
Electronic Journal of Differential Equations, Vol. 2019 (2019), No. 40, pp. 1–22.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ASYMPTOTIC FORMULAE FOR SOLUTIONS TO IMPULSIVE

DIFFERENTIAL EQUATIONS WITH PIECEWISE CONSTANT

ARGUMENT OF GENERALIZED TYPE

SAMUEL CASTILLO, MANUEL PINTO, RICARDO TORRES

Abstract. In this article we give some asymptotic formulae for impulsive

differential system with piecewise constant argument of generalized type (ab-
breviated IDEPCAG). These formulae are based on certain integrability con-

ditions, by means of a Grönwall-Bellman type inequality and the Banach’s

fixed point theorem. Also, we study the existence of an asymptotic equilib-
rium of nonlinear and semilinear IDEPCAG systems. We present examples

that illustrate our the results.

1. Introduction

In the late 70’s, Myshkis [35] noticed that there was no theory for differential
equations with discontinuous argument of the form x′(t) = f(t, x(t), x(h(t))), where
h(t) is a discontinuous argument, for example, h(t) = [t]. He called these equations
Differential equations with deviating argument. The systematic study of problems,
related to piecewise constant argument began in the early 80’s with the works by
Cooke, Wiener and Shah [41]. They called these type of equations Differential equa-
tions with piecewise constant argument (abbreviated DEPCA). A good source of
this type of equations is [45]. Busenberg and Cooke [15] were the first ones to intro-
duce a mathematical model that involved such types of deviated arguments in the
study of models of vertically transmitted diseases, reducing their study to discrete
equations. Since then, these equations have been studied by many researchers in
diverse fields such as biomedicine, chemistry, biology, physics, population dynamics,
and mechanical engineering; see [11, 31, 22].

Akhmet [2] considered the equation

x′(t) = f(t, x(t), x(γ(t))),

where γ(t) is a piecewise constant argument of generalized type; that is, there
exist (tk)k∈Z and (ζk)k∈Z such that tk < tk+1 for all k ∈ Z with limk→±∞ tk =
±∞, tk ≤ ζk ≤ tk+1 and γ(t) = ζk if t ∈ Ik = [tk, tk+1). These equations are
called Differential equations with piecewise constant argument of generalized type
(abbreviated DEPCAG). They have continuous solutions, even when γ(t) is not.
In the end of the constancy intervals they produce a recursive law, i.e., a discrete
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equation. That is the reason why these equations are called hybrids, because they
combine discrete and continuous dynamics (see [37]).

In the DEPCAG case, when continuity at the endpoints of intervals of the form
Ik = [tk, tk+1) is not considered, we have the impulsive differential equations with
piecewise constant argument of generalized type (abbreviated IDEPCAG)

x′(t) = f(t, x(t), x(γ(t))), t 6= tk

∆x(tk) = Qk(x(t−k )), t = tk
(1.1)

where x(τ) = x0; see [1, 38, 40, 42, 46].
The problem of convergence of solutions and asymptotic equilibrium seems to be

studied for the very first time by Bôcher [9]. Wintner [47, 48, 49, 50, 51] and and
Brauer [12, 13] studied the asymptotic equilibrium problem for the ODE case. Also,
there are important contributions done by Cesari, Hallam, Levinson, Brighland,
Trench and Atkinson, see [4, 14, 16, 28, 29, 33, 34, 43, 44] and the references
therein. For applications in epidemics (transmission of Gonorrhea), population
growth and physics (classical radiating electron) see the works by Cooke, Yorke
and Yorke, Kaplan & M. Sorg [20, 30]. Also, the convergence problem has been
widely investigated by many researchers for many types of equations. For example,
delay functional differential equations were studied in [23, 25, 27, 30, 39], impulsive
differential equations in [5, 26], and impulsive delayed and advanced differential
equations in [6]. Pinto, Sepúlveda and Torres [38] studied the IDEPCAG system

y′i(t) = −ai(t)yi(t) +

m∑
j=1

bij(t)fj(yj(t)) +

m∑
j=1

cij(t)gj(yj(γ(t))) + di(t), t 6= tk,

∆yi(tk) = −qi,kyi(t−k ) + Ii,k(yi(t
−
k )) + ei,k, t = tk

(1.2)
where γ(t) = tk, if t ∈ [tk, tk+1]. The authors obtained some sufficient conditions
for the existence, uniqueness, periodicity and stability of solutions for the impulsive
Hopfield-type neural network system with piecewise constant arguments (1.2). By
means of the Green function associated to (1.2), they established that (1.2) has a
unique ω-periodic solution. Assuming some conditions, they also determined that
the unique ω-periodic solution of (1.2) is globally asymptotically stable. Hence, a
convergence to the unique ω-periodic solution was established.

Akhmet [3] studied the existence, uniqueness and the asymptotic equivalence of
the system

x′(t) = Cx(t),

y′(t) = C(t)y(t) + f(t, y(t), y(γ(t))),

where x, y ∈ Cn, t ∈ R, C is a constant n×n real valued matrix, f ∈ C(R×Rn×Rn)
is a real valued n × 1 function, and γ(t) = ζk if t ∈ [tk, tk+1), where k ∈ Z. The
author actually found an asymptotic formula that relates these two systems, i.e

z(t) = eCt[c+ o(1)], as t→∞,

where c ∈ Rn is a constant vector. Later, Pinto [36] studied the existence, unique-
ness and the asymptotic equivalence of the systems

x′(t) = A(t)x(t),

y′(t) = A(t)y(t) + f(t, y(t), y(γ(t))),
(1.3)
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where x, y ∈ Cn, t ∈ R, A is a locally integrable n×n matrix in R+, f : R+×Cn×
Cn → Cn is a continuous function and γ(t) = ζk if t ∈ [tk, tk+1), where k ∈ Z. The
author also found some asymptotic formulae that relates these two systems and the
error considered, i.e.

y(t) = Φ(t)[ν + ε(t)], as t→∞.

