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REGULARITY OF THE LOWER POSITIVE BRANCH FOR
SINGULAR ELLIPTIC BIFURCATION PROBLEMS

TOMAS GODOY, ALFREDO GUERIN

ABSTRACT. We consider the problem
—Au=au" 4+ f(A,,u) inQ,
uw=0 on 01,
u>0 in
where Q is a bounded domain in R*, A > 0,0 <a € L*®°(Q2), and 0 < o < 3.
It is known that, under suitable assumptions on f, there exists A > 0 such
that this problem has at least one weak solution in HJ(Q2) N C() if and only
if A € [0, A]; and that, for 0 < A < A, at least two such solutions exist. Under
additional hypothesis on a and f, we prove regularity properties of the branch
formed by the minimal weak solutions of the above problem. As a byproduct

of the method used, we obtain the uniqueness of the positive solution when
A=A

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

Let © be a bounded domain in R", and let a, and f be functions defined on €2
and [0,00) x Q X [0, 00) respectively. For A > 0 and « > 0, consider the singular
semilinear elliptic problem:

—Au=au""+ f(A\,-,u) in Q,
u=0 on 04, (1.1)
u>0 in .

Singular elliptic problems like appear in the study of many nonlinear phe-
nomena, for instance in models of heat conduction in electrical conductors, in the
study of chemical catalysts reactions, and in models of non Newtonian flows (see
e.g., [10, @] 16l 20]).

Fulks and Maybee [20], Crandall, Rabinowitz and Tartar [11], Lazer and McKenna
[35], Diaz, Morel and Oswald [16], Del Pino [14], and Bougherara, Giacomoni and
Herndndez [3], addressed, under different assumptions on a, the existence of solu-
tions to problem in the case f = 0. The case when f =0, and «a is a measure,
was treated by Oliva and Petitta [38].

Problem was studied by Shi and Yao [43], in the case when Q and a are
regular enough (with a that may change sign), and f(\, z,s) = As?, with 0 < a < 1,
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and 0 < p < 1. Dé4vila and Montenegro [13] considered free boundary singular
elliptic problems of the form —Au = x>0y (—u™" + Ag(-,u)) in , u = 0 on 99,
u>0in Q, u# 01in Q (that is: [{z € Q: u(z) > 0} > 0).

Singular problems of the form

—Au = g(z,u) + h(z,\u) in Q,
u=0 on 0f, (1.2)
u>0 in §,

(e

were studied by Coclite and Palmieri in [9]. They proved that, if g(z,u) = au™?,
a€CHQ),a>0inQ, h € CY(Q x [0,0)), and nfg, (0,00) % > 0, then there
exists A* > 0 such that, for any A € [0,\*), (1.2) has a positive classical solution
u € C?(Q)NC(Q); and, for A > \*, (1.2 has no positive classical solution.
Papageorgiou and Rédulescu [39] investigated the existence and nonexistence of

positive weak solutions to problems of the form
—Au=—u""+ Af(x,u) inQ,
u=0 on 0f, (1.3)
u>0 in

in the case where € is a bounded domain in R” with C? boundary, v > 0, A >
0, and f is a Carathéodory function satisfying some further assumptions. They
proved that, if 0 < v < 1, then there exists \* > 0 such that has a solution
u € HHQ)NL>®(Q) when A > \*, and has no solution in Hg (2)NL>(Q) for A < A*.
They also proved that, when ~v > 1, has no solutions in H}(Q) N L>(Q).

Godoy and Guerin ([28], [29] and [30]) obtained existence results for weak solu-
tions in H}(Q) to problems of the form

—Au = X{us0p9(u) + f(,u) in €,
u=0 on 01,
u>0 u#0 inQ,

where s — g(z,s) is singular at the origin, and f : Q x [0,00) — R is sublinear at
oo. While in [28] and [29] the singular part g was of the form au™%, a more general
singular term g was allowed in [30].

Ghergu and Radulescu [25] proved existence and nonexistence theorems for pos-
itive classical solutions of singular biparametric bifurcation problems of the form
—Au = g(u) + A\|VulP + ph(-,u) in Q, v =0 on 9Q, v > 0 in £, in the case where
Q is a smooth bounded domain in R", 0 < p < 2, A\, u > 0, h(z, s) is nondecreasing
with respect to s, g is unbounded around the origin, and both are positive Holder
continuous functions. They also established the asymptotic behavior of the solu-
tion around the bifurcation point, provided that g(s) behaves like s~ around the
origin, for some a € (0,1).

Dupaigne, Ghergu and Radulescu [19] studied Lane-Emden-Fowler equations
with convection term and singular potential; and Radulescu [40] investigated the
existence of blow-up boundary solutions for logistic equations, and also for Lane-
Emden-Fowler equations with a singular nonlinearity and a subquadratic convection
term.

The existence of positive solutions to the problem —Au = ag(u) + Ah(u) in €,
uw=0on 9, u > 0in Q was considered by Cirstea, Ghergu and R&dulescu [12]
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under the assumptions that € is a smooth bounded domain in R”, 0 < a € C?(Q),
0 < h e C%0,00) for some B € (0,1), h is nondecreasing on [0,00), h(s)/s is
nonincreasing for s > 0, g is non-increasing on (0,00), lim,_,q+ g(s) = oo; and
SUPse(0,00) 579(8) < 0o for some a € (0,1) and o > 0.

Ghergu and Réadulescu [22], studied the Lane-Emden-Fowler singular equation
—Au = Af(u) + a(x)g(u) in Q, v = 0 on 9N, when Q is a bounded and smooth
domain in R", A is a positive parameter, f is a nondecreasing function such that
s~1f(s) is nondecreasing, a € C*(Q) for some a € (0,1), and g is singular at the
origin. Under suitable additional assumptions on «a, f, and g, they proved that, for
some explicitly characterized \* > 0:

(i) For any A € [0, A*), there exists a unique solution uy € £ (whose behavior
near 02 was established), where

& :={ue C*(Q)NCH*(Q) such that Au € L*(Q)}.

(ii) For A > A* the problem has no solution in £.

Ghergu and Rédulescu [24], established the existence of a ground state solution
of the following problem involving the singular Lane-Emden-Fowler equation with
convection term:

—Au = p(x)(g(u) + f(u) +[Vul?) in R,

w>0 inR"
lim wu(z) =0,
|z|—o00

where n > 3, 0 < a < 1, p positive in R", f positive, nondecreasing, with sublinear
growth, and g positive, decreasing and singular at the origin.

Ghergu and Rédulescu [23], proved existence and nonexistence results for the two
parameter singular problem —Au+K(x)g(u) = Af(x,u)+ph(z) in 2, v = 0 on 012,
when (2 is a smooth bounded domain in R™, A and p are positive parameters, h is a
positive function, f has sublinear growth, K may change sign, and g is nonnegative
and singular at the origin.

Aranda and Godoy [2] found a multiplicity result for positive solutions in the
space W,27(Q) N C(Q) to problems of the form —A,u = g(u) + Mh(u) in Q, u =0
on 0, when Q is a C? bounded and strictly convex domain in R", 1 < p < 2;
and g, h are locally Lipschitz functions on (0,00) and [0, c0) respectively, with g
nonincreasing, possibly singular at the origin; and h nondecreasing, with subcritical
growth, and such that inf,~qs P+ 1h(s) > 0.

Kaufmann and Medri [34] proved existence and nonexistence results for positive
solutions to one dimensional singular problems of the form —(|u/|P~2u’) = m(z)u™"
in Q, u =0 on 09, in the case where 2 C R is a bounded open interval, p > 1,
v >0, and m : Q — R is a function that may change sign in €.

Chhetri, Dréabek and Shivaji [§] studied the problem —A,u = K(x)f(u)u? in
R™\ ©, u = 0 on 99, lim|;| o u(x) = 0, under the assumptions that  is a simply
connected bounded and smooth domain in R", 0 € Q, n > 2, 1 < p < n, and
0 < § < 1. Under a decay assumption on K at infinity, and a growth restriction
on f, they proved the existence of a weak solution u € C'(R" \ Q). Also, under
an additional condition on K, the uniqueness of such a solution was proved. The
existence of radial solutions in the case when 2 is a ball centered at the origin was
also addressed.
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Saoudi, Agarwal and Mursaleen [41I] considered singular elliptic problems of the
form — div(A(z)Vu) = u=* + AP in Q, u=0on §Q, with 0 < o <1 < p < 2£2
and A uniformly elliptic on Q. They proved that, for A positive and small enough,
at least two positive weak solutions in Hg () exist.

Giacomoni, Schindler and Takac [26] studied the existence of weak solutions in
Wolp(Q) of the problem —A,u = A"+ u?in Q, u =0 on 9Q, uw > 0 in Q, in the
case where 0 < a < 1,1 < p<oo,g<ooand p—1<q<p#—1, with p# defined
by pi# = %—% if p < n, p¥ = o0 if p > n, and where p# € (p, 00) is arbitrarily large
if p = n. They proved the existence of A € (0,00) such that: a solution exists if
A € (0, A], no solution exists if A > A, and at least two solutions exist if A € (0, A).

Additional references, and a comprehensive treatment of the subject, can be
found in [2I] and [40]; see also [I5].

Finally, in [3I] and [33], existence and multiplicity results were obtained for
positive solutions of problem for0 <a<3,0<aeclLl>Q),az0inQ,
and for some nonlinearities f satisfying that f(\, x,.) is superlinear with subcritical
growth at oo.

Our aim in this work is to complement the results obtained in [31] and [33]
(see also [32]). To do that, we assume, from now on, that «, a, and f satisfy the
following conditions:

(H) 0<a<3

(H2) 0 < a € L*®(Q), and there exists 6 > 0 such that infa, a > 0, where
As = {x € Q : dist(z,00) < ¢} and, for any measurable E C , infg
means the essential infimum on F.

(H3) 0 < f € C([0,00) x Q x [0,00)), and f(0,-,-) =0 on Q x [0, 00).

(H4) There exist numbers 79 > 0, ¢ > 1, and a nonnegative function b € L*(£2),
such that b # 0 and f(\, -, s) > Abs? a.e. in ) whenever A > 7y and s > 0.

(H5) There exist p € (1, 2£2), and h € C((0, 00) xQ) that satisfy inf, .gh>0
for any n > 0, and such that, for every o > 0,

lim s ?f()\,-,8) = h(o,-) uniformly on Q.
(X,8)—=(0,00)

(H6) For any (A, z) € (0,00) xQ, the function f(\, z, -) is nondecreasing on [0, 00)
and, for any (z,s) € Q x (0, 00), the function f(-,x,s) is strictly increasing
on [0, 00).

(H7) For any (A, z,s) € (0,00) x Q x (0,00), %()\,m,s) exists and it is finite
and positive, and for any (A, z) € (0,00) x 0, the function %(A,z,') is
nondecreasing on (0, 00).

