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Abstract. Let T be a strongly continuous semigroup acting on a complex
Banach space X and let A be its infinitesimal generator. It is well-known

[29, 33] that the uniform spectral bound s0(A) of the semigroup T is negative

provided that all solutions to the Cauchy problems

u̇(t) = Au(t) + eiµtx, t ≥ 0, u(0) = 0,

are bounded (uniformly with respect to the parameter µ ∈ R). In particu-
lar, if X is a Hilbert space, then this yields all trajectories of the semigroup

T are exponentially stable, but if X is an arbitrary Banach space this result

is no longer valid. Let X denote the space of all continuous and 1-periodic
functions f : B → X whose sequence of Fourier-Bohr coefficients (cm(f))m∈Z
belongs to `1(Z, X). Endowed with the norm ‖f‖1 := ‖(cm(f))m∈Z‖1 it be-

comes a non-reflexive Banach space [15]. A subspace AT of X (related to the
pair (T,X )) is introduced in the third section of this paper. We prove that

the semigroup T is uniformly exponentially stable provided that in addition

to the above-mentioned boundedness condition, AT = X. An example of a
strongly continuous semigroup (which is not uniformly continuous) and fulfills

the second assumption above is also provided. Moreover an extension of the

above result from semigroups to 1-periodic and strongly continuous evolution
families acting in a Banach space is given. We also prove that the evolution

semigroup T associated with T on X does not verify the spectral determined
growth condition. More precisely, an example of such a semigroup with uni-

form spectral bound negative and uniformly growth bound non-negative is

given. Finally we prove that the assumption AT = X is not needed in the
discrete case.

1. Introduction

The following conditions are of a great interest in linear systems theory in infinite
dimensional spaces,

(0,∞) ⊆ ρ(A) and ‖R(λ,A)‖ ≤ 1

λ
, ∀λ > 0, (1.1)
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iR ⊆ ρ(A) and lim
|θ|→∞

‖R(iθ, A)‖ = 0, (1.2)

and the “spectrum determined growth condition” (SDGC on short) that states that

s(A) = ω0(T). (1.3)

For further details, concrete examples, and related issues see for example the mono-
graphs [19, 39].

In (1.1), A : D(A) ⊂ X → X is assumed to be a densely defined closed linear
operator, and (1.1) is a special case of the Hille-Yoshida assumption and ensures
the existence and uniqueness of solutions in many concrete problems. In fact any
operator A verifying (1.1) generates a strongly continuous semigroup of contrac-
tions. In (1.2), A : D(A) ⊂ X → X is assumed to be the generator of a strongly
continuous semigroup T acting on a complex Hilbert space X. In fact, (1.2) yields
boundedness of the resolvent operator-valued map z 7→ R(z,A) on the imaginary
axis; that is,

iR ⊆ ρ(A) and sup
µ∈R
‖R(iµ,A)‖ <∞. (1.4)

As is well-known, (1.4) yields the uniform exponential stability of T; that is, the
negativeness of its uniform growth bound ω0(T). This result is known as the
Gearhart-Prüss Theorem (see [21, 30, 42]) (it was settled independently in many
other places). The reader can find further details and other references in the mono-
graphs [1, 33, 20].

Prior to discussing assumptions (1.2), (1.4) and (1.3), let us recall briefly the
definitions of the two growth bounds and that of the two spectral bounds associated
with a strongly continuous semigroup T and its generator A acting on a Banach
space X. Further details and many other equivalent definitions can be found in [1,
Chapter 5]. In the case when the spectrum of A (denoted by σ(A)) is a nonempty
set, then the spectral bound of A is defined by

s(A) = sup
{
<(z) : z ∈ σ(A)

}
(1.5)

and (by convention) s(A) = −∞ whenever the spectrum of A is the empty set.
The uniform spectral bound of A is given by

s0(A) = inf
{
ω > s(A) : sup

b∈R
‖R(a+ ib, A)‖ <∞, a ≥ ω

}
(1.6)

and the growth bound of the trajectory t 7→ ux(t) := T (t)x is given by

ω(x) := inf
{
ω ∈ R : lim

t→∞
‖e−ωtux(t)‖ = 0

}
. (1.7)

We mention that the condition limt→∞ ‖e−ωtux(t)‖ = 0 in (1.6) can be replaced
by a weaker one, namely that the map t 7→ ‖e−ωtux(t)‖ is bounded on R+ := [0,∞).

The growth bound of T (denoted by ω1(T)) is the supremum of the set {ω(x) :
x ∈ D(A)} and the uniform growth bound of T (denoted by ω0(T)) is the supremum
of the set {ω(x) : x ∈ X}.

Using the definitions we deduce the inequalities s(A) ≤ s0(A) and ω1(T) ≤
ω0(T). Actually it is known that

s(A) ≤ ω1(T) ≤ s0(A) ≤ ω0(T). (1.8)
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The most difficult part in the proof of (1.8) is the inequality ω1(T) ≤ s0(A)
and that was first obtained by Weis and Wrobel [41] using tools such as interpola-
tion theory and a previous result in [31] and independently (using an elementary
method) obtained by van Neerven [32].