where Φ(t) is the fundamental matrix of (1.3), ν ∈ Cn is a constant vector and the
error function ε is related with some conditions over f . Pinto et al. [21] considered
the systems

x′(t) = A(t)x(t), (1.4)

z′(t) = A(t)z(t) +B(t)z(γ(t)), (1.5)

u′(t) = B(t)u(γ(t)), (1.6)

y′(t) = A(t)y(t) +B(t)y(γ(t)) + g(t), (1.7)

w′(t) = A(t)w(t) +B(t)w(γ(t)) + f(t, w(t), w(γ(t))), (1.8)

v′(t) = A(t)v(t) +B(t)v(γ(t)) + g(t) + f(t, v(t), v(γ(t))), , (1.9)

and they proved that if the linear DEPCAG system (1.5) has an ordinary di-
chotomy and in (1.9) f is integrable, then there exists a homeomorphism between
the bounded solutions of the linear system (1.7) and the bounded solutions of the
quasilinear system (1.9). Moreover, |y(t) − v(t)| → 0, as t → ∞ if Z(t, 0)P → 0
as t→∞, where Z(t, s) is the fundamental matrix of the DEPCAG linear system
(1.5) and P is a projection matrix. Also, (1.8) has an asymptotic equilibrium. Chiu
[19], inspired by [36, 37], studied the asymptotic equivalence between the following
linear DEPCAG system and its perturbed system

x′(t) = A(t)x(t) +B(t)x(γ(t)),

y′(t) = A(t)y(t) +B(t)y(γ(t)) + f(t, y(t), y(γ(t))),
(1.10)

where x, y ∈ Cn, t ∈ R, A,B are locally integrable n × n matrices in R+, f :
R+ × Cn × Cn → Cn is a continuous function and γ(t) = ζk if t ∈ [tk, tk+1), where
k ∈ Z. He found the asymptotic formula

x(t) = Ψ(t)[ν + ε(t)] as t→∞,

where Ψ(t) is the fundamental matrix of the lineal DEPCAG system (1.10), ν ∈
Cn and ε(t) is the error function. We note that there is no literature about the
IDEPCAG case, so this paper tries to fill the gap in this context.

2. Scope

In this work we will conclude the existence of an Asymptotic Equilibrium for
the class of IDEPCAG systems of fixed times. In other words, we prove strongly
based on certain integrability conditions, Grönwall-Bellman type inequality and
the Banach’s fixed point theorem, that every solution of (1.1) with initial condition
x(a) = x0 where a ≥ τ satisfies

lim
t→∞

x(t) = ξ,
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for some ξ ∈ Cn, and has the asymptotic formulae

x(t) = ξ +O
( 3∑
i=1

∫ ∞
t

λi(s)ds+
∑

t≤tk<∞

(µ1
k + µ2

k)
)
. (2.1)

where λ and µ are Lipschitz constants related to f and Qk respectively. These
results extend the works by González and Pinto [26] for the IDE case, and the one
done by Pinto [36] for the DEPCAG case. Indeed, [36] was taken as the principal
reference in the subject for the present work. Also, as a consequence of the existence
of an asymptotic equilibrium for system (1.1), we will study the existence of an
asymptotic equilibrium for the semilinear system

y′(t) = A(t)y(t) + f(t, y(t), y(γ(t))), t 6= tk

∆y(tk) = Jky(t−k ) + Ik(y(t−k )), t = tk, k ∈ N
(2.2)

by some conditions on the coefficients involved concluding aymptotic formulae for
unbounded solutions. Thus, any solution y(t) of (2.2) satisfies the asymptotic
formula

x(t) = Φ(t)(ξ + ε(t)), as t→∞ (2.3)

where Φ(t) is the fundamental matrix of the impulsive linear system

x′(t) = A(t)x(t), t 6= tk

∆x(tk) = Jkx(t−k ), t = tk, k ∈ N
(2.4)

ξ ∈ Cn is a constant vector and the error ε(t) satisfies

ε(t) = O((exp(

∫ ∞
t

η(s)ds)− 1) +
∑
t<tk

(1 + η3(tk))),

where η(t) and η3(tk) are Lipschitz constants related to f and Ik respectively.
Moreover, if ε0(t)→ 0 as t→∞, where

ε0(t) =

∫ ∞
t

|Φ(t, s)‖Φ(s)|(λ1(s) + |Φ−1(γ(s), s)|λ2(s))ds+
∑
t<tk

|Φ(t, tk)‖Φ(t−k )|µ̃k

Equations (2.2) and (2.4) are asymptotically equivalent; i.e., they share the same
asymptotic behavior, and

y(t) = x(t) + ε0(t), ε0(t)→ 0 as t→∞.
This asymptotic relationship includes the case of unbounded solutions. An example
of a second order IDEPCAG will be shown.

3. Main assumptions

In this section we present the main hypothesis that will be used in the rest
of this work. Let | · | be a suitable norm, ‖ · ‖∞ be the supremum norm, f :
[0,∞[×Cn × Cn → Cn and Qk : {tk} → Cn be continuous function satisfying:

(H1) (a) There exist integrable functions λi(t), i = 1, 2, 3 on I = [τ,∞) such
that for all (t, x(t), x(γ(t))) ∈ I × Cn × Cn we have

|f(t, x(t), x(γ(t)))| ≤ λ1(t)|x(t)|+ λ2(t)|x(γ(t))|+ λ3(t),

(b) There exist a summable sequences of non-negative numbers (µik)∞k=1

with i = 1, 2 such that for each x ∈ Cn we have

|Qk(x(t−k ))| ≤ µ1
k|x(t−k )|+ µ2

k, ∀k ∈ N.



EJDE-2019/40 SOLUTIONS TO IMPULSIVE DIFFERENTIAL EQUATIONS 5

(H2) (a) The function f(t, 0, 0) is integrable on I and there exist integrable func-
tions λ1(t), λ2(t) on I such that for all (t, x(t), x(γ(t))), (t, y(t), y(γ(t)))
in I × Cn × Cn, we have

|f(t, x(t), x(γ(t)))− f(t, y(t), y(γ(t)))|
≤ λ1(t)|x(t)− y(t)|+ λ2(t)|x(γ(t))− y(γ(t))|,

(b) The function Qk(0) is summable on I and there exists a summable
sequence of non-negative real numbers (µ̃k)∞k=1 such that for all x, y ∈
Cn, we have

|Qk(x(t−k ))−Qk(y(t−k ))| ≤ µ̃k|x(t−k )− y(t−k )|, ∀k ∈ N.

(H3) The functions λ1(t), λ2(t) also satisfy

νk =

∫ ζk

tk

(λ1(s) + λ2(s))ds ≤ ν := sup
k∈N

νk < 1.

(H4) Let the following conditions are satisfied

η1(t) = |Φ(t)| |Φ−1(t)|λ1(t), (3.1)

η2(t) = |Φ−1(t, γ(t))‖Φ−1(t)‖Φ(t)|λ2(t) ∈ L1(I) (3.2)

η3(tk) = |Φ(t−k )| |Φ−1(tk)|µ̃k ∈ l1(I). (3.3)

where Φ(t) is the fundamental matrix of the impulsive linear system (2.4)

4. Preliminaries

In the following, we give the definition of a IDEPCAG solution for (1.1).

Definition 4.1. A function y(t) is a solution of IDEPCAG (1.1) if

(i) y(t) is continuous in every interval of the form Ik = [tk, tk+1) for all k ∈ N;
(ii) The derivative y′(t) exists at each point t ∈ I = [τ,∞) with the exception

of the points tk, k ∈ N, where the left derivative exists;
(iii) On each interval Ik, the ordinary differential equation

x′(t) = f(t, x(t), x(ζk))

is satisfied, where γ(t) = ζk for all t ∈ Ik;
(iv) For t = tk, the solution satisfies the jump condition

∆x(tk) = x(tk)− x(t−k ) = Qk(x(t−k )),

where x(t−k ) = limt→tk, t<tk x(t) exists for all tk with k ∈ N and x(t+k ) =
x(tk) is defined by

x(tk) = x(t−k ) +Qk(x(t−k )).