(H8) f(-,x,+) € C?([0,00) x [0,00)) for almost all x € Q; and, for any M > 0,
H%(A”M)Hw < oo whenever A € [0, M], and both %|(07M)XQX(O7M) and
L) (0,01 x0x (0,01 belong to L((0, M) x Q x (0, M)).

2

(H9) For almost all x € €, %(~7x, ) > 0 in [0,00) x [0, 00), and %(-,m, >0
in [0, 00) x [0, 00).

Since our results rely heavily on those in [33], the next remark summarize the main
results given there.

Remark 1.1 (See [33] Theorems 1.2 and 1.3]). Let Q be a bounded domain in R™
with C? boundary, and assume that (H1)—(H6) hold. Then there exists A > 0 such
that:
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(i) For A = 0, has a unique weak solution in H{(2) N L>(Q), and it
belongs to C(Q),

(ii) For A = A, has at least one weak solution in Hg(£2) N C(9),

(iii) For A € (0,A), problem has at least two positive weak solutions in
HY(©Q) N C @),

(iv) For A > A, there is no weak solution of in H}(Q) N L>®(9Q).

(v) For any A € [0, A], problem has a minimal weak solution uy € Hg(2)N
L (), in the sense that uy < v for any weak solution v € H}(Q) N L ()
of (LI). Also, uyx € C(Q) and, if 0 < Ay < Ay < A, then there exists a
positive constant ¢ such that uy, +cdg < uy, in Q; where dg, := dist(-, 99).

(vi) If u € HE(Q) N L*°(Q) is a weak solution of for some A € [0, A, then
u € C(Q), and there exists a positive constant ¢/, independent of A and w,
such that u > ¢/di in Q, with 7, := 11 0 < @ < 1, and 74 = H—% if
1 <a<d.

In the previous remark and below, by a weak solution, we mean a weak solution
in usual sense:

Definition 1.2. Let h : Q — R be a measurable function such that he € L'(Q)
for any ¢ € H}(2). We say that u :  — R is a weak solution of the problem
—Au=h in Q,
u=0 on 09,
if u e Hy(Q) and [,(Vu, Vo) = [, he for any ¢ € Hj ().
For v € H'(Q), and h as above, we will write —Au > h in Q (respectively
—Au < hin Q) to mean that [,(Vu, V) > [, he (resp. [(Vu, Vo) < [, hep) for
any nonnegative ¢ € Hj ().

(1.4)

Let us state our results.

Theorem 1.3. Let Q be a bounded domain in R™ with C? boundary, and assume
(H1)-(H9). Let A be given by Remark[1.1] and, for X € [0,A], let uy be the minimal
solution given by Remark[1.1] (v). Then:
(i) The map X\ — uy, is continuous from [0, A] to C(Q).
(ii) The map X — uy is continuously differentiable from (0,A) to C(Q).
(iii) The map A\ — uy is continuously differentiable from (0,A) to H} ().

Theorem 1.4. Assume the hypothesis of Theorem[I.3, and let A be given by Re-
mark . Then for A = A there exists a unique weak solution u in Hg(€2) N L> ()
to problem (L.1), and (according to Remark it belongs to C(2).

To prove Theorems 1.3 and [I.4] we follow an implicit function theorem approach.
We rewrite (|1.1)) as T'(A\, u) = 0, where

T(\u) = u— (~A) " (au™ + f(,-,u).

In Section 2, we define a suitable Banach space X, and an open subset D, C X,
such that uy € D, for any A € [0,A]. We prove that T((0,00) x D,) C X, and
that T': (0,00) x D, = X, is a continuously Fréchet differentiable map.

In Section 3, we consider, for u € D,, and for a nonnegative and not identically
zero m € L*°(), the following principal eigenvalue problem with singular potential
aau~*"! and weight function m :

«

—Aw + aau” T = fm,umw  in £,
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w=0 on 09,
w>0 in Q.

We prove that this problem has a positive principal eigenvalue p,, .,, with a positive
associated eigenfunction w € D,. A corresponding maximum principle with weight
is also proved.

In Section 4, we prove that, if A € (0, A) and m) := %()\, uy), then fim, uy > 1,
with uy given by Remark (v); and that, if had at least two solutions for
A = A, then the same assertion would hold for A = A. Moreover, we also prove
that, in both cases, T satisfies the hypothesis of the implicit function theorem
for Banach spaces at (A, uy). Finally, from these facts, and from some additional
auxiliary results, Theorems[I.3]and as well as two results concerning uniformity
properties of the family {ux}xejo,], are proved in Section 6.

2. PRELIMINARIES

From now on, we We assume, conditions (H1)-(H9). For 1 < p < oo, let p’

begivenby%—!—; = 1, and let p* bedeﬁnedbyp% = %—%ifp<nandby
p* := 0o otherwise. For a measurable function v : 2 — R such that vy € L'(£)

for any ¢ € H}(Q), S, will denote the functional S, : H}(Q) — R defined by
Sy(p) := [, v and we will write v € (Hg(£2))" to mean that S, € (Hj(Q2))'.

Remark 2.1. Let us recall the Hardy inequality (see e.g., [, p. 313]): There exists
a positive constant ¢ such that || £ z2(0) < c[|[Vel|lrz(o) for all ¢ € HLQ).

Lemma 2.2. If either v € L2 (Q) or dov € L2(Q), then:

(i) The functional S, : HZ(Q) — R is well defined, belongs to (HL(Q)),
and there exists a positive constant ¢, independent of v, such that ||S,|| <
cl|v|l gy when v € LZY(Q), and ||S,|| < ¢||dqule when dov € L2(Q).

(ii) The problem —Az = v in Q, z = 0 on 0, has a unique weak solution
z € H} (), and it satisfies, for some positive constant c independent of v,
2l ) < cllvll@ey if v e LE(Q), and [|2[| @) < cldavllz if dov €
L2(9).

Proof. Let ¢ € H}(Q). If v € L&) (Q) then, from the Hélder and Poincaré

inequalities, there exist positive constants ¢ and ¢, independent of v and ¢, such
that

S| < / vl < ¢lollaey llg

If dov € L?(2) then, applying the Holder and the Hardy inequalities, we obtain

2+ < cl|vll ey IVl

[Suepl S/ [vel < ¢lldavlalldg ¢l < clldavl2|[Vell2,
Q
with ¢ and ¢ constants independent of v and . Thus (i) holds, and from i), the
Riesz theorem gives (ii). O

Remark 2.3. Let v : Q — R be a measurable function such that v € L1(Q) for
any p € Hi(Q). If S, € (HZ(2)), then, by the Riesz theorem, the problem

—Az=wvinQ, 2z=0on 99,

has a unique weak solution z € Hg (), and it satisfies 12l 2 ) = 150l a2 )y -
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For 6 > 0 let Qs := {x € Q: do(x) > ¢}. We will need the following lemma,
which is a variant of [33] Lemma 3.2].

Lemma 2.4. Let u € W,22(Q) N C(Q) be a solution, in the sense of distributions,
to the problem —Au = u=! in Q, u = 0 on 0Q, u > 0 in Q (respectively to the
problem —Au = d51 in Q, u=0 on ON) such that, for some positive constants cy,
e and v, cidg < u < codly a.e. in Q. Then u € HJ () NCHQ) NCKQ), and u is
a weak solution of the respective problem.

Proof. Note that [,(Vu, V) = [, u™te (respectively [,,(Vu, V) = [, do' ) for
any ¢ € H}(Q) such that supp(¢) C Q. Indeed, let § > 0 be such that supp(p) C
Q5, and let {¢;}jen be a sequence in C2°(Q) satisfying supp(p;) C Q5 for all j, and
such that {¢;};en converges to ¢ in Hj(Qs). Now, VU|QJ € L*(Qs,R") and u > ¢18
on Q5. Also, from the Hardy inequality an ldg el < clléll # (q), with ¢ a positive
constant independent of ¢. Then the maps ¢ — st (Vu, Vo) and p — st u "l
(resp. ¢ — fQ(; (Vu, Vo) and ¢ — an dg'p) are continuous on HE(fs). Also,
Jo(Vu,Vj) = [ute; for all j (respectively [,(Vu,Ve;) = [, dg'¢;). Then
Jo(Vu, Vo) = limj_ [o(Vu, V) = limj o [u e = [u""e (respectively

Jo(Vu, Vo) =1lim; o0 [o(Vu, V;) = lim;_, [, dotp; = Jo dote ).
For each j € N, let h; : R = R be defined by

0 if s < %,
hj(s) = q =3j%s% + 155> = 19s + 5 if - <s < 3,
s if% <s.

Then h; € CH(R), h)(s) = 0 for s < %, R’ (s) > 0 for % <s < % and hj(s) =1 for
% < s. Also, 0 < hj(s) < s for all s € (0,2/7).

Let hj(u) := hj ou. Then, for all j, V(h;(u)) = h(u)Vu in D'(Q). Since
u € VV1 2(Q), it follows that h; j(u) € e W2(Q). Since h ( ) has compact sup-

loc loc
port, h;(u) e HO (Q). Therefore, for all j, [(Vu,V(hj(u))) = [,u h;(u) (resp.
Jo(Vu, V(h; = [oda'h;(u), ie.,

‘/{u>0} h;(u)wu|2:/gu_lhj(“) (resp. :/d?zlhj(U))- (2.1)

Now, h’( )|Vul? is nonnegative and lim; o 2 (u)|Vul? = [Vul? a.e. in Q, and so,
from and Fatou’s lemma, we have

/|Vu\2§1i7mjﬂoo/ uthj(u) (resp. /|Vu| <liminf/d Yhj(u
Q 0 j—o0

Since u < codyy, we have dg'u € LY(Q). Now, lim; oo u"'hj(u) = 1 a.e. in Q
(resp. lim; o dg'hj(u) = dg'u a.e. in Q) and, for any j € N, O S u‘lh (u) <1
in Q (resp. 0 < dg'hj(u) < dgtuin Q). Then, Lebesgue’s dominated convergence
theorem gives
lim uilhj(u):/ 1<oo (resp. :/d§1u<oo).

Q Q Q

j—oo
Thus [, |Vul? < oo, and so u € H*(2). Now, —Au =u~" in D'(Q) (resp —Au =

dg' in D'(Q)), also u € L>®(Q); and u™! € LZ,(Q) (resp. and dg' € LS. (Q)).
Now, the inner elliptic estimates in [27, Theorem 8.24] give that v € C'(Q) and,
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from the assumptions of the lemma u is continuous at 92, and so v € C(2). Thus,
since u € HY(Q), u € C(Q) and u = 0 on 99, we conclude that u € H}(Q).

