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ABSTRACT. We prove interpolation inequalities by means of the Lorentz norm,
BMO norm, and the fractional Sobolev norm. In particular, we obtain an
interpolation inequality for (L1:*°, BMO), that we call the endpoint case.

1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The main purpose of this article is to study the interpolation inequalities between
the Lorentz space LP*(R™) and the BMO(R"™) space, where n > 1. It is known
that the interpolation inequalities play a crucial role in studying the boundedness of
operators and in studying PDEs, see, e.g. [l 2, 5] 6] [7, 8]. Thus, such an extension
of the inequalities of this type is involved many purposes, for instance: the theory
of Marcinkiewicz interpolation; the boundedness of the operators acting on Lorentz
spaces (the Hardy-Littlewood maximal function, the Hilbert transform, and the
Riesz transform); and the estimates in PDEs.

In this article, we want to prove an interpolation inequality between the Lorentz
space L2*(R™) and BMO(R"), for ¢ > 1, and o > 0. And we call the endpoint
case when ¢ = 1. Our result is as follows.

Theorem 1.1. Let 1 < ¢ <p, and 0 < a < 00. Let f € LY>°(R™) N BMO(R™).
Then

(1.1)

1—4
1z eny S I o) I | paoany-

This result extends the recent results in [2, [3]. As a consequence of Theorem 1.1
we obtain an interpolation inequality between L% and the critical Sobolev space
WS (R™) for s € (0,1).

Corollary 1.2. Let 1 < g <p, and a > 0. For any 0 < s < 1, we have

-
il (1.2)
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Note that (T.2)) follows from (T.I) and the inclusion W% (R") ¢ BMO(R™).
Before proving Theorem we recall the definitions of the Lorentz spaces, and
BMO space. Given ¢, > 0, we set

(q [N € R : [g(x)] > A})*/aR) Y if o < oo,
sup/\>0/\(|{x eR”: |g(x)| > /\}|)1/q if o = 0.

The Lorentz space is LY*(R") = {g : R" = R : [|g][za.a(mn) < 00}. Next, we
define the sharp maximal function:

9l Lase (mny =

1
fiz)= sup = If(y) — (£)Bxldy,
R>0,0€Br |BR|
with ( |Q‘ fQ x)dx. Then, we have a result, the so called strong type (p, p)

in LP(R”) as follows (see e.g. [9]).
Theorem 1.3. Let p > 1. Then

£ llzr@my S 1F* ] Lo n), (1.3)
whenever the right hand side is well-defined.

After that, we denote by
BMO(R") = {f € Li,o(R") : | fl smogn) = SEUHEL fi(z) < oo}
Finally, we denote the homogeneous fractional Sobolev space by
WP (R™)

 om y)IP L/p
={f €S’ ®R") : [ fllyirewr(@ny = //ﬂwdxd@ < oo},

where §'(R™) is the dual space of S(R™) (the Schwartz space). To end this part,
we denote A < B if A < ¢B, where ¢ > 0 is a constant.

2. PROOF OF THEOREM [L.1]

It suffices to show that (|1.1)) holds for ¢ = 1. To start, we prove the following
result.

Lemma 2.1. Let 0 < ¢ <p <r < oo and a > 0. If f € LY>°(R™) N L™ (R"),
then f € LP*(R™), and

11 zra @ny S 10000 oy 1 | e (g (2.1)
with + =2
p q
Proof. We rewrite
Ao a/p AX N d/\
ey = [ 210> N7 S p [ a1 007 S @2
Since f € LT (R™) N L™*°(R"™), we have
Ao dA Ao N Tase mmy\ @/ d
[t > e < [T ()
0 0
(2.3)

aq/p
_ IR ) ar-arm
a(l —q/p) ’



EJDE-2019/56 INTERPOLATION INEQUALITIES 3

and

*° d\ > ||f||EToo(]Rn) a/pd\
MNIf > A “/P—g/ yo [ LLILme (Re) TR AA
JARSIER [ ()

(2.4)
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By (2.2), (2.3) and (2.4]), we obtain
[ AIST oy e
f « (R §p< )\04( q/p) + )\0‘( _T/P)>.
IFIZs (R™) a(l—q/p) alr/p—1) 0
Now, we take
o 2 ey
1T 0000 (e
so the proof is complete. ([
Thanks to Lemma we have for any r > p
HfHLP a@n) S IS 1%s 0 @y 1 e ganys (2.5)

where % =0+ 1%9.
Since r > p > 1, and by (1.3]), we obtain

1o ey < NFNTrgny S I ny
< ||f||BMO Rn)”f ||Lp(1Rn (2.6)
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Combining ([2.5) and . 2.6]) yields
1—2
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Then
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Thus, the proof is complete.
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