The following lemma is the main tool of the rest of this work; it presents an
integral equation associated with (1.1).

Lemma 4.2. A function x(t) = x(t, τ, x0), where τ is a fixed real number, is a
solution of (1.1) on R+ if and only if it satisfies the integral equation

x(t) = x0 +

∫ t

τ

f(s, x(s), x(γ(s)))ds+
∑

τ≤tk<t

Qk(x(t−k )), on R+. (4.1)
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Proof. Consider the interval In = [tn, tn+1]. If we integrate (4.1) on this interval it
follows that

x(t) = x(tn) +

∫ t

tn

f(s, x(s), x(ζn))ds, (4.2)

where γ(t) = ζn for all t ∈ In = [tn, tn+1). Then, evaluating in t = tn+1 we obtain

x(t−n+1) = x(tn) +

∫ tn+1

tn

f(s, x(s), x(ζn))ds

Applying the impulsive condition ∆x(tn+1) = x(tn+1)− x(t−n+1) = Qn+1(x(t−n+1))
it follows that

x(tn+1) = x(tn) +

∫ tn+1

tn

f(s, x(s), x(ζn))ds+Qn+1(x(t−n+1)).

Then, solving the finite difference equation we obtain

x(tn) = x0 +

n−1∑
k=i[τ ]

∫ tk+1

tk

f(s, x(s), x(ζk))ds+

n∑
k=i[τ ]

Qk(x(t−k )),

where i[t] = n ∈ Z is the only integer such that t ∈ In = [tn, tn+1[. Next, applying
last expression in (4.2) we obtain

x(t) = x0 +

n−1∑
k=i[τ ]

∫ tk+1

tk

f(s, x(s), x(ζk))ds

+
∑

τ≤tk<t

Qk(x(t−k )) +

∫ t

tn

f(s, x(s), x(ζn))ds.

Finally, defining∫ t

τ

f(s, x(s), x(γ(s)))ds =

n−1∑
k=i[τ ]

∫ tk+1

tk

f(s, x(s), x(ζk))ds+

∫ t

tn

f(s, x(s), x(ζn))ds,

and replacing it in the last expression we obtain (4.1), so the proof is complete. �

The next lemma provides a Grönwall-Bellman type inequality for the IDEPCAG
case. Its proof of is almost identical to the proof of [36, Lemma 2.2] with slight
changes because of the impulsive effect and can be found in [42].

Lemma 4.3. Let I be an interval and u, η1, η2 be three functions from I ⊂ R to R+
0

such that u is continuous; η1, η2 are locally integrable and η3 : {tk} → R+
0 . Let γ(t)

be a piecewise constant argument of generalized type, i.e. a step function such that
γ(t) = ζk for all t ∈ Ik = [tk, tk+1), with tk ≤ ζk < tk+1 for all k ∈ N satisfying
(H3) and

u(t) ≤ u(τ) +

∫ t

τ

(η1(s)u(s) + η2(s)u(γ(s)))ds+
∑

τ≤tk<t

η3(tk)u(t−k ). (4.3)

Then

u(t) ≤
( ∏
τ≤tk<t

(1 + η3(tk))
)

exp
(∫ t

τ

η(s)ds
)
u(τ), (4.4)

u(ζk) ≤ (1− ν)−1u(tk), (4.5)
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u(γ(t)) ≤ (1− ν)−1
( ∏
τ≤tk<t

(1 + η3(tk))
)

exp
(∫ t

τ

η(s)ds
)
u(τ), (4.6)

where η(t) = η1(t) + η2(t)(1− ν)−1 for t ≥ τ .

Proof. To prove (4.4), we denote the right-hand side of (4.3) by v(t). Then we
have u(τ) ≤ v(τ), so u(t) ≤ v(t), for t ≥ τ , because v(t) is increasing. Now,
differentiating v(t) we obtain

v′(t) = η1(t)u(t) + η2(t)u(γ(t)).

Then, we have
v′(t) ≤ η1(t)v(t) + η2(t)v(γ(t)).

Integrating the last expression between τ and t we obtain

v(t)− v(τ) ≤
∫ t

τ

η1(s)v(s) + η2(s)v(γ(s))ds, (4.7)

Now, when we consider τ = tk and t = ζk in (4.7), we have

v(ζk)− v(tk) ≤
∫ ζk

tk

η1(s)v(s) + η2(s)v(γ(s))ds

≤ v(ζk)

∫ ζk

tk

(η1(s) + η2(s))ds.

Then, because ν < 1, we have

v(ζk) ≤ (1− ν)−1v(tk), (4.8)

so, (4.5) is proved. Applying (4.8) in (4.7) for τ = tk and t ∈ Ik, we have

v(t)− v(tk) ≤
∫ t

tk

η1(s)v(s) + (1− ν)−1η2(s)v(tk)ds ≤
∫ t

tk

η(s)v(s)ds

Hence,

v(t) ≤ v(tk) +

∫ t

tk

η(s)v(s)ds. (4.9)

Now, applying the classical Bellman-Grönwall lemma to the last inequality we have

v(t) ≤ v(tk) exp
(∫ t

tk

η(s)ds
)
.

Next, evaluating the above expression for t = t−k+1, we have

v(t−k+1) ≤ v(tk) exp
(∫ tk+1

tk

η(s)ds
)
. (4.10)

Now, applying the impulsive condition we obtain

v(tk+1) ≤ (1 + η3(tk+1))v(t−k+1)

≤ (1 + η3(tk+1))v(tk) exp
(∫ tk+1

tk

η(s)ds
)
.

This expression defines a finite difference inequality, which has solution satisfying

ν(tk) ≤
( i[k]−1∏
j=i[τ ]

(1 + η3(tj+1)) exp
(∫ tj+1

tj

η(s)ds
))
ν(τ) (4.11)
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Now, from u(t) ≤ ν(t), ∀t ≥ τ , we have

u(tk) ≤
( i[k]−1∏
j=i[τ ]

(1 + η3(tj+1)) exp
(∫ tj+1

tj

η(s)ds
))
u(τ).

This inequality represents a discrete Grönwall-Bellman inequality. Then, applying
(4.11) in (4.9) we obtain

u(t) ≤
( ∏
τ≤tk<t

(1 + η3(tk+1)) exp
(∫ tk+1

tk

η(s)ds
))

exp
(∫ t

ti[t]

η(s)d
)
u(τ).