Let ¢ € HY(Q). By the Hardy incquality, [u="gl < ci gl < ellollms o
(resp. ||dg |1 < cllellmz(q)) for some positive constant ¢ independent of ¢. Then
@ = JouTle (resp. ¢ = [, dg @) is continuous on H} (). Also, u € H}(2), and
s0 ¢ = [(Vu, V) is continuous on Hg(Q). Therefore, since CZ°(9) is dense in
HY(Q), and

[vuve = [ (op. [VuVo = [dle) 22
Q Q Q Q
for any ¢ € C2°(Q); we conclude that (2.2)) holds for all p € H(Q). O

Remark 2.5. Problems of the form
—Au=au® inQ,
u=20 on 09, (2.3)
u>0 in

were considered in [37] when @ < 1, @ € C}! (Q) for some 7 € (0, 1), and such that,
for some constants ¢ > 0, and p < 2,

%L(dg(x)) < dh(z)a(z) < cL(dg(z)) for all z € Q, (2.4)

where L(t) = exp ([, %s)ds), with wy > diam(§2), and z € C([0,wp]) such that
2(0) = 0 and [ ¢'"PL(t)dt < co. Under the stated assumptions, [37, Theorem 1]
says that problem (2.3) has a unique classical solution u € C?(Q) N C(2) which,

for some positive constant ¢/, satisfies

éep(dg(aﬁ) < u(z) < dO,(do(x)) forall z € O,

where
wo L(s i& . _
(QPPO (s)dsz1 if p=2,
0, (1) = ti=o (L(t)) ™= ifl+a<p<?2,
= 1
' ([ LB )T i p =1+ a4,
t ifp<l+a.
In particular, when @« =0, z =0 (i.e., L=1), and p =1 in (2.4)),
~Av=dy' inQ, 25
v=0 on dN 2

has a unique classical solution v € C%(Q) N C(f2), and that there exists a positive
constant ¢ such that

wo
do

Moreover, since d," € (H}(Q))', from Lemma v € H}(Q), and v is a weak
solution of ([2.5)).

¢! log(:—o)dg <wv <clog(=)dg in . (2.6)
Q
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Similarly, taking @« = —1, L =1, and p = 0 in (2.4)), the problem
—Aw=w"! inQ,
w=0 on dN (2.7)
w>0 inQ

has a unique classical solution w € C?(Q) N C(Q), and (2.6) holds with w instead
of v. Also notice that log(§2)dq € (Hg(2))’; indeed, for ¢ € Hg (),

wo wo —
| o5 )dael < og(2)able [ 14561 < clielngco

for some positive constant ¢ independent of . Then, from Lemma w e H(Q),
and w is a weak solution of (2.7).

Remark 2.6. The following result is a particular case of [12, Theorem 1]. Let
B € (0,1) and let & := {u € C2(Q) N CH1=A(Q) : Au € L' (2)}. Then the problem
—Au=u"" inQ,

u=0 on 0%, (2.8)
u>0 in
has a unique classical solution u € £ and there exist a positive constant ¢ such that
¢ tdg <u < edg in Q.
Let us observe that, since u is a solution of (2.8) in the sense of distributions,

and since u € H}(Q), and the map ¢ — [, u "¢ belongs to (H}(2))" (because
u > ¢ tdg in Q), a standard density argument shows that u is a weak solution of

(2.8).

For £ € (HY(Q))', (—A)~1¢ will denote, as usual, the unique solution u € HE(Q)
(given by the Riesz theorem) to the problem —Awu = { in Q, u = 0 on 9.
Lemma 2.7. If0 < 8 < 1, then (—A)"1(dg”) € HL(Q), and dg'(—=A)~(dg") e
L>(9Q).

Proof. The lemma clearly holds when 3 = 0, because (—A)~1(1) € C*(Q) and
(=A)71(1) =0 on 9. If 3 € (0,1), let ¢ € HL(Q) be the weak solution to
given by Remark Note that, according to Remark d'dg < ¢ < ddg in Q
for some positive constants ¢’ and ¢”’; and thus dgﬁ < (¢)%¢7 P in Q. Therefore,
for ¢ € H}(Q), and some constant ¢ independent of ¢, we have

| [atel <@ [ ¢Pol= @) [ dac12
Q Q Q Q
< (@) / a2 ) < el
Q do

the above inequality holds, by the Holder and the Hardy inequalities. Thus ds_)B €

(HE(2))', and so (—A)’l(déﬁ) is a well defined element in H}(2). Also, from the
weak maximum principle, and since ¢’dg < ¢ < d/dg in Q, we obtain

0< (=8)71(dg") < ()P(=8)7H(¢T) =¢ < dda in Q.
which completes the proof. [
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Definition 2.8. For a € (0,3), let 7, be as in Remark (vi), let wy be as
in Remark and let ¥, : @ — R be defined by ¥, = d* if o # 1, and by
U1 = log(52)dq.

Lemma 2.9. Let o € (0,3). If g € L®(Q), then 9% € (HI(Q)) (and so
(—A)"Y(W9,%g) € HE()), and there exists a positive constant c, independent of g,
such that:

) [1(=2)"" (959 3 < ellgloo,
(i) 951 (=2) T (059) oo < ellglloe-

Proof. Note that [, [05%9¢| < |9l [o, 9a“daldg | for any ¢ € HY(Q). If a # 1,
we have 9,%dq € L*(Q) (because 2(1 — at,) > —1), and then, by the Hélder and
the Hardy inequalities, Sy-o  is well defined on H(€2), and belongs to (H}(2))'.
Moreover, ||Sy-o [l(z2 () < cllgllc With c a constant independent of g, and so, by
Remark ||(—A)_1(19;O‘g)||Hé(Q) < ¢||glloo- Thus (i) holds when v # 1. f @« = 1
then ¥, %dq € L>(Q) and so, again now, we obtain (i).
To see (ii), consider the function z = (—A)~1(J;%g). We have, in the weak
sense,
=03 glloe < A2 <9.%glloc n O, (2.9)

and then, by the weak maximum principle,
Mgl (=2)THW0ZY) < 2 < lglloo(=A)THWZY)  ae. in

ie., |z] < glloc(—A)"1(WI,) a.e. in Q.

If 0 < o <1 then ¥, = dg”, and so, by Lemma 195 %200 < cllglloo, With
¢ independent of g. Thus (ii) holds when 0 < o < 1

If 1 < a < 3, consider the weak solution w € H}(Q) to the problem

—Aw=w"%in§), w=0o0ndN, w>0in . (2.10)

(such a solution exists and it is unique, for instance, by Remark taking there
a=1and A =0). By [31, Lemmas 2.9 and 2.11], there exist positive constants c;
and cg such that ¢;9, < w < cad, a.e. in Q, and then c; *J, 7 <w™* < ¢] I,
a.e. in €2; thus, from , we have

=5 [|glloc(~Aw) = =5 lgllocw™ < —Az
< G llgllcw™ = 3 llglloc(-Aw) in Q,
and then, from the weak maximum principle, —c%||g]lcw < 2 < ¢3]|g|lccw a.e. in
O, ie., 2| < Glgllocw ae. in Q. Since w < c21,, a.e. in §2, we obtain that (ii) holds

also when 1 < a < 3. Consider now the case o = 1. Let w € H}(Q) be the weak
solution to the problem

—Aw=wlinQ, w=00n0dQ, w>0inQ. (2.11)

From Remark there exist positive constants ¢; and cp such that 1 < w <
o1 a.e. in Q, and then 05119;1 <w < cflﬁfl a.e. in ; thus, from (2.11)), in
the weak sense, we have

—c2]|glloc(~Aw) = —collgllocw™ < —Az

< eallglocw™ = callglloc(~Aw) in Q,
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and then, from the weak maximum principle, —cz||g||cow < 2 < e2|g|lccw a.e. in
O, ie, |z] < c2llgllocw a.e. in . Since w < c211 a.e. in Q, we obtain (ii) also when
a=1. ]

3. TOWARDS AN APPLICATION OF THE IMPLICIT FUNCTION THEOREM
Definition 3.1. Let X,, || - [|x, : Xa — [0,00), and D,,, be defined by
X, ={ue€ Hj(Q): 9, u € L=(Q)},
lullx, = Va2 + 195 o,
D, :={ueX,: igﬁ?;lu > 0}.

Note that X, and R x X,,, equipped with the norms || - ||x, and |- |+ ||cdot] x,,
respectively, are Banach spaces.

Recall that A € R is called a principal eigenvalue for —A in 2, with homogeneous
Dirichlet boundary condition, if the problem —A¢ = A¢ in , ¢ = 0 on I has a
solution ¢ (called a principal eigenfunction) such that ¢ > 0in Q. It is a well known
fact that this problem has a unique positive principal eigenvalue, noted A1 (b) (see

e.g., [T1).
Lemma 3.2. D, is a nonempty open set in X,.

Proof. Let 1 be the positive principal eigenfunction for —A in  with homogeneous
Dirichlet boundary condition, normalized by ||¢1]lc = 1. Then (see e.g. [I7]),
@1 € WP(Q) N W, P(Q) for any p € [1,00) (in particular ¢; € C(€2)), and there
exist positive constants ¢y, ¢ such that

c1dg < 1 < cadg  in Q. (3.1)

Therefore ¢ € D, for each a € (0,1). If a € (1,3) then H—% > 1/2 and so
2 2

4,011% € Hj(92). Also, cf%dg‘* < it < cgi”dg“, which gives gaf% € D,.
If @ = 1 note that log(£2)p1 € Hg(2) and that, for some positive constant c,
¢ < log(%)gpl < ¥ in €, and so log(%)cpl € D;.

To see that D,, is open in X,, observe that if uy € D, then, for some positive
constant ¢, ug > ¢y in Q. Let € := § and let u € X, such that [|u — uo|x, <e.
Then |9, (u — ug)|leo < &, and so —e¥y < u —ug < €, ae. in Q. Then
u > ug — g > 5U4 a.e. in {2, therefore u € D,. O

Lemma 3.3. For any (\,u) € (0,00) x Dy, au™% + f(\,-,u) € (HL(Q)), and
(_A)il(auia + f(>\a B U)) € Xa'

Proof. Let (A, u) € (0,00)xDq. Since u € Dy C X4, and ¥4 € L(Q), we have u €
L>(Q). Then f(A,-,u) € L>®(2). Also, since u € D, we have u > ¢, a.e. in {2 for
some positive constant ¢. Therefore au™*+ f(A, -, u) < ¢ ||allc?; %+ (N, - 4) |00
a.e. in Q. Also, for some constant ¢,

" NallooP5* + [ FN 1) |loo < CIS* in Q. (3.2)
Then 0 < au™ + f(\, -, u) < 9, and the lemma follows from Lemma O

Lemma 3.4. If u € H}(Q) N L>®(Q) is a weak solution of (L.1)), then there exists
a positive constant ¢ such that u > ¢ty in €.
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Proof. When a # 1, Remark [I.1] proves the lemma. Consider the case o = 1. Let
0 be as in (H2). From Rema we know that u € C(), and that, for some
positive constant ¢i, u > c1dg in 2. Thus there exists a positive constant co such
that
u>c"9y ae in Q\ Ayjs. (3.3)
Let U be a C'! domain such that Aszs;a C U C As. As shown in [32], we have
oU\ 902 C Q\ As /o and
dU = dQ in A[;/g, (34)
where dy := dist(-, 0U).
Since U C Ag, from (H2) we have a := infyya > 0. Let v € H}(Q)NC?(Q)NC(Q)
be the weak solution, given by Remark to the problem

—Av=v"t inU,

v=0 on U,
v>0 inU.
Let wg be as in Remark and let 51 : U — R be defined by 51 = log(;"—g)dU.

