .

After changing the order of summing and integrating we obtain

q =
∫ l

0

(
σ|ξ|2 + b|ξx|2

)
dx+M1|ξ(0)|2 +M2|ξ(l)|2.

We know that σ, b, M1,M2 are positive. Now note that quadratic form q vanishes
only if ξ = 0. Hence ξk = 0 ∀k = 1, . . . ,m by virtue of linearity independence
of wk(x). Consequently the matrix A is positive definite and the system (3.10) is
solvable with respect to c′′k(t). The conditions of Theorem imply that the coefficients
of (3.10) are bounded and f ∈ L2(QT ). These facts guarantee the solvability of
Cauchy problem (3.10)–(3.11). Moreover, c′′k ∈ L2(0, T ). Thus, the approximation
{um(x, t)} is constructed.

We need now to derive an a priori estimate. To this end we multiply (3.9) by
c′j(t), sum with respect to j = 1, . . . ,m, integrate over (0, τ) and obtain∫ τ

0

∫ l

0

(σ(x)umttu
m
t + a(x)umx u

m
xt + b(x)umxttu

m
xt) dx dt

+
∫ τ

0

[
α11u

m(0, t)umt (0, t) + α12u
m(l, t)umt (0, t) + β11(umt (o, t))2

+ β12u
m
t (0, t)umt (l, t)

]
dt−

∫ τ

0

[α21u
m(0, t)umt (l, t) + α22u

m(l, t)umt (l, t)

+ β21u
m
t (0, t)umt (l, t) + β22(umt (l, t))2]dt+M1

∫ τ

0

umtt (0, t)u
m
t (0, t)dt

−M2

∫ τ

0

umtt (l, t)u
m
t (l, t)dt+ (α12 + α21)

∫ τ

0

umt (l, t)um(0, t)dt

=
∫ τ

0

∫ l

0

fumt dx dt.

(3.12)
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After integrating by parts in (3.12) we obtain∫ l

0

[σ(x)(umt (x, τ))2 + a(x)(umx (x, τ))2 + b(x)(umxt(x, τ))2]dx

+ α11(um(0, τ))2 + 2α12u
m(0, τ)um(l, τ)− α22(um(l, τ))2

+M1(umt (0, τ))2 +M2(umt (l, τ))2

= 2β22

∫ τ

0

(umt (l, t))2dt− (α12 + α21)
∫ τ

0

umt (l, t)um(0, t)dt

+ 2(β21 − β12)
∫ τ

0

umt (0, t)umt (l, t)dt− 2β11

∫ τ

0

(umt (0, t))2dt

+ 2
∫ τ

0

∫ l

0

fumt dx dt.

Under assumption (H1) the left-hand side of this equality is positive. Using Cauchy,
Cauchy-Bunyakovskii inequalities and (3.6), (3.7) we derive from the last equality
the inequality

m0

∫ l

0

[(umt (x, τ))2 + (umx (x, τ))2 + (umxt(x, τ))2]dx+ α11(um(0, τ))2

+ 2α12u
m(0, τ)um(l, τ)− α22(um(l, τ))2 +M1(umt (0, τ))2

+M2(umt (l, τ))2

≤M
∫ τ

0

∫ l

0

[(umt )2 + (umx )2 + (umxt)
2] dx dt+

∫ τ

0

∫ l

0

f2 dx dt.

(3.13)

Applying Gronwall’s inequality to (3.13) we obtain∫ l

0

[(umt (x, τ))2 + (umx (x, τ))2 + (umxt(x, τ))2]dx ≤ m−1
0 eCτ‖f‖2L2(Qτ )

where C = M/m0. It is easy to see that from this inequality after integrating over
(0, T ) we obtain∫ T

0

∫ l

0

[(umt (x, τ))2 + (umx (x, τ))2 + (umxt(x, τ))2] dx dt ≤M−1(eCT−1)‖f‖2L2(QT ).

From (3.13) it also follows that

M1

∫ T

0

(umt (0, t))2dt+M2

∫ T

0

(umt (l, t))2dt ≤ TeCT ‖f‖2L2(QT ).

As f ∈ L2(QT ) then ‖f‖L2(QT ) is finite: ‖f‖L2(QT ) ≤ k. Thus the obtained
inequalities lead to the required estimate

‖um‖W (QT ) ≤ P (3.14)

where P = k2 max{M−1(eCT − 1), T eCT } and does not depend on m.
As W (QT ) is Hilbert space then the estimate (3.14) enables state that we can

extract from approximations um(x, t) a subsequence weakly convergent in W (QT ).
For technical reasons we do not change notation for it.

At a final step we show that the limit of extracted subsequence is the required
weak solution to the problem (2.1)–(2.3).
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Multiplying (3.9) by dj ∈ C2[0, T ], summing from j = 1 to j = m and integrating
with respect to t from 0 to T we obtain∫ T

0

∫ l

0

[σumtt η + aumx ηx + bumxttηx] dx dt+
∫ T

0

η(0, t)
[
α11u

m(0, t)

+ α12u
m(l, t) + β11u

m
t (0, t) + β12u

m
t (l, t) +M1u

m
tt (0, t)

]
dt

+
∫ T

0

η(l, t)
[
α21u

m(0, t) + α22u
m(l, t) + β21u

m
t (0, t) + β22u

m
t (l, t)

−M2u
m
tt (l, t)

]
dt

=
∫ T

0

∫ l

0

fη dx dt

(3.15)

where η(x, t) =
∑m
j=1 dj(t)wj(x). Because of obtained estimates we are able to

pass to the limit in (3.15) to obtain (3.1) for v(x, t) = η(x, t). Taking into account
that the set of all functions of the form

∑m
j=1 dj(t)wj(x) is dense in V (QT ) we

conclude that (3.1) holds for every v ∈ V (QT ). This means that u(x, t), weak limit
of the subsequence um(x, t), is the required solution to the (2.1)–(2.3). The proof
is complete. �
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