Therefore,

u(t) ≤
( ∏
τ≤tk<t

(1 + η3(tk+1))
)

exp
(∫ t

τ

η(s)ds
)
u(τ). (4.12)

So (4.4) holds. Inequality (4.6) follows from (4.4) and (4.5). �

Corollary 4.4. Let I be an interval, h(t) an increasing function on I ⊂ R to R+
0 ,

and u, η1, η2 be three functions from I ⊂ R to R+
0 and η3 : {tk} → R+

0 satisfying the
hypothesis described in Lemma 4.3. Consider the step function defined as γ(t) = tk
for all t ∈ Ik = [tk, tk+1) and all k ∈ N. If

u(t) ≤ h(t) +

∫ t

τ

η1(s)u(s) + η2(s)u(γ(s))ds+
∑

τ≤tk<t

η3(tk)u(t−k )

holds, then

u(t) ≤
(( ∏

τ≤tk<t

(1 + η3(tk+1))
)

exp
(∫ t

τ

η(s)ds
)
u(τ)

)
h(t) ∀t ≥ τ. (4.13)

4.1. Existence and uniqueness. In this section, we prove existence and unique-
ness of solutions for the nonlinear IDEPCAG

u′(t) = g(t, u(t), u(γ(t)), t 6= tk

∆u(tk) = Qk(u(t−k )), t = tk.
(4.14)

on [τ,∞), by an inductive argument over each interval of the form Ir = [tr, tr+1)
and using Grönwall-Bellman type IDEPCAG inequality showed in Lemma 4.2.

Uniqueness.

Theorem 4.5. Consider the initial value problem for (4.14) with u(t, τ, u0). Under
conditions (H1)–(H3) there exists a unique solution u of (4.14) on [τ,∞). More-
over, every solution is stable.

Proof. Let u1, u2 be two solutions of (4.14) [τ,∞). Then by Lemma 4.3, (H1) and
(H2) we have

r(t) ≤ r(τ) +

∫ t

τ

η1(s)r(s) + η2(s)r(γ(s))ds+
∑

τ≤tk<t

η3(tk)r(t−k ) (4.15)

where r(t) = ‖u1(t) − u2(t)‖. Now applying Lemma 4.3 to the above expression,
stability is proved. If r(τ) = 0, then r(t) = 0,∀t ∈ [τ,∞). Hence, the uniqueness is
proved. �



EJDE-2019/40 SOLUTIONS TO IMPULSIVE DIFFERENTIAL EQUATIONS 9

Existence of solution to (4.14) in [τ, tr).

Lemma 4.6. Consider the initial value problem for (4.14) with u(t, τ, u0). Let
conditions (H1)–(H3) and Lemma 4.3 be satisfied. Then for each u0 ∈ Cn and
ζr ∈ [tr−1, tr), there exists a solution u(t) = u(t, τ, u0) of (4.14) on [τ, tr) such that
u(τ) = u0.

Proof. On the interval [τ, tr), by Lemma 4.3, system (4.14) can be written as

u(t) = u0 +

∫ t

τ

g(s, u(s), u(γ(s)))ds. (4.16)

We prove the existence by using successive approximations method. Consider the
sequence of functions {un(t)}n∈N such that u0(t) = u0 and

un+1(t) = u0 +

∫ t

τ

g(s, un(s), un(γ(s))ds, n ∈ N. (4.17)

We can see that

‖u1 − u0‖∞ ≤
∫ t

τ

|g(s, u0(s), u0(γ(s))|ds

≤ ‖u0‖∞
∫ t

τ

η1(s) + η2(s)ds

= ‖u0‖∞ν,

where ν is defined by (H3), and

‖un+1 − un‖∞ ≤
∫ t

τ

η1(s)|un(s)− un−1(s)|+ η2(s)|un(γ(s))− un−1(γ(s))|ds

≤ ‖un − un−1‖∞
∫ t

τ

η1(s) + η2(s)ds

= ‖un − un−1‖∞ν.

So, by mathematical induction we deduce that

‖un+1 − un‖∞ ≤ ‖u0‖∞νn+1.

Hence, by (H3), the sequence {un(t)}n∈N is convergent and its limit u satisfies the
(4.16) on [τ, tr], so the existence is proved. �

We are able to extend above lemma to [τ,∞), to obtain the existence and unique-
ness of solutions for (4.14) on [τ,∞).

Theorem 4.7. Assume that conditions (H1)–(H3) and Lemma 4.3 are fulfilled.
Then, for (τ, u0) ∈ R+

0 × Cn, there exists u(t) = u(t, τ, u0) for t ≥ τ , a unique
solution for (4.14) such that u(τ) = u0.

Proof. Evaluating t = tr in (4.16) we have

u(t−r ) = u0 +

∫ tr

τ

g(s, u(s), u(γ(s)))ds. (4.18)

Now, from the impulsive condition

∆u(tr) = Qr(u(t−r )),
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we have
u(tr) = u(t−r ) +Qr(u(t−r ))

= u0 +

∫ tr

τ

g(s, u(s), u(γ(s)))ds+Qr(u(t−r )),
(4.19)

because u(tr) is uniquely defined, we apply Lemma 4.6 to the system u(t) =
u(t, tr, u(tr)) defined in [tr, tr+1). Hence, the existence over the last interval is
proved. So, by mathematical induction, the existence of the unique solution of
(4.14) over [τ,∞) is proved. �

5. Asymptotic equilibrium for an IDEPCAG system

In this section we prove the existence of an asymptotic equilibrium for the class
of IDEPCAG systems of fixed times (1.1); i.e., the asymptotic equivalence of (1.1)
with the system x′(t) = 0.

Definition 5.1. We say that the IDEPCAG system (1.1),

x′(t) = f(t, x(t), x(γ(t))), t 6= tk

∆x(tk) = Qk(x(t−k )), t = tk

x(τ) = x0 t = τ

defined in [τ,∞) has an asymptotic equilibrium if:

(i) For each a ≥ τ , equation (1.1) with initial condition x(a) = x0 has a
solution x(t) defined in [a,∞) that satisfies

lim
t→∞

x(t) = ξ, (5.1)

for some ξ ∈ Cn;
(ii) for all ξ ∈ Cn there exists a ∈ I and a solution x(t) of (1.1) defined in

[a,∞) that satisfies (5.1). (See [36, 5, 47, 49, 33, 32])

6. Main results

Theorem 6.1. Suppose (H1) holds. Then every solution of (1.1) with initial con-
dition x(a) = x0 where a ≥ τ satisfies (5.1) for some ξ ∈ Cn, with error

x(t) = ξ +O
( 3∑
i=1

∫ ∞
t

λi(s)ds+
∑

t≤tk<∞

(µ1
k + µ2

k)
)
. (6.1)

Proof. Suppose that x(t) is a solution of (1.1) with initial condition x(a) = x0
where a ≥ τ , defined on a finite subinterval J ⊂ [τ,∞). Then x(t), by Lemma 4.2,
satisfies ∀t ∈ J

|x(t)| ≤ |x0|+
∫ t

τ

|f(s, x(s), x(γ(s)))|ds+
∑

τ≤tk<t

|Qk(x(t−k ))|

≤ |x0|+
∫ t

τ

λ3(s)ds+
∑

τ≤tk<t

µ2
k +

∫ t

τ

(λ1(s)|x(s)|+ λ2(s)|x(γ(s)|)ds

+
∑

τ≤tk<t

µ1
k|x(t−k )|.
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Then, by Corollary 4.4, we have

|x(t)| ≤
(
|x0|+

∫ t

τ

λ3(s)ds+
∑

τ≤tk<t

µ2
k

)( ∏
τ≤tk<t

(1 + µ1
k)
)

exp
(∫ t

τ

λ(s)ds
)

where λ(t) = λ1(t) + λ2(t)(1 − ν)−1. As a consequence of the coefficients integra-
bility, the solution of (1.1) is bounded, so it can be extended beyond sup J .