Thus, by Remark there exists a positive constant cg such that v > 0351 in
U. Observe that —A((a)'/?v) = a((a)'/?v)™" < a((a)*/?v)~! in U, and that, in
weak sense, —Au > au~' in Q. Then —A(u — (a)'/?v) > a(u™" — ((a)/?v)~1) in
(HY(U))Y; and clearly u > (a)'/?v in OU. Then, taking (u — (a)'/?v)~ as a test
function, we obtain u > (a)'/?v in U. Thus there exists a positive constant ¢4 such
that u > 0451 in U. Moreover, since dy = dqo in As/g, we have 51 = U in Asys,
and so

u Z C4’L91 in Ag/g . (35)
From (3.3), (3.5), and (3.4]), we obtain u > ¢y in Q, with ¢ := min{cs, ¢4}, which
completes the proof. [

Lemma 3.5. If u € H}(Q) N L%(Q) is a weak solution of (1.1)), then u € D,,.

Proof. From Lemma there exists a positive constant ¢ such that u > ¢, in
Q. Since u € L*(Q) we have f(\ -, u) € L>®°(Q). Thus, for some constant ¢,
0<au™+ f(A - u) < e laflcda® +[[f(A - u)lloe < 9. Since

u=(=A)"au" + f(\ -, u)),

from Lemma [2.9 we obtain u < ¢”d,, and so u € X,. Let w € H}(Q) N L>°()
be the weak solution of —Aw = aw™® in Q, w = 0 on 9N (given by Remark .
Then, by Remark w > cty. Also we have

—Alu—w)>alu™—w *)inQ, and w—w=0o0nJN. (3.6)
Now, taking (v —w)~ as a test function in (3.6), we obtain u > w. Thus u > ¢d,
and so u € D, O

Definition 3.6. Let T": (0,00) x D, — X,, be the operator defined by

T\ u) =u— (=A)"Hau™ + f(\ - u)) (3.7)
Lemma 3.7. T : (0,00) x D, — X, is Fréchet differentiable, and its differential
at (A, u) € (0,00) X Dy, noted DTy ), is given by

of
O

of

DT()\,u) (Ta ’l/)) = 1/} - (7A)71(705a7/}u7a71 +7 (Av %y ’U,) + 1/’@(/\ %y u))a (38)
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for any (1,¢) € R x X,.

Proof. Let (A, u) € (0,00) x D, and let > 0 be such that A > 4r and 9 u > 4r
a.e. in ). Note that

N :={(1,¥) e Rx X, :|7| <rand ||¢]|x, <7}

is an open neighborhood of (0,0) in R x X, and that (A,u) + N C (0,00) x D,.
For (1,1) € N we have

TO+7u+1%) =T\u) + ¢ — (=A) " (hry), (3.9)
where h; .y = alu+¢) "+ f(A+7,,u+ 1) —au — f(A,-,u). A computation

gives

td
b za/ —(u+t)"dt
O d

15 (3.10)
+/0 [T aﬁ()\—f—ﬁ', S th) f(A+tT, Lu+ )] de.
Also,
1
a/o jt(qut?ﬁ) o gt
1 t
_ —a—1 i —a—1 (311)
= aaw/o [w —|—/0 = (u+ ov)) do)dt
= —aapu" "' + Ry (),
where
1t
Ri(v) = ala+ 1)a¢2/ / (u+op) "2 do dt. (3.12)
o Jo
Also,
1
/ [T gﬁ(z\—ktr, U4 t) + f()\+t7',-,u+t1/1)]dt
0
:/ / —[T—f()\—l—m- . u—i—O”(/J)—l-’lﬂg()\-‘rO'T Su+ ov)] dodt
0 do - OA Y Os Y (3.13)
0
sl w e
0
=T >+wf@ﬂm+&vw
where
2
Ry(m,¢) =1 / gA'];()\—‘y-JT, u~+ o) dodt
8)\8 U+ o) dodt (3.14)

+ 2 / / S\ + o7, u+oy)dodt.

Thus T(A + 7,u+ ) = T(A\u) + Lau(7,9) — (—=A) (R (¥) + Ra(7,7)), where

of o 0.

0
SO u) + 9

Lau(rd) =4 — (=A) " (~aayu™* " + 7
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Then, to conclude the proof of the lemma, it is sufficient to prove the following two
assertions: (a) Ly ,(R x X,) C X4 and Ly, : R x Xy — X, is continuous; (b)

I(=2)" (R (¥))llx. + 1(=2) " (Ra(m, ) [x, < ell(m )%,

for some positive constant ¢, independent of 7 and .

Let us prove (a). Since u € D, we have, for some positive constant ¢/, u > /9,
in Q; then, taking into account that |9, 19| < ||¢| x,, for some positive constant
¢ independent of (7,1), we have |aau=* 1| < e, %||(1,9)|rxx, in Q. Also,
u € X, implies u € L*>(Q2), and so, by (H8)— (H9), ﬁ()‘ ,u) and %(A, -,u) belong
to L°°(Q). Then, for some positive constants ¢’ and ¢’ independent of (7,1), we
have

Lof
Tox

f

O 0 + 02 0 )l < ] )

= (7] + dal ) (315)
< "I (1, 0)||rx x., a-e. in Q.

Then, for some positive constant ¢ independent of (7,1), it holds

9\ f

Lemma [2.9 now implies that (a) holds.
Let us prove (b). Let p := max{\+r, (|Jul|x, + 7)|[Jallec}, and let

0% f 0% f 0% f
= H| |+|8)\85|+| S2|||L°c((o,p Yx Q2% (0,p))-

| — aapu™ "t 1 (/\7 Su)| < et (T, Y)IrRxx, a-e. in Q,

Note that, for any (7,¢) € N and o € [0, 1], we have 0 < A+ o7 < A+7r < p and
0 <u+ot < (|95 ullse + 95 ¥ 0) V0 < (lullx, +7)[[alle < p-

Then, for such a (7,%), and for some positive constant ¢ independent of (7,v), the
following inequalities hold:

’2/ / o (At om, - ut o) dodt] < LM < el (r, ) .,

2 : <M < MY, |||
| Tw/o /0 3>\Bs( s ut o) dodt] < Mlrllg] < MY |T||19a|
< (7, ) [Fxx.,»
1
W/ / 5o V0T ut o) do di] < SMY? < (7, 0) [,

Therefore, from [B.14), [Ra(7,9)] < c|(, )R x. < I ¥) |2y x. 00, with ¢
and ¢’ constants mdependent of (7,%). Then, by Lemma (—A) Y Ra(r,)) €
Xy and [|(=A) Y Ra(1, ) |lx. < cll(r, w)”]lexXa? where c is a constant independent
of (7,v).

Consider now R;(¢). Since u > ¢, a.e. in €, from (3.12)), for a constant ¢’
independent of (7,), we have

[Ra(9)] < 97 Ty? = c’ﬂ;%ﬂ

(63

)? < LT ) Rx,
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and so, by Lemma [2.9] we have (—A) "} (Ry(¥)) € X, and ||(—=A) " (R1(¥))||x. <
ll(m,¥)|1& « x..» with ¢ a positive constant independent of (7,¢). Thus (b) holds.
Then T is Fréchet differentiable at (A, u), and its differential is given by (3.8). O

Corollary 3.8. For (\,u) € R x Dy, the partial derivative DTy ) at (A, u) (i.e.
the Fréchet differential, at u, of v — T(\,v)) is given by
of

(DaTna) () = v = (~8) 7 (= aau™™ + ZL (A2, w)w)  for any ¢ € Xo.

Lemma 3.9. T': (0,00) X Dy — X, is continuously Fréchet differentiable.

Proof. Let (A, u) € (0,00) x Dq, and let {(A;,u;)}jen C (0,00) X Dy be a sequence
that converges to (A, u) in R x X,. Thus {u;}jen converges to u in Hg(Q), and
{95 u;}jen converges to 95 u in L>°(Q). In particular, {u;}jen converges to u in
L>(Q). For (1,v) € R x X, and j € N, we have

DT()\j;uj)(Ta ¢) - DT(/\,u) (Ta 7/})
= (=A) Haay(u; Tt —umh)
0 0
aii - Fﬁ()‘ja'auj)) (3.16)

F e (0o - P, ).

Let ¢o > 0 be such that 9, 'u > ¢g a.e. in Q. Since {9, u;}jen converges to 9, u
in L°°(1), there exists jo € N such that 95 u; > 1cg ae. in Q for any j > jo.
Then there exists a positive constant ¢; such that, for j > jg, and for a.a. x € (Q,

+T(7A)71( (Aa'au)

a2 < 010;(a+2) whenever ¢ lies on the line segment with endpoints u(z) and
u;j(z). Thus, for j > jo, and for some positive constant ¢, independent of (7,) and
J, we have

|a(u;a71 _ u—a—l)d]l — (a + 1)‘aw /uj t_a—2dt|

< cluy —ul|pl9; (3.17)
< |9y (uy —w)[[05 9"

< clluj = ullx, (7 ) lrxx, 00

Then, by Lemma (—A)_l(a(u;"‘*1 —u~*" 1)) € X,, and, for some constant

¢ independent of (7,v) and j, we have
I(=2)"(aa(u; * ™ = u™* M)|x, < clluy —ul x )I(7 ) lrxx.
which gives
I(=8) " aa(u;* ™ = u™ ") c@x xa,x0) < cllug — ullx.- (3.18)

Consider now the second term of the sum in the right-hand side of , i.e., the
term 7(—A) " H(SL (N, u) = ZL (N, - uy)). As 95 u € L(Q), {9, u;}jen converges
to 95 u in L°(2), and {\,}jen converges to X in R, there exists p > 0 such that
Vo < pin Q, [[ujllec < p, [Aj| < pforany j €N, ||ulloc < p, and |A| < p. Then, by
the mean value theorem, and by (HS8), (H9), there exists M > 0 such that, for all
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Js
of of
|T(a()‘7 '7U’) - 5@\]‘7 Vuj))‘
< M|r|(Juj —ul + [A; — Al)
< MI7|(|0alloc 107 15 — 07 ulloo + |Aj — A]) (3.19)
<cell(m, ) IR xa (A — A uj — u)|[rxx,