Now taking in account the integrability of the coefficients, given ε > 0, there
exists N ∈ N such that if t, s > N then

|x(t)− x(s)| ≤
∫ t

s

|f(u, x(u), x(γ(u)))|du+
∑

tk(s)≤tk<t

|Qk(x(t−k ))|

≤
∫ t

s

(λ1(u)|x(u)|+ λ2(u)|x(γ(u))|)du+

∫ t

s

λ3(u)du

+
∑

tk(s)≤tk<t

µ1
k|x(t−k )|+

∑
tk(s)≤tk<t

µ2
k;

i.e.,

|x(t)− x(s)| ≤ C
(∫ t

s

(λ1(u) + λ2(u))ds+
∑

tk(s)≤tk<t

µ1
k

)
+

∫ t

s

λ3(u)du

+
∑

tk(s)≤tk<t

µ2
k < ε.

In this way, by the Cauchy’s criterion, x(t) converges to some ξ ∈ Cn. I.e. we
obtain condition (i) of the asymptotic equilibrium definition. �

To satisfy condition (ii) of the asymptotic equilibrium definition we use the
Banach’s fixed point theorem together with (H2), so we have the following theorem.

Theorem 6.2. Suppose that condition (H2) holds. Then for each ξ ∈ Cn there
exists a ≥ τ and a solution x(t) of (1.1) defined on [a,∞) satisfying (5.1).

Proof. Using (H2), we can choose a sufficiently large real number a ≥ τ such that

L =

∫ ∞
a

(λ1(s) + λ2(s))ds+
∑
a≤tk

µ̃k < 1.

We consider the Banach space B consisting of bounded functions defined on [a,∞)
with values on Cn endowed by the norm

|f | = sup{|f(t)| : t ∈ [a,∞)},
and the operator T : B −→ B defined by

(Tx)(t) = ξ −
∫ ∞
t

f(s, x(s), x(γ(s)))ds−
∑
t≤tk

Qk(x(t−k )).

Easily we verify that T (B)⊂ B, since

|(Tx)(t)| ≤ |ξ|+
∫ ∞
t

|f(s, x(s), x(γ(s)))− f(s, 0, 0)|ds+

∫ ∞
t

|f(s, 0, 0)|ds

+
∑
t≤tk

|Qk(x(t−k ))−Qk(0)|+
∑
t≤tk

|Qk(0)|
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≤ |ξ|+
∫ ∞
a

λ1(s)|x(s)|+ λ2(s)|x(γ(s))|ds+
∑
a≤tk

µ̃k|x(t−k )|

+

∫ ∞
a

|f(s, 0, 0)|ds+
∑
a≤tk

|Qk(0)|.

Thus, by the integrability of the coefficients, f(t, 0, 0) and Qk(0), we obtain the
desired result. Now, we have to check if T defines a contraction. Since

|(Tx)(t)− (Ty)(t)|

≤
∫ ∞
t

|f(s, x(s), x(γ(s)))− f(s, y(s), y(γ(s)))|ds+
∑
t≤tk

|Qk(x(t−k ))−Qk(y(t−k ))|

≤
∫ ∞
t

λ1(s)|x(s)− y(s)|+ λ2(s)|x(γ(s))− y(γ(s))|ds+
∑
t<tk

µ̃k|x(t−k )− y(t−k )|

≤ |x− y|∞
(∫ ∞

t

λ1(s) + λ2(s)ds+
∑
t<tk

µ̃k

)
= L|x− y|∞.

Thus, there exists a unique fixed point for T in B. Then

x(t) = ξ −
∫ ∞
t

f(s, x(s), x(γ(s)))ds−
∑
t≤tk

Qk(x(t−k )), ∀t ≥ a.

Now, defining

ξ
′

= ξ −
∫ ∞
a

f(s, x(s), x(γ(s)))ds−
∑
a≤tk

Qk(x(t−k )),

we have that x(t) satisfies (1.1). Since

x(t) = ξ
′
+

∫ t

a

f(s, x(s), x(γ(s)))ds+
∑

a≤tk<t

Qk(x(t−k )), ∀t ≥ a,

and it satisfies limt→∞ x(t) = ξ ∈ Cn, i.e.,

x(t) = ξ +O
( 3∑
i=1

∫ ∞
t

λi(s)ds+
∑

t≤tk<∞

(µ1
k + µ2

k)
)
,

where λ3 = |f(t, 0, 0)|, µ2
k = |Qk(0)| and ξ ∈ Cn. So, condition (ii) of the asymp-

totic equilibrium definition is proved. �

As a consequence of the previous theorems we have the following corollary.

Corollary 6.3. Let conditions (H1) and (H2) hold. Then there exists a global
asymptotic equilibrium, i.e., for any a ≥ τ sufficiently large, every solution of the
IDEPCAG system

x′(t) = f(t, x(t), x(γ(t))), t 6= tk

∆x(tk) = Qk(x(t−k )), t = tk

x(a) = x0

converges to some ξ ∈ Cn.
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Remark 6.4. It is important to notice that the above result holds for any r > 0
such that |x|∞ ≤ r.

7. Asymptotic equilibrium for a quasilinear IDEPCAG system

In this section we study the existence of an asymptotic equilibrium of IDEPCAG
system (2.2). We will conclude that as a consequence of the existence of an asymp-
totic equilibrium of the solutions of an equivalent system obtained by the variation
of constants formula.

Consider the quasilinear system (2.2)

y′(t) = A(t)y(t) + f(t, y(t), y(γ(t))), t 6= tk

∆y(tk) = Jky(t−k ) + Ik(y(t−k )), t = tk, k ∈ N

and the linear system (2.4),

x′(t) = A(t)x(t), t 6= tk

∆x(tk) = Jkx(t−k ), t = tk, k ∈ N .

Theorem 7.1. Assume that (H1)–(H4) hold. Then, for any (τ, y0) ∈ I ×Cn there
exists a unique solution y(t) = y(t, τ, y0) of (2.2) on all of [τ,∞).

Proof. If we make y(t) = Φ(t)u(t), where Φ(t) is the fundamental matrix of (2.4)
in (2.2), we have

Φ(tk)u(tk)− Φ(t−k )u(t−k ) = JkΦ(t−k )u(t−k ) + Ik(Φ(t−k )u(t−k )).