<N )llrxxa (N = X uj —u)|[rxx, 93¢  ae. inQ,

where ¢ and ¢ are positive constants independent of (7,1) and j. Then, from
Lemma [2.9] we have

) 0wy = o),

< T P rxxa l(A) = A g = w)llrxx.,

where ¢ is a positive constant independent of (7,v) and j. Thus we obtain, for a
constant ¢ independent of 7,

0 0
(=8 (G5 (o) = ox Qs u)lee )

(3.20)
<cll(Aj = Ay — u)|lrxx., -

Consider now the third term of the sum in the right-hand side of (3.16)), i.e., the
term (—A)_l(w(%()\, L U) — %()\j, -,u5))). We now have the following inequality,
which is analogous to (3.19)),

0 0
W00~ 2 g, )]

< M| (luy — ullo + [A; — )

< M [0alloo[95 0| (Walloo )9z uy — 95 ulloe + A7 — Al) (3.21)
< el(7 V) IR xa [N — Ay — )[R X,

<) lrxx, (N = A uj — u)lrxx, 95 a.e. in Q.

where ¢ and ¢ are positive constants independent of (7,%) and j. Thus, from
Lemma [2.9] we obtain

180 (L 0w = 2 ) i,

< (T ) lrxxa [(A) = A uy — )[R x,,

which implies that, for some constant ¢ independent of j,

||(Ta 'l/}) - (_A)_l (1/)(%()\, '7“) - %()‘jv 'vuj))) ”L(RxXa,Xa)

(3.22)
< C”()‘] - )\,Uj -

U)HRXXQ'

Then, from (3.18), (3.20) and (3.22)), it follows that {DT(y, u,)}jen converges to
DTy ) in L(R x X4, X4), which completes the proof. a
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4. AN OPERATOR WITH SINGULAR POTENTIAL AND A RELATED PRINCIPAL
EIGENVALUE PROBLEM WITH WEIGHT

Lemma 4.1. For any u € D,, it holds that cau™*"twyp € L' () whenever w and
¢ belong to HY(Q). Moreover, there exists a positive constant, independent of w
and ¢, such that

«

loau™ weplly < ellwll gy o) el () (4.1)

Proof. If 0 < a < 1, then either ¥, = dg or 9, = 1og(j—£)d9. In both cases
there exists a positive constant ¢ such that u > cdg in 2. Thus, for some positive
constant ¢/, independent of w and ¢,

e}

S S SR oY

“lwe = aadiu™ R

0 < aau™

2
If 1 < a < 3, then ¥, = dy™ in , and so there exists a positive constant ¢ such

2
that © > cd,™ in Q. Thus, for some positive constant ¢’ independent of w and ¢,
we have

g— 2= gy 4w @
0< —a—1 — d2 —a-1 W ¥ < /d a+1 — gotT ,
< aau we = aadgU dodg = c'dg dodo cdg dodo
and the lemma follows from the Holder and the Hardy inequalities. O

Definition 4.2. For any u € D,,, and for any nonnegative m € L>(Q) such that
m # 0 in 2, we define

Jo(IVw]? + cau™>"1w?)

myu inf 4.2
Hom, {weHg(Q): [ mw?>0} fQ maw? ( )

or, equivalently,

moa = inf Vw|? —amly?), 4.3
pmai= b | (Yol +aou= o) (4.3)

where W, := {w € H{(Q) : [, mw? = 1}.

From Lemma aau™ " tw? € L1(Q) for any w € HY(Q). Thus fiy, , is well
defined and finite.

Lemma 4.3. For any u € D,, and for any nonnegative m € L>(Q) such that
m Z£ 0 in §, the following statements hold:

(i) The infimum in 15 achieved at some nonnegative w € Wy,.
(ii) Mo > 0.
(iii) If w € W,, is a nonnegative minimizer for then cau™*"twep € L1(Q)
for any ¢ € H}(Q), and w satisfies, in weak sense,

—a—1 _ .
—Aw + aau W = [y mw 0§D,

4.4
w=0 on 0N (44)

(iv) If w € W, is a nonnegative minimizer for (4.3) then, for any positive &
such that Qs # 0, there exists a positive constant ¢ such that w > cdg; a.e.
in Qs. In particular, w > 0 a.e. in .
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Proof. To prove (i), consider a minimizing sequence {w;};en C Wi, for ([4.3)). Note
that {w;};en is bounded in Hg (), and so, taking a subsequence if necessary, we
can assume that, for some w € H} (), {w;};jen converges, strongly in L?(Q2), and
a.e. in , to w; and that {Vw;};en converges to Vw weakly in L?(2,R™). Now,
| Jomw? = 1] = | [om(w® — w?)| < [[m]leo|lw — wjll2]|w 4 wjll2. Since the last
expression converges to zero as j tends to oo, we obtain that w € W,,. Then
i < Jo(IVw|* + aau™*"tw?). On the other hand, from Fatou’s lemma, and
from the fact that {w;};en converges to w weakly in H{(£2), we have

/|Vw|2—|—/ozau_“_lw2
Q Q
:/ |Vw|2+/hm1nfaau *tw?

<hm1nf/ |Vw; | + /hminfaau_a_lw?
—00

J—00

gliminf/ |ij|2—|—liminf/ aau” " w?
Q iz Ja

j—o0

< liminf/ (|ij|2 + aau_o‘_leg) = L u-
Then fQ |Vwl|? +fQ aau” " tw? < M,y Since w € Wy, the reverse inequality also
holds. Thus the infimum in is achieved at w. Since the infimum in is
also achieved at |w|, (i) holds.

To prove (ii), observe that, since fim. = [o(|Vw|® + aau™*"'w?) for some
w € Wy, then g, > 0. If piy, , = 0, we would have fQ |[Vw|? = 0, and so w = 0
a.e. in Q, which would contradict [, mw? = 1.

To prove (iii), consider a minimizer w € W, for (4.3). Let ¢ € H} (), and let
t € R. Note that, by Lemma aau~ " Hw + tp)? € L1(Q). Also observe

P /Q m(w + tp)? < /Q(|V(w +t)|? + aau”*"Hw + tp)?). (4.5)

Indeed since, by @), pmu > 0, (5] clearly holds when [, m(w + t@)* < 0. If

Jom(w +te)? > 0, [&.5) follows from (4.2). Now, since w € Wy, and fipm =
Jo(IVwl* + aau™*"1w?), from (4.5) we obtain

umu/ m(2twe —|—t2<p2)
Q

S/ (£2|Ve|? + 26(Vw, Vo) + au™ " (2twep + 12¢?)).
Q

Suppose t > 0, divide by t both sides of the last inequality, and take the limit
as t — 0F; using that au=*"lwy and au=*"1¢? belong to L'(Q), Lebesgue’s
dominated convergence theorem gives fy, fﬂ mw<p < fﬂ (Vw, V) +au=*Lwp).
When t < 0, a similar procedure gives the reverse inequality. Then

fina [ g = [ (F0,9) + au ), (4.6)
Q Q

whenever ¢ € H}(Q), i.e., w is a weak solution of problem ([4.4]) .
Finally, note that it is enough to prove ) when § is positive and small enough.
Let Q° be a domain with C? boundary such that Q; € Q° C Q5/2. Since u € Dq
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we have 0 < aau™"' € L>(Q°). Since m > 0, w > 0 and [, mw? = 1, we
have mw > 0 and [{mw > 0}| > 0. Then, for § and ¢ small enough, there exists
a measurable set £ C Q° with |E| > 0, such that HmuMW > eXg in 0%, Let
¢ € Ni<p<acW?P(Q°%) be the solution to the problem —A({ + aau™*"1( = exp in
0%, ¢ =0o0n 00°. Then ¢ € C* (ﬁ), and the Hopf boundary lemma (as stated in
[42, Theorem 1.1]) gives % < 0 on 99, where v denotes the outward unit normal
at 9Q°. Moreover, the strong maximum principle (see [27, Theorem 9.6]) gives

w > ¢ and also ¢ > 0 in Q°. Thus, for some positive constant ¢, ¢ > cdgs in Q°,
and 4v) holds. O

For ¢ € (H}(Q))', we write ¢ > 0 to mean that ((p) > 0 for any nonnegative
p € Hy(Q).
Lemma 4.4. Let u € D, let m € L*™(Q) be nonnegative and nonidentically zero,
and let p € [0, py,m). Then, for any ¢ € (H}(2))':
(i) There exists a unique weak solution z € H}(Q) of the problem
— Az +aau™ 2 = pmz + ¢, (4.7
i.e., z satisfies mzp € LY(Q) and [,(Vz, Vo) = p [, mze + ((p) for any
© € H ().
(ii) If, in addition, ¢ > 0, then z > 0.
(iii) If ¢ = S, for some measurable v : Q@ — R such that |v| < ¢, then
z € Xq.

Proof. To prove (i), consider the symmetric bilinear form A : H}(Q) x H}(Q) — R
defined by A(u,v) := [,((Vu, Vo) + aau™* tuv — pmuv). By Lemma we have
au”*tuv € LN(Q), and | [, aau™*ruv] < cflull ga o) vl g ) for some positive
constant ¢ independent of u and v; clearly a similar estimate holds for | [, pmuwl.
Thus, A is well defined and continuous on H{ () x H}(Q). Taking into account

(4.2), we have
A(v,v) = / (Vo> + aau™*""? — pmo?)
Q

> (1- K )/Q(|Vv|2+aau*a*11)2);

Hu,m

then, since fy,m > p, A is coercive on Hj (). Thus, by the Lax Milgram Theorem
(as stated in [4, Corollary 5.8]), there exists a unique weak solution 2z € Hg () to
problem (4.7). Moreover, z minimizes the functional J : H}(Q) — R given by

J(v) := %/Q(|Vv|2 + aau™ " t? — pmo?) — ¢(v).

Thus (i) holds.
To prove (ii), observe that, if > 0, taking —z~ as a test function in (4.7)), we
obtain [,(|V(z7)]* + aau*"1(27)%) = pu [, m(27)* — ((z7), and thus
J9GEE +aaue 1) =p [ m)? = )
Q Q
1 _ a1y
SOV +aaum 1),
Hum Jo

which (since p < ptymm), implies 2~ = 0 in Q. Thus (ii) holds.

<
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To prove (iii), we consider first the case when ¢ = S, with v > 0 a.e. in Q. We
claim that, for any k¥ € NU {0}, there exists a positive constant c¢j such that

z < qzk(—A)*ka + cpdy  in Q, (4.8)

where (—A)~% = ((=A)~1)?". We prove ([.8) by induction on k. Asm € L*(Q),
there exists ¢ € (0,00) such that
—Az<gz+cd,% inQ. (4.9)

By Lemma (—A)~1(9,%) € HL(Q), and there exists a positive constant ¢’ such
that (—A)~1(9,%) < 'V, ace. in . Thus, from ([4.9), the weak maximum principle
gives 2z < q(—A)lz+c(—A)"HWI,Y) < q(=A) "Lz +cod, in Q, with cg = cc’. Then
(4.8) holds for £k = 0. Now suppose that (4.8) holds for & = j, i.e., that for some
positive constant c;,

2< ¢ (-A)F 24 ¢, inQ. (4.10)
Then, since (—A)~2’ is a positive operator on H¢ (1), from (4.10) we obtain

2 < (=AY (7 (“A) Y 2 4 ¢j90) + ¢V,

9J+1

_oitl 27 _9J . (411)
= P AP P e (A (B) + b in

note that, for some positive constant ¢, dg < ¢"94 in Q. Also, since 0 < 9J, €
L>(§2), there exist a positive constant ¢}’ such that (=A)" (0,) < cj'dg in Q.
Thus implies that holds for £ = 7+ 1. Then holds for any £ € NU
{0}. By a bootstrap argument we have, for k large enough, (—A)_ka € CY(Q), and
so, for such a k we have, for some positive constant ¢y, (fA)*zkz < ¢rdq < ¢V,
in Q. Then, from , we obtain, for some positive constant ¢, z < ¢, in Q.
Thus z € X,.

Consider now the general case ( = S,, with v non necessarily nonnegative.
Write v = v+ — v~, and consider the solution z; (respectively z2) of the problem
—Az; = pmz; + vt in Q, 21 = 0 on 90 (resp. —Azg = m2g + v~ in 2, 20 =0 on
09). Thus z := 21 — 29 is the solution of —Az = ymz + ¢ in Q, z = 0 on 09, and
the general case of (iii) follows from the previous one. O

Lemma 4.5. Let u € D, and let h € L2 (Q). Then:
(i) There exists a unique weak solution z € H}(QQ) to the problem
“Az+aau % z=h inQ,
z =0 on 0.
(ii) If h >0 in Q, then z >0 in Q.

(i) If h > 0 in Q and h £ 0 in Q, then, for any § positive and small enough,
there exists a positive constant ¢ such that z > cdq, in Qs.

(4.12)

Proof. (i) and (ii) follow from Lemma[4.4] To prove (iii), suppose h > 0 in Q and
h £ 01in Q. Then, there exist ¢ > 0, and a measurable set E C Q such that |E| > 0
and h > ¢ in E. Thus h > exg in Q. Let z € H}(Q) be the solution (given by the
part (i) of the lemma) to the problem

—AZ+aau T =¢exp inQ,

_ (4.13)
Zz=0 on 09.
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By (ii), Z > 0 a.e. in Q. Also, —AZ < exg in Q, Z = 0 on 99, and so z <
(=A)"L(exg) ae. in Q, and thus z € L*(Q2). Moreover, since, for some positive
constants ¢ and ¢, u > /¥, > cdg in €, we have also that exp — cau™*"1Z €
L2 (). Then, for 6 positive and small enough (such that Qs # 0), the inner

loc
elliptic estimates (as stated in [27, Theorem 8.24]) give that z € C*(Qs). Since
—AZ+ aau 12 = exp in D'(Qs) and 0 < (ozaufa’l)bé € L*>(Qy), the strong
maximum principle, and the Hopf boundary lemma (as stated in [27, Theorem 9.6],
and in [42] Theorem 1.1], respectively) imply that, for some positive constant ¢/,
Z > ddq, in Qs. Now, since h > exp in Q, (ii) implies z > Z a.e. in Q. Then
z > ddg, in Q5. O

Lemma 4.6. Let u € D, and let m € L>®(Q) such that 0 < m £ 0 in Q. Let p be
a nonnegative function in LS. (Q) such that pp € LY(Q) for any ¢ € H}(Y), and
let h € H} () be a weak solution of the problem

—Ah+aau " th=X mh+p inQ,

(4.14)
h=0 on 09,

such that, for § positive and small enough, there exists a positive constant ¢ such
that h > cdq; in Qs. Then X < i . If in addition, p £ 0 in Q, then A < [y -

Proof. Let v := —log(h), and let ¢ € C°(Q). Since, for § positive and small
enough, h > cdg, in 5, and since 1 has compact support, we have h=14? € HJ ()
and ph~'¢? € H}(Q). Note that, by Lemma [i.1] aau=*"'hy) € L*(R2). Now we

proceed as in [31, Remark 2.2 iv]. We take h~11? as a test function in (4.14) and,
after a computation, we obtain

A i = [0+ aaue )~ [ ot = [ 904 uvp
) Q Q Q
and so A [, my? < [, (IVY[* + aau>"19?). Now, for p € Wy, ie., for ¢ € Hj(Q)
such that [, me? =1, consider a sequence {¢;}jen C C2°(€2) such that {¢;};en
converges to ¢ in Hg(Q2). Then {¢;}jen converges to ¢ strongly in L?(f2) and,

taking a subsequence if necessary, we can assume that {goj } jeN converges to ¢ a.e.
in Q. Thus, for all j,

A/ mej = /(|Wj|2 +aau ) */phﬂ@? */ Vs + 05 Vol.
Q Q Q Q
In particular, A [ me? < [,(IVe;]? + cau™*"1?), and so
)\/ mep? S/ (IVe]? + aau™*"1p?).

Q Q
Therefore

A< / (Vo> + aau™*"1?),

Q

and thus, since this holds for any ¢ € W,,, we conclude that A < fiy, 4.
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If X = fim o then, for ¢ € H}(Q) and for {p;}jen as above, we have, for all j,

.um,u/ m<p§+/ ph~ 15
Q Q

=/\/m<p?—|—/ph71<p?

Q Q

<A 4 [ ph7rei 4+ | |V + Vol

< my; prp; Pj T P;VY
Q Q Q

= /Q(|Vgpj|2 + aau*aflgo]z),

(4.15)

and so
ux,u/gmsoiJr/Qph*l@f S/Q(vaj\”aau*a*lw?)- (4.16)

Now, by Lemma [£.1] for all j, we have

I/MU’“”@?—/QGU*“’WI S/OM’“*I%-@II%MOI
Q Q Q

<cle; = ellaa@lle; + ellui@
where c is a positive constant independent of j. Thus
lim ozau_o‘_lcp§ = / aau”*"tp?. (4.17)
J—00 Q Q

Now we take liminf; o in (4.16]), to obtain, from Fatou’s lemma,

m,u/m<p2+/ph*1s02 S/IVso|2+/ aau” " 1p? (4.18)
Q Q Q Q

for any ¢ € H}(Q). Let w be as in Lemma By taking ¢ = w in (4.18]), we
obtain [, ph™'w? < 0 and so pw? = 0 a.e. in Q. Since, by Lemma w >0 a.e.
in Q, it follows that p =0 a.e. in Q. ]

5. AN APPLICATION OF THE IMPLICIT FUNCTION THEOREM
Let us recall some results from [31] and [33].

Lemma 5.1 ([31, Lemma 3.5]). For any Ao > 0 there exists a constant ¢y, > 0
such that ||ul|eo < cx, whenever A > Xg and u € H () N L>®(Q) is a weak solution

of problem .

Lemma 5.2 ([31, Lemma 4.8]). Let A\g > 0, let {\;},en be a sequence in [Ag,c0)
and, for j € N, let w; € H}(Q) N L>®(Y) be a weak solution of problem with
A= X;. Then:
(1) {wj}jen is bounded in Hi(Q).
(ii) If, additionally, {w;}jen converges weakly in H}(S2) to some w € Hg(Q2) N
L>(Q), and limj_,oc A\j = X for some X € [\, 00); then w is a weak solution
of , and there exists a positive constant ¢ such that w > cdq in Q.

Remark 5.3. The assertion (i) of Lemma [5.2 holds also for Ay = 0, provided that
{wj};en is bounded in Hg(Q) and in L>(2). Indeed, in the proof of [31, Lemma
4.8], the only use of the condition Ay > 0 is to guarantee that {w;};en be bounded
in L (Q).
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Definition 5.4. Let h :  — R be a measurable function such that he € L'()
for any ¢ € H3(2). We say that u : Q — R is a weak subsolution (respectively a
weak supersolution) of if u<0ondQand [,(Vu, Vo) < [, he (resp. u >0
on 9 and [,(Vu, V) > [, he) for any nonnegative ¢ € Hj ().

Lemma 5.5 ([33] Lemma 4]). Let A > 0, and suppose that u and v are two
nonnegative weak supersolutions in HZ(2) N L>(Q) of problem (1.1). Then there
exists a weak solution z € H}(Q) N C(Q) of problem (1.1)) such that z < min{u,v}
in Q.

Lemma 5.6 ([31, Lemma 2.9]). For any nonnegative ¢ in L*(Q), and for any
positive weak solution u of the problem

“Au=au"“+( in9,
u=0 on 09,

the following statements hold:

2

(i) If 1 < a < 3 then there exists a positive constant ¢ such that u < cd,™ in
Q.

(ii) If0 < a <1 and vy € (0,1) then there exists a positive constant ¢ such that
u < cdg in €.

The next lemma deals with the existence of maximal solutions to problem (|1.1)).

Lemma 5.7. Let A € [0, A]. Then there exists a weak solution vy € Hg(2)NL>(£2)
of problem (1.1 such that, if w € HZ(Q) N L>®(Q) is a weak solution of problem
(1.1) satisfying w > vy in 2, then w = vy in .

Proof. When A = 0, the lemma holds because, by Remark problem has
a unique weak solution ug € H}(Q) N L>®(Q). Let us consider the case when
A € (0,A]. Let Sy be the set of weak solutions ¢ € H}(Q) N L>®(Q) to problem
(1.1). Thus Sy is nonempty and, by Lemma there exists a constant C' > 0
such that v < C for any v € S). Then Z, := {fﬂu :u € Sy} is bounded. Let
B :=supZy. Thus 0 < f < co. Let {u;};en C Sx be a maximizing sequence for
Ty, i.e., such that lim;_,o fQ uj = . Now, by Lemma {u;}jen is bounded
in H}(Q), and so, taking a subsequence if necessary, we can assume that there
exists vy € HL(Q) N L>(Q2) such that {u;} ey converges strongly in L?(Q2) to vy
and {Vu;};en converges weakly in L?(©, R"™) to Vu,. Since u; < C for all j € N,
v € L*°(); and, since {u;}jen converges to vy in L'(Q), [, vx = 3. By Lemma
vy is a weak solution of (L.I)). Suppose now that w € H}(Q)NL>®(Q) is a weak
solution of such that w > vx. Then 8 = [, vx < [, w and, from the definition
of B, [w < B. Thus [, vx = [, w; which (since vy < w) implies vy = w. O

Remark 5.8. By Remark vy € C(Q), and there exists a constant ¢; > 0 such
that vy > c1dg in €.