Adding and subtracting the term Φ(tk)u(t−k ) to the left side, we have

∆u(tk) = (Φ−1(tk)Φ(t−k )−I)u(t−k )+Φ−1(tk)JkΦ(t−k )u(t−k )+Φ−1(tk)Ik(Φ(t−k )u(t−k ));

i.e.,

∆u(tk) = (Φ−1(tk)Φ(t−k )− I + Φ−1(tk)JkΦ(t−k ))u(t−k ) + Φ−1(tk)Ik(Φ(t−k )u(t−k ))

= (Φ−1(tk)(I + Jk)Φ(t−k ))u(t−k )− u(t−k ) + Φ−1(tk)Ik(Φ(t−k )u(t−k ))

= (Φ−1(tk)Φ(tk))u(t−k )− u(t−k ) + Φ−1(tk)Ik(Φ(t−k )u(t−k ))

= Φ−1(tk)Ik(Φ(t−k )u(t−k )).

So, u(t) satisfies
u′(t) = ĝ(t, u(t), u(γ(t))), t 6= k,

∆u(tk) = ĥ(t−k , u(t−k )), t = tk,
(7.1)

where

ĝ(t, u(t), u(γ(t))) = Φ−1(t)f(t,Φ(t)u(t),Φ(γ(t))u(γ(t))), (7.2)

ĥ(t−k , u(t−k )) = Φ−1(tk)Ik(Φ(t−k )u(t−k )). (7.3)

From (H4), the functions ĝ and ĥ satisfy

|ĝ(t, u1(t), u1(γ(t)))− ĝ(t, u2(t), u2(γ(t)))|
≤ η1(t)|u1(t)− u2(t)|+ η2(t)|u1(γ(t))− u2(γ(t))|

|ĥ(t−k ,Φ(t−k )u1(t−k ))− ĥ(t−k ,Φ(t−k )u2(t−k ))| ≤ η3(tk)|u1(t−k )− u2(t−k )|,
(7.4)

where η1, η2 and η3 are given by (H4). Hence, the existence and uniqueness of
solutions for (7.1) hold by Lemmas 4.2 and 4.3 and Theorem 4.7. �
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7.1. Asymptotic equilibrium for system (2.2). The following result establishes
the existence of an asymptotic equilibrium for system (2.2), as a consequence of the
existence of an asymptotic equilibrium for system (7.1).

Theorem 7.2. If (H1)–(H4) are fulfilled, then each solution of (2.2) is defined on
Iτ = [τ,∞). Furthermore, solutions of systems (2.2) and (2.4) are related by the
asymptotic formula

y(t) = Φ(t)(ξ + ε(t)), as t→∞, (7.5)

where ξ ∈ Cn is a constant vector, Φ is the fundamental matrix of (2.4) and the
error has the following estimation

ε(t) = O
((

exp(

∫ ∞
t

η(s)ds)− 1
)

+
∑
tk>t

η3(tk)
)

(7.6)

where η(t) = η1(t) + η2(t)
1−ν . Moreover, (2.2) and (2.4) have the same asymptotic

behavior if ε0(t)→ 0 as t→∞, where

ε0(t) =

∫ ∞
t

|Φ(t, s)‖Φ(s)|(λ1(s) + λ2(s)|Φ−1(s, γ(s))|)ds+
∑
tk>t

|Φ(t, tk)‖Φ(t−k )|µ̃k,

(7.7)
and we have the asymptotic formula

y(t) = Φ(t)ξ +O(ε0(t)), ξ ∈ Cn, as t→∞,

i.e.,

y(t) = x(t) +O(ε0(t)), ξ ∈ Cn, as t→∞, (7.8)

where x(t) is a solution of (2.4).

Proof. By Lemma 4.3 and (H1)–(H3), the solution (7.1) satisfies

|u(t)| ≤ |u(τ)|+
∫ t

τ

η1(s)|u(s)|+ η2(s)|u(γ(t))|ds+
∑

τ≤tk<t

η3(tk)|u(t−k )|. (7.9)

Also, this expression satisfies the hypothesis of Lemma 4.2. Then, by applying the
Grönwall-Bellman inequality and by the summability of the coefficients we have
that u is bounded and u(t) ∈ L1(I); i.e.,

|u(t)| ≤ |u(τ)|
∏
τ≤tk

(1 + η3(tk+1)) exp
(∫ t

τ

η(s)ds
)
<∞ (7.10)

and

|u(γ(t))| ≤ |u(τ)|(1− ν)−1
( ∏
τ≤tk<t

(1 + η3(tk))
)

exp
(∫ t

τ

η(s)ds
)
<∞, (7.11)

so we conclude that g and Qk ∈ L1(I) and l1(I) respectively; i.e.,

u∞ = u0 +

∫ ∞
τ

ĝ(s, u(s), u(γ(s))ds+
∑
τ≤tk

ĥ(t−k , u(t−k )) (7.12)

exists. Now we can write u as

u(t) = u∞ −
∫ ∞
t

ĝ(s, u(s), u(γ(s))ds−
∑
tk>t

ĥ(t−k , u(t−k )). (7.13)
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By using (7.13) and by making the change of variables y(t) = Φ(t)u(t), we obtain

y(t) = Φ(t)
[
u∞ −

∫ ∞
t

ĝ(s, u(s), u(γ(s)))ds−
∑
tk>t

ĥ(t−k , u(t−k ))
]
, (7.14)

i.e.,

y(t) = Φ(t)u∞ −
∫ ∞
t

Φ(t)ĝ(s, u(s), u(γ(s)))ds−
∑
tk>t

Φ(t)ĥ(t−k , u(t−k )), (7.15)

We note that x(t) = Φ(t)u∞ is a solution of (2.4). Now, we can estimate∫ ∞
t

|Φ(t)ĝ(s, u(s), u(γ(s)))|ds

=

∫ ∞
t

|Φ(t, s)f(s,Φ(s)u(s),Φ(γ(s))u(γ(s))|ds

≤
∫ ∞
t

|Φ(t)|(|Φ−1(s)‖Φ(s)|λ1(s)|u(s)|

+ |Φ−1(s, γ(s))‖Φ−1(s)‖Φ(s)|λ2(s)|u(γ(s))|)ds

≤ |Φ(t)|
∫ ∞
t

η1(s)|u(s)|+ η2(s)|u(γ(s))|ds,

(7.16)

and ∑
tk>t

|Φ(t)ĥ(t−k , u(t−k ))| =
∑
tk>t

|Φ(t)Φ−1(tk)Ik(Φ(t−k )u(t−k ))|

≤ |Φ(t)|
∑
tk>t

|Φ(t−k )‖Φ−1(tk)|µ̃k|u(t−k )|,

≤ |Φ(t)|
∑
tk>t

η3(tk)|u(t−k )|,

(7.17)

where η1(t), η2(t) and η3(tk) given in (H4). Now, from (7.15), (7.16) and (7.17) we
have

|y(t)− Φ(t)u∞|

≤ |Φ(t)|
( ∫ ∞

t

η1(s)|u(s)|+ η2(s)|u(γ(s))|ds+
∑
tk>t

η3(tk)|u(t−k )|
)
.

(7.18)

Applying (7.10) and (7.11) in (7.18), we have

|y(t)− Φ(t)u∞| ≤ |u(τ)|
∏
τ≤tk

(1 + η3(tk+1))|Φ(t)|
{∫ ∞

t

η(s) exp(

∫ s

τ

η(u)du)ds
}

+ |u(τ)|
∏
τ≤tk

(1 + η3(tk+1))
∑
tk>t

η3(tk) exp
(∫ t

τ

η(s)ds
)

≤ |Φ(t)|
[
|u(τ)|

∏
τ≤tk

(1 + η3(tk+1)) exp
( ∫ t

τ

η(u)du
)]

×
{(

exp(

∫ ∞
t

η(u)du)− 1
)

+
∑
tk>t

η3(tk)
}
.

So, (7.5) is proved.
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In a similar way, we can see that∫ ∞
t

|Φ(t)ĝ(s, u(s), u(γ(s)))|ds

=

∫ ∞
t

|Φ(t, s)f(s,Φ(s)u(s),Φ(γ(s))u(γ(s))|ds

≤
∫ ∞
t

|Φ(t, s)(λ1(s)|Φ(s)u(s)|+ λ2(s)|Φ(γ(s))Φ−1(s)Φ(s)u(γ(s))|)ds

≤
∫ ∞
t

|Φ(t, s)‖Φ(s)|(λ1(s)|u(s)|+ λ2(s)|Φ−1(s, γ(s))‖u(γ(s))|)ds

(7.19)

and ∑
tk>t

|Φ(t)ĥ(t−k , u(t−k ))| =
∑
tk>t

|Φ(t)Φ−1(tk)Ik(Φ(t−k )u(t−k ))|

≤
∑
tk>t

|Φ(t, tk)Ik(Φ(t−k )u(t−k ))|

≤
∑
tk>t

|Φ(t, tk)‖Φ(t−k )|µ̃k|u(t−k )|.

(7.20)

By the boundedness of u(t), u(γ(t)), (H4) and (7.19)-(7.20), from (7.15) we have

|y(t)− Φ(t)ξ|

≤ K(

∫ ∞
t

|Φ(t, s)‖Φ(s)|(λ1(s) + λ2(s)|Φ−1(s, γ(s))|)ds+
∑
tk>t

|Φ(t, tk)‖Φ(t−k )|µ̃k)

≤ Kε0(t),

where K = supt∈[τ,∞) |u(t)| and ξ = u∞. So, (7.8) holds and the proof is complete.
�

7.2. Consequences of Theorem 7.2. Consider the homogeneous linear IDE-
PCAG

y′(t) = A(t)y(t) +B(t)y(γ(t)), t 6= k,

∆y(tk) = Jky(t−k ), t = tk
(7.21)

and define

ε0(t) =

∫ ∞
t

|Φ(t, s)B(s)Φ(γ(s))|ds. (7.22)

As a direct application of above Theorem 7.2, we have the following result.

Theorem 7.3. Suppose that Jk ∈ l1 and η(t) = |Φ−1(t)B(t)Φ(γ(t))| satisfy hy-
pothesis (H3), where Φ(t) is the fundamental matrix of system (2.4). Then the
linear IDEPCAG (7.21) is equivalent to the IDE (2.4) and for every solution y of
(7.21) there exists ξ ∈ Cn such that

y = Φ(t)(ξ + ε(t)), as t→∞, (7.23)

where

ε(t) = O
(∫ ∞

t

|Φ−1(s)‖B(s)‖Φ(γ(s))|ds
)
. (7.24)

Moreover, if ε0(t) → 0, as t → ∞, then the linear IDEPCAG (7.21) is asymptoti-
cally equivalent to the IDE (2.4) and for any solution y(t) of (7.21) there exists a
unique solution x(t) of (2.4) such that

y(t) = x(t) +O(ε0(t)), (7.25)
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where ε0 is given by (7.22).

Proof. Let

ĝ(t, u(t), u(γ(t))) = Φ−1(t)B(t)Φ(γ(t))u(γ(t)),

ĥ(t−k , u(t−k )) = Φ−1(tk) · 0 .
(7.26)

Proceeding as in Theorem 7.2, we see that∫ ∞
t

|Φ(t)ĝ(s, u(s), u(γ(s)))|ds =

∫ ∞
t

|Φ(t, s)B(s)Φ(γ(s))u(γ(s))|ds.

≤
∫ ∞
t

|Φ(t, s)B(s)Φ(γ(s))‖u(γ(s))|ds.
(7.27)

So, by (7.27), we have the desired result. �

8. Examples and applications

8.1. Linear Systems. In this section we give some examples that illustrate the
effectiveness of our results.

(i) Consider the almost constant scalar lineal IDEPCAG

y′(t) = ay + b(t)y(γ(t)), t 6= tk

∆y(tk) = qky(t−k ), t = tk
(8.1)

with a > 0 a constant, b(t) ∈ L1(I), qk ∈ l1(I) and b̃(t) = O(e−at) where

b̃(t) =

∫ ∞
t

( i[s]∏
i[t]

(1 + |qk|)
)
|b(s)|eaγ(s)ds

Then all solutions y(t) of (8.1) have the asymptotic formula

y(t) =
( i[t]∏
i[τ ]

(1 + qk)
)
eat
(
ξ + b̃(t)

)
, as t→∞,

where ξ ∈ R, and

y(t) =
( i[t]∏
i[τ ]

(1 + qk)
)
eatξ + ε(t), ε(t) = eatb̃(t).

Notice that (8.1) is asymptotically equivalent to the IDE

x′(t) = ax(t), t 6= tk

∆x(tk) = qkx(t−k ), t = tk.

Evidently, without the integrability condition b(t) ∈ L1(I), even if a < 0 the
previous results are not true, as is shown by (8.1) with a = −1 and b(t) = 1 + δ,
γ(t) = [t], δ > 0, qk = 1

k2 and the unbounded solution

y(t) =
( [t]∏
k=1

(1 +
1

k2
)
)(

1 + (1− e−(t−[t]))δ
)(

1 + (1− e−1)δ
)[t]
, y(0) = 1.
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(ii) Consider the linear second order IDEPCAG

y′′(t) = a(t)y + b(t)y(γ(t)), t = tk

y′(tk) = cky
′(t−k ), t = tk

y(tk) = dky(t−k ), t = tk

(8.2)

where ck, dk ∈ l1, a(t) = 2(t + 2)−2, b(t) = O(t−δ). This equation is equivalent to
system (7.21), where

A(t) =

(
0 1
−a 0

)
, B(t) = b(t)

(
0 0
−1 0

)
.