Remark 5.9. Note that, by Lemma uy and vy belong to D, for any A € [0, A].

Lemma 5.10. For A € (0,A], let uyx and vy be as given by Remark v), and
Lemma respectively. Then, for any r,t € [0,1] such that r +t =1, ruy + tvy is
a weak supersolution of (1.1]).
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Proof. As uy and vy are weak solutions of (1.1]), then, for any ¢ € H{(Q2), both
(auy® 4+ f(\, z,uy))p and (avy ® 4+ f(A, z,v,))p, belong to L*(Q), and so
r(auy® + fO\ z,un))e + t(avy* + F(\ 2, 00))p € L(Q).
Note that, by (H1), H2) and (H9), s — as™* + f(\, z, s) is strictly convex for any
A € (0,00) and for a.e. x € Q. Then
—A(rux +toy) = r(au, * + f(\, z,un)) + tlavy* + f(A z,vy))
> a(ruy +ton) "%+ f(\ x,ruy +tvy) in Q,
ruy +tvy =0 on 0f,
ruy +tvy >0 in Q.

O

From now on, for any A € [0, A], u) will denote the minimal solution of problem
(1.1) given by Remark (v); and vy will denote a maximal solution, for the same
problem, given by Lemma We also set

Py 1= Uy — Uy. (5.1)

Note that, by the multiplicity result given in Remark (iii), vy # wuy for any
A € (0,A). Also, note that, if for A = A there exist at least two weak solutions of

problem ([1.1)), then vy # uy.

Lemma 5.11. Let A € [0,A], and let u € HL(Q) N L>®(Q) be a weak solution of
problem (1.1). Then there exist v € (0,1), and a positive constant ¢, such that
u < cdfy in Q.

Proof. The lemma follows from Lemma taking e = 0 and ¢ = f(\, -, u). O

Lemma 5.12. (i) For any A € (0,A), we have ¥y > 0 in Q, [{¢y > 0} > 0, and
— A(ux +thn) > alux +t02) "%+ f(A, - un +ty) in (5.2)

for any t € [0,1].
(ii) If for A\ = A there exist at least two positive solutions of (1.1)), then the
assertions made in (i) hold also for A = A.

Proof. To prove (i), note that for any ¢ € H} (), |(ux + tr)"%p| < auy ®|o| €
LY(9), and also note that, by (H3),

LFO S un 4 tn)e] < PN - ) llpee @xo.am el € LH(R),

with M := [lux[loo + [¥alloo- Thus (aux 4 t2) ™ + F(A, - ux + ty)) ¢ € LH(Q).
By Remark (v), ux < wy; and then ¥y > 0 in Q. If ¢, is identically zero in €,
then uy = vy in Q. If w € H}(Q) N L>®(1) is a weak solution of (L.I)), then uy < w
in Q, ie., vy < win Q, and thus w = vy in §2, which, for A € (0,A), contradicts
Remark (iii). Also, for t € [0, 1], Lemma gives (5.2). Thus (i) holds. The
same argument gives (ii). O

Remark 5.13. Let M > 0, A > 0. From (H9) we have, for a.a., z € Q, 0 <
%(A,x, )8§ %(A,x,M) on [0, M]; and from (HS), ||%()\, s M)||0o < 00. Therefore
we have [|SL(\, -, )|l Lo (x 0,01y < 0.
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Lemma 5.14. For X\ € [0, A], the following statements hold: (i)

(aan + o mne e @)

for any ¢ € HY(Q).

(ii) —Arpy > (— aauy ' + %(A,x,uA))wA in Q.
Proof. (i) follows from Lemma It is clear that (ii) holds when A = 0. If
A € (0,A], from Lemma [5.12] we have, for any ¢ € (0,1) and € > 0,

—A(uy +thx) > aluy +tPx) "% + f(A, - ux + )
> aux +e+tPx) "% + f(A, - ux +ty) in Q.
Also,
—Auy =au,“ + f(A, -, uyn) inQ,
uy =0 on 09,

and so

—A(tYy) = a((ur + e+ tx) "% —uy®) + fN, - un +tha) — F(A, - ux) in Q
Taking € = tn with n > 0, and dividing by ¢, we obtain

—A¢y > at ((ux + 1 +92)) "% —ux®) O un + ) = FOA - wn)),
i.e., for any nonnegative p € H}(Q), it holds that

/ (Viba, Vo) > / at = ((ux + 10+ )" — 43 )
@ @ (5.3)

+ / ELF O - un 4+ 13) — £ un))g
Q

Now, limy_,o+ at = ((ux + t(n + ¥2)) ™ — uy*)p = —aau, * " o(n + ) a.e. in Q.
Also, from the mean value theorem,
Jat ™! ((ux + (0 + 1)~ = uy®) ol = laa(ux +0(n+12) " o(n + )|
for some 6 such that 0 < 6 < t; and so, taking into account Lemma
lat ™ ((ux + t(n + ¥a)) ™ — uy Vol < aauy*Fo(n+¢y) € L'(9Q).

Then the Lebesgue dominated convergence theorem gives

lim [ at™ ((ux +t(n+9n) " —uy®)e = —/chau;“_lw(n + ).

t—0t Jo
On the other handv hrﬂt~>0Jr til(f()‘v 0% td»\) - f()\7 ',U)\))(p = %()\7 '7u)\)(p¢>\

a.e. in Q. Let M := |Juy+%)||co. Then, by Remark|5.13 ||%(/\, S Mz @x,m)) <
00. Thus, the mean value theorem gives, for some 8 such that 0 <6 <t¢,

) of _
O ua +tn) — F(A - ua))el = ’a(% S ux + 03ty |
of
< ||£()\>'»')HLw(Qx(O,M))|9m/JA| € L' (Q),
where in the last inequality we have used Remark The Lebesgue dominated
convergence theorem now gives

T [ 7N (FON S un +tn) — O un))e = of

— [ 2, .
t—0t Q Q 85( ’ ,U)\)w)\ip
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Now we take the limit as ¢ — 07 in (5.3)), to obtain

0
~ Ay 2 a7 W )+ () in 0, (5.4
Since (5.4)) holds for any 7 > 0, the lemma follows. ([l

For A € [0,A], let my := %(/\,-,w\). Since uy € C(Q), Remark gives
my € L>®(Q); and, by (H9), my > 0 in Q. Observe also that uy € D,. Thus we
can define iy := fim, u, -

Definition 5.15. For A € [0, A], let m) := %(/\, S uy), and let o = i, u, -

Remark 5.16. Since uy € C(Q), Remark gives my € L>(£2); and, by (H9),
my > 0 a.e. in §). Observe also that uy € D,. Thus u) is well defined.

Lemma 5.17. (i) py > 1 for any) € (0,A).
(ii) If, for A = A, there exist at least two weak solutions of problem (1.1)), then
pupa > 1.

Proof. Suppose that either A = A and there exist at least two weak solutions

of problem (1.1}, or A € (0,A). Let ¥y € HZ(Q) be as defined in (5.1). By
Lemma ¥y > 01in Q and [{z € Q : ¥(z) > 0} > 0. Also, by Lemma

aauy g € LY(Q) for any p € H} (), and
— APy + aauy* TPy > may in Q,

5.5
Yy =0 on 0. (5:5)
Let z € H}(Q) be the weak solution, given by Lemma to the problem
—Az4aau;*tz=m in Q,
A AV (5.6)
z=0 on 0f.
By (H9), mav > 0in ©Q, and then Lemma gives z > 0 in . Now,
—-A —2) 4 aau; * 1 —z)=nhy, inQ,
(Pr — 2) AT (W —2) = ha (5.7)

Yy —2z=0 on IN.

where hy = aau;o‘flz/»\ + avy 4+ f(A, - on) — (au ™ + f(X, -, un)) — maz. By
Remark uy and vy belong to D, and then by Lemma avy ® + f(A, -, vn)
and auy® + f(A, -, uy) belong to (H(2)). Since 1y € L>(2), Lemma gives
aauy * My € (HY(Q))'. Also, z € HE(Q) and my € L®(Q). Then hy € (H{(Q)).
From an we conclude that hy > 0 a.e. in €. Then, taking into account
, Lemma gives 1y > z in Q. Also,

—Az+ aau;aflz =myz+p in§Q,
z=0 on 09,

with p:=mx(¥n — 2z). Since ¥y > z in Q, and, by (H9), my > 0 a.e. in €, we have
p >0 a.e. in Q. We claim that p # 0 in €. To see this, by way of contradiction, let
us suppose p = 0. From ([5.8)) we have

—Az+ aau;aflz =myz in Q,
z=0 on 09;

which, jointly with (5.6)), gives z = ) in Q. Then (5.9)) reads
—Atpy = —aauy* My + mahy in Q,

(5.8)

(5.9)
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Yy =0 on 00
that is,
—A(vy —uy) = —aau;\afl(m —uy) +my(vy —uy) in Q,
vy —uy =0 on 99.
Now, taking into account the equations satisfied by uy and vy, we obtain
avy ® 4+ f(A, -, un) = Jauy @ + f(A, - un)]

= fozau;a_l(m —uy) + my(vy — uy)

g()v Sun)(va —uy)  ae. in Q,

ds

which contradicts the fact that, by (H9), s = as™* 4+ f(A, z, s) is strictly convex on
(0,00) for a.e. x € Q; which ends the proof that p Z 0 in Q. Thus 0 < myz+p#0
in Q, then, since myz + p € (Hg(Q))" from and Lemma (iv), we obtain
that, for ¢ positive and small enough, there exists a positive constant ¢ such that
z > cdg, in 5, and so, from and Lemma wy > 1. ([l

Lemma 5.18. Assume that either of the following conditions holds: (1) 0 < A < A.
(i) X = A and, for A = A, there exist at least two weak solutions of problem (1.1)).
Then (D, T) (A uy) : Xo — X, is bijective.