The ODE u′′ = a(t)u has a fundamental system of solutions

u1(t) = (t+ 2)2, and u2(t) = (t+ 2)−1,

and the fundamental matrix Φ of its associated first order system (7.21) satisfies
|Φ(t)| = |Φ−1(t)| = O(t2) as t→∞, since the trace of A is zero. If O(γ(t)) = O(t),
for δ > 5 we have that Φ−1(t)B(t)Φ(γ(t)) ∈ L1 and for δ > 7,

ε0(t) =

∫ ∞
t

|Φ(t, s)B(s)Φ(γ(s))|ds→ 0, as t→∞.

Hence, the conclusions of Theorem 7.3 are true. From (7.23), for any solution y(t)
of (8.2), there exist constants v1, v2 ∈ R such that

y(t) = (t+ 2)2(v1 + ε(t)) + (t+ 2)−1(v2 + ε(t)),

y′(t) = 2(t+ 2)(v1 + ε(t))− (t+ 2)−2(v2 + ε(t)),

where
ε(t) = O(exp(η(t)tδ−5)− 1), as t→∞.

(iii) Consider the linear IDEPCAG case

x′(t) = A(t)x(t) +B(t)x(γ(t)) + C(t), t 6= tk

∆x(tk) = Dk(x(t−k )) + Ek, t = tk,
(8.3)

under the assumption of integrability and summability of the coefficients involved
(A(t), B(t), C(t), Dk and Ek). It is easy to verify if

sup
k∈N

∫ ζk

tk

|A(u)|+ |B(u)|du < 1, for k ∈ N sufficiently large, (8.4)

then, by theorem 6.2, (8.3) has an asymptotic equilibrium.
As an application of the last result, Bereketoğlu and Oztepe [8] studied the scalar

version of the IDEPCA system

x′(t) = A(t)(x(t)− x([t+ 1])) + g(t, x), t 6= k

∆x(tk) = Ek, t = k, k ∈ N
x(0) = x0,

(8.5)

where the fundamental matrix of the linear IDEPCAG system associated to (8.5)
is the n × n identity matrix I (see [37, 42]), the coefficients A(t), g(t, x) and Ek
are integrable and summable, respectively. The authors, using some conditions
over the adjoint equation related to (8.5), showed that all solutions of this system
are convergent to some ξ ∈ R. To obtain the same conclusions, we only need
to apply Theorem 6.2 to (8.5). In this way we obtain an asymptotic equilibrium
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for system (8.5), which is a stronger result because it implies the convergence of
the solutions. Obviously, we can consider (8.5) as a particular case of (8.3) with
B(t) = −A(t), Dk = 0, γ(t) = [t+1] and (8.4). This last condition over the integral
is assured for some k ∈ N sufficiently large due to integrability of A(t). Thus, as a
consequence of Theorem 6.2, (8.5) has an asymptotic equilibrium in I ⊂ R.

Remark 8.1. Condition (8.4) is of critical importance for existence, uniqueness,
boundedness and stability of solutions in the DEPCAG and IDEPCAG context and
it was not considered by the authors (see [36, 37]).

(iv) Consider the equation

x′(t) =
1

2
e−t x(t) +

1

t2
x([t+ 1]) +

1

t3
, t 6= k,

∆x(k) =
1

3k
, t = k ∈ N,

x(1) = 2.

(8.6)

Here, all hypotheses of theorem 7.2 are satisfied, so (8.6) has an asymptotic equi-
librium ξ = 5/2.

Figure 1.

(v) Consider the advanced semilinear IDEPCAG

y′(t) =
sin(1.9(t+ 1))

(t+ 1)2
y(t)− 1

(t+ 1)2
tanh(y([t+ 1])) + e−

t
20 , t 6= k

∆y(tk) =
( 9

10

)k
y(t−k ) +

|y(t−k )− 1| − |y(t−k ) + 1|
2k

+
1

3k
, t = k, k ∈ N,

(8.7)

with y(0) = −1.1. All conditions of Theorem 7.2 are satisfied, so (8.7) has an
asymptotic equilibrium, with error

ε(t) = O(e
1

2(t+1) − 1 +
1

2i[t]
),

where i[t] = n ∈ Z is the only integer such that t ∈ In = [tn, tn+1[.
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Figure 2. Asymptotic equilibrium for (8.7).
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[27] I. Györi, L. Horvath; Asymptotic constancy in linear difference equations: limit formulae and

sharp conditions. Advances in Difference Equations, Vol 2010 Article ID 789302, 20 pages.

[28] T. G. Hallam; Convergence of solutions of perturbed nonlinear differential equations. Annali
di Matematica Pura ed Applicata, Vol. 94 no. 1 (1972), 275–282.

[29] T. G. Hallam; On convergence of the solutions of a functional differential equation. Journal

of Mathematical Analysis and Applications, Vol. 48 no. 2 (1974), 566–573.
[30] J. L. Kaplan, M. Sorg, J. A. Yorke; Solutions of x′(t) = f(x(t), x(t− L)) have limits when f

is an order relation. Nonlinear Analysis: Theory, Methods & Applications, Vol. 3 no. 1 (1979),
53–58.

[31] S. Kartal; Mathematical modeling and analysis of tumor-inmune system interaction by us-

ing Lotka-Volterra predator-prey like model with piecewise constant arguments. Periodical of
Engeneering and Natural Sciences, Vol. 2 no. 1 (2014), 7–12.

[32] G. Ladas, V. Lakshmikantham; Asymptotic equilibrium of ordinary differential systems. Ap-
plicable Analysis, Vol. 5 no. 1 (1975) 33–39.

[33] N. Levinson; The asymptotic behavior of a system of linear differential equations. American

Journal of Mathematics, Vol. 68 no. 1 (1946), 1–6.

[34] N. Levinson; The asymptotic nature of the solutions of linear differential equations. Duke
Mathematical Journal, Vol. 15 no. 1 (1948), 111–126.

[35] A. D. Myshkis; On certain problems in the theory of differential equations with deviating
arguments. Russian Mathematical Surveys. Vol. 32 no. 1 (1977), 173–202.

[36] M. Pinto; Asymptotic equivalence of nonlinear and quasilinear differential equations with

piecewise constant argument. Mathematical and Computer Modelling, Vol. 49 nos. 9-10 (2009)
1750–1758.



22 S. CASTILLO, M. PINTO, R. TORRES EJDE-2019/40

[37] M. Pinto; Cauchy and Green matrices type and stability in alternately advanced and delayed

differential systems. Journal of Difference Equations and Applications, Vol. 17 no. 2 (2011),

235–254.
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Departamento de Matemáticas, Facultad de Ciencias, Universidad de Chile, Santiago,
Chile

Email address: pintoj@uchile.cl, pintoj.uchile@gmail.com

Ricardo Torres
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