Proof. Note that, if h € X,, then (—aauy*"' + my)h € (H3(R))". Indeed, for

some positive constants ¢ and ¢/, we have, for for any ¢ € HE(Q),

[ aaure =t s mahel < e [ @ Dlhgl+c [ byl
Q Q Q

_ h ¢ h, ¢
=c [ 92%dg| || = Doda|—— || 2
e [ vardal G-I e [ dadal 51

< dIhllx. el g 0

where we have used the Holder and the Hardy inequalities, that uy € D,, ¥, %dq €
L?(Q), and J,dg € L (). Similarly, we have

|(—aauy ' 4 ma)h| < ety @Y |h| + c|h|

= —aauy* oy —uy) +

= cﬁ;a|%| + cﬁa\%|
< 977 x. -
Then, by Lemma [£.4] the problem
—Az = (—aau* 7" +my)z + (—aau Tt +my)h
has a solution z in X,. Then v := z + h belongs to X, and satisfies
Y — (=A) " ((—aau "t + ma)Y) = h.
Thus (D, T)(A, uy) is surjective.
To see that it is injective, suppose that
¢ = (=) ([aauy 7t +mplp) = 0 — (=A) ! ([~aauy ™ +man)
for some ¢ and 7 in X,. Thus z := 1 — ¢ is a weak solution of the problem
—Az = (faau;a_l +my)z in Q,

5.10
z=0 on 09. ( )
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By way of contradiction, suppose that z* is not identically zero on . Taking zT
as a test function in ([5.10) we obtain

/Q (IV2H 2 + aauy 1 (z+)?) = / ma(z+)2,

and so py < 1, which contradicts Lemma [5.17] Thus z < 0 in ; ie., n < ¢ in Q.
Interchanging the roles of 1 and ¢, we obtain the reverse inequality. Thus n = ¢
in Q. O

Lemma 5.19. For any A € (0,A), there exist € > 0, and a neighborhood V' of
ux in X, such that, for any o € (A — e, A + ¢), there is a unique Ux(o) € V
such that T(o,Ux(0)) = 0, with Ux(\) = uy. Moreover, Uy is a C* mapping from
(A—¢e, A+ ¢) into X,.

Proof. The lemma follows from lemmas[3.7]and and from the implicit function
theorem, as stated in [2I] Appendix B, Theorem B.1]. O

6. PROOFS OF MAIN RESULTS

Lemma 6.1. (i) lim,_,» us(z) = ux(z) for any A € (0,A) and z € Q.
(1) limg,_ A - uy(x) = up(x) for any x € Q.
(#3) lim, o+ g (x) = ug(x) for any x € Q.

Proof. Let A € (0,A). As stated in Remark (v), the map o — u, is strictly
increasing on [0,A], and u, € HZ(Q) N C(Q) for any o € [0,A]. Then, for any
A € (0,A) and x € Q, there exist the lateral limits w,(z) = lim, - us(x),
and Wy (x) := lim,_,\+ u, (). Moreover, w, and Wy belong to L>°()) and satisfy
wy <uy < Wy in Q.

Step 1: To see that wy = uy in (2, consider an increasing sequence {g, }jen C (3, 2)
such that lim;_, a; = A. By lemma there exists a subsequence {ij tren, and
a weak solution w} € H}(Q) N L>(Q) of problem (L.I]), such that {Vugjk }ren
converges weakly in L?(2,R") to Vw} and {ug, }ren converges to w} in L3(9).
Taking a subsequence if necessary, we can assume that {ugjk }ren converges to wi
a.e. in . Thus w} = w, in Q, and so w, is a weak solution in H}(2) N L>°() to
problem . Then, by the minimality property of u) stated in Remark (v),
we have uy < w, in € and so, since also w, < uy in 2, we conclude that uy = w,
in

Step 2: To see that uy = W), consider a decreasing sequence {7;}en C (A, A]
such that lim;_,.c o; = A. By lemma there exists a subsequence {7, }ren and
a weak solution w} € H(Q) N L>(Q) of such that {Vug; }ren converges
to Vwy weakly in L?(Q,R") and {ug;, }ren converges to wj in L*(Q2). Taking a
subsequence if necessary, we can assume also that {uz, }ren converges to w3 a.e.
in Q. Thus w5 = W) and so W) is a weak solution in Hg(2) N L°°(Q2) of problem
. Clearly uy < wy. We claim that uy = wy in 2. By way of contradiction,
suppose uy(z) < Wx(z) for some = € 2. As both are continuous functions, there
exist n > 0 and an nonempty open set E C 2 such that uy+n < w) in E. Let ¢ and
Uy be as given by Lemma By Using Lemma we obtain & € (0,¢) such
that Ux(A+¢’) —ux < 3 in Q. Then uyyer > Wy > ux +n > ux + 3 > Ur(A +€')
in F, which is impossible by the minimality property of uyi./ given by Remark @
(v). Then w; = wy in Q, which ends the proof of (i).
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To prove (ii) proceed exactly as in step 1, taking there A = A. To prove (iii),
proceed as in the first part of step 2, to obtain that wy := lim,_,g+ u, is a weak
solution in HE(Q) N L>(Q) of problem for A = 0. The uniqueness assertion
of Remark (i) implies Wy = ug. O

Lemma 6.2. For any A € (0,A), limy_,\ u, = uy with convergence in X,. Also,
lim, o+ Uy = ug and lim,_, - u, = uyp, in both cases with convergence in X,.

Proof. Fix p > max{n,2}. For 0 < A < o < A, by Remark 0<uy <uy <up
in €, and so, in the weak sense,

_A(uo' - U)\) = a(u;a - u;\a) + f(Uv 'vua) - f()‘a ',’LL)\) (61)
< Fyx = flo,us) — f(A, -, uy) in Q.
We claim that

algil+ [Eoallp = 0. (6.3)

Indeed, by (H3), f(A,-,ux) > 0 in Q, and, so, taking into account (H3) and (H6),
0 < Fon < f(o,us) < f(A- |luallee) € L®(R). By Lemma [6.1] and (H3),
limy z+ FYy = 0 ae. in Q. Then follows from the Lebesgue dominated
convergence theorem.

Since, for some positive constant ¢/, ¥, > c'do in Q, and a(u;* — u,”) +
flo, - ug) — f(A -, uy) > 0in Q; from and the standard elliptic estimates, for
some positive constant ¢/, independent of A\ and o, we obtain

195 (e = un)lloo < ()7 Hldg" (U — u)lloo < () Hlug — urllen e
< lalug® —uy®) + flo,ue) = FOA - un)llp
< [Foallp-
Thus
T 9" (0 = 3) o = 0. (6.4
Similarly, for 0 < o < A < A, we have
—A(ur —uy) = aluy* —u )+ f(A, - us) — fo,,us) < —F,x in Q,

with 0 < —F, » < f(A,-,uz); and the same arguments used to prove (6.4) apply to
obtain that lim, ,- ||F, || = 0, and that

lim |9, (ux — to)|loe = 0. (6.5)
o—AT

At this point, to prove the lemma, it only remains to prove the following three
facts:

lim [t — urlly ) =0, ali%g e = uoll g (@) =0, 01_13\1_ [t — uallmy (@) = 0.
Since, for o and A in [0, A], u, — uy satisfies, in weak sense,
—Aug —up) = alug® —uy®) + (o, us) = f(A, -, ux) in €,
the Holder and the Poincaré inequalities give
o = uslgy = [ (90 = 0P < [ u = )
Q Q

< cllus = unl[my )1 Fonll2
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where c is a constant independent of both, o and A. Since
lim |Fyall2 =0if A € (0,A), lim ||Fyol2 =0, and lim |F,al2 =0,
oA o—0*t o—A—
the lemma follows. O

The next two propositions address uniformity properties of the family {u } AE[0,A]-

Proposition 6.3. There exists 6 > 0 such that, for each A € [0, A], ux(z) = ||urlloo
implies do(x) > 0.

Proof. By Remark (v), for each X\ € [0, A], up < uy < uy; since these functions
belong to X, there exists ¢ > 0, independent of A, such that uy < ¢, in Q. For
any x € Q such that uy(z) = ||ur]leo, We have uy(x) > |luo|loo- Taking wq large
enough in the definition of 9., we can assume that the function 9, defined by
Vo = U4 o dg is strictly increasing on (0, $diam(Q)]. Now, Jq(do(z)) = Ja(z) >

. . -1
2un(x) > Llugloo; which gives do(x) > J, (L]uolloo)- O
Proposition 6.4. The family {ux}xejo,a] s equicontinuous on Q.

Proof. Let € > 0. Since uy € C(Q) and upy = 0 on 9, there exists §; > 0 such that
up < ie in Ay, = {z € Q:dq(x) < d1}. For A € [0,A] we have 0 < ug < uy < up
in Q, and so 0 < uy < %5 in As,. Also, since ug € Dy, auy,® < [lallocuy ™ <
co¥5® < ¢1in Qg, /2, with ¢g and ¢; constants independent of X. By (H6) and (H3),
0< (0 u) < F(A - unlloe) € C@) € L2(Q). Also, [[un | (o < llunll (-
Let ' be a C1! subdomain of Q such that Q5 C Q' C O C Q15,5 by the
inner elliptic estimates in [27, Theorem 8.24], for any p € [1,00), there exists a
positive constant ¢y, independent of A, such that [lux|lw2.rr) < co. Take p > n
to get that, by [27, Theorem 7.26], ||ux||c1 @) < c3 with ¢3 independent of A. Let
§ == min{d1, ic5'e}. If z, y € As, then |uy(z) — ur(y)| < ie. If 2,y € Qs, and
[z —y| < & then |ux(z) — ua(y)| < luallcr@r)lz —yl < e3d < se. If x € As,,
y € Qs, and |z —y| < J, then there exists z in the linear segment with endpoints x
and y, such that do(z) = §;. Now, = and 2 belong to As,, z and y belong to Qs,,
[z—2| <6, and [z—y| < 5. Thus |ux(z)—ux(y)] < |ua(@)—ua(2)|+|ua(2) —ur(y)| <
le+ie=e. O

Proof of Theorem[I.3 Since uy € C(Q) for any X € [0, A], and since the inclusion
i: X — L%°(Q) is continuous, the assertion (i) of the theorem follows from Lemma
[6:2] To see (ii) and (iii), consider an arbitrary A € (0,A), and let € > 0, V, and U,
be as in Lemma By Lemmathere exists ¢’ € (0, ¢) such that u, € V for any
o€ (A=, A+¢). Thus, by Lemma[5.19] u, = Ux(0) for any o € (A —&’, A +¢').
Since Uy : (A —e,A+¢) = X, is a C* map, then 0 — u, is a C! map from
(A —¢, X +¢) into X, and this holds for any A € (0,A). Then ¢ — u, is a C* map
from (0,A) into X,. Since the inclusions i : X, — L°°(Q2) and j : X, — H(Q)
are linear and continuous, and taking into account that u, € C(Q2) for any o, the
theorem follows. O

Proof of Theorem[I.]]. By way of contradiction, suppose that for A = A there exist
at least two weak solutions of problem ([1.1). Then, taking into account Lemmas

and [5.18] Lemma gives a nonempty interval I := (A —e,A +¢), and a
differentiable function Uy : I — X,, such that (A\,Ur(N\)) € R x D, for any A € I
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and T (A, Ua(N)) = 0 for any A € I, in contradiction with the fact that no positive
weak solution in H}(Q2) N L>°(Q) of problem (1.1)) exists if A > A. O
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