A result of Neubrander [26] (which leads to the first inequality in (1.8)) asserts
that ω1(T) is equal with the infimum of all real numbers ω for which the limit

limt→∞
∫ t

0
e−ωsT (s)x ds exists in X for all x ∈ X. Combining this with the well-

known fact that if for some z ∈ C we have that Rz := limt→∞
∫ t

0
ezsT (s)x ds exists

in X, for all x ∈ X, then z ∈ ρ(A), R(z,A) = Rz, and the first inequality in
(1.8) follows easily. On the other hand from a result of Pazy [28] it follows that
if
∫∞

0
‖ezsT (s)x ds‖ < ∞ for some x ∈ X and z ∈ C then limt→∞ ‖ezsT (s)x‖ =

0. Combining this with the previous result and the definitions above the final
inequality in (1.8) becomes clear.

Going back to (1.4), let us mention that in the general case when the state space
is a complex Banach space, the absence of the spectrum of A on the imaginary axis
is a consequence of the following piecewise boundedness condition

sup
t≥0
‖
∫ t

0

eiωsT (s)x ds‖ := K(ω, x) <∞ ∀ω ∈ R, ∀x ∈ X;

see for example [36, Proposition 3.3] and [29]. Moreover, the uniform boundedness
condition

sup
ω∈R

K(ω, x) <∞ x ∈ X (1.9)

does ensure that (1.4) is fulfilled [33, 29] and then s0(A) is negative using an ana-
lytical continuation argument (see for example [33]).

However, except in the particular case when X is a complex Hilbert space, (1.9)
does not guarantee that the uniform growth bound of T is negative. To make this
possible we add to (1.9) a new assumption as in Theorem 3.1 or in Theorem 3.5
below.

Howland, [23] introduced evolution semigroups in 1974. He was interested in
scattering theory for Schrödinger operators with potentials that were periodic func-
tions of time and created a way to do this as an autonomous problem by working
in the space L2(R, H) rather than in the Hilbert space H. Some of the history and
earlier references can be found in the monograph [17]. Later, this was generalized
by Rau [34] and many others, with semigroups on Banach spaces replacing unitary
groups on Hilbert spaces.

Weis [40] obtained a result that states that positive semigroups on Lp(Ω,m)
verify SDGC. The proof of the Weis theorem (in the context of [40]) is based
on the fact that (noticed earlier in [24]), the evolution semigroup (associated to
an arbitrary strongly continuous semigroup acting on a Banach space X) on the
Lebesgue-Bochner space of functions Lp(R, X) satisfies SDGC.

Generally speaking an evolution semigroup and its infinitesimal generator verify
SDGC and the Spectral Mapping Theorem; see for example [6, 5, 8, 9, 17, 18, 24,
27, 37] and the references therein.

Applications of evolution semigroups in the theory of inequalities were high-
lighted (for example) in [7, 10, 14, 13].
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We also mention the papers [3, 12, 25] where the evolution semigroups theory was
applied to the study of nonuniform asymptotic behavior of evolutionary families of
operators acting in Banach spaces.

In the third section of this paper (Corollary 4.5) we highlight an example of
an evolution semigroup for which the spectral determined growth condition is not
fulfilled. This raises the question as to whether the first and the second inequalities
in (1.8) could be strict for evolution semigroups.

2. Background and previous results

Let X be a complex Banach space and let X ′ be its (topological) dual. Let
L(X) stand for the Banach algebra of all bounded linear operators on X. The
norms on X, X ′ and L(X) are denoted by the same symbol, namely ‖ · ‖. The
duality pair between X and X ′ is denoted by 〈x, x′〉. Let T = {T (t)}t≥0 be a
strongly continuous semigroup that acts on X and let (A,D(A)) be its infinitesimal
generator. In a slightly different form, the following result was originally obtained
by van Neerven [32].

Theorem 2.1. If for all b ∈ X the solutions of the Cauchy problems associated to
the generator A of T

u′(t) = Au(t) + eiµtb, t > 0, µ ∈ R
u(0) = 0

(2.1)

are bounded on R+ (uniformly with respect to the parameter µ) then for each x ∈
D(A) the solution of the abstract Cauchy Problem

u′(t) = Au(t), u(0) = x (2.2)

is uniformly exponentially stable, that is there exists ν > 0 such that the map

t 7→ e−νtT (t)x is bounded on R+ := [0,∞). (2.3)

Obviously, the boundedness assumption of Theorem 2.1 can be written as

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsT (t− s)bds‖ := M(b) <∞, for all b ∈ X. (2.4)

In the next example, T, is a strongly continuous semigroup that is weakly L1-
integrable (that is (2.7) is fulfilled) and is not uniformly exponentially stable (that
is its uniform growth bound is nonnegative) and was originally introduced in [22].
We shall use this example in the next section (Corollary 4.5).

Example 2.2. Let X1 := C0(R+,C) be the set of all continuous functions x :
R+ → C which vanish at infinity. This is a Banach space when it is equipped with
the uniform norm ‖ · ‖∞. Let X2 := L1(R+,C, esds) be the set of all measurable
functions x : R+ → C for which

‖x‖X2
:=

∫ ∞
0

et|x(t)|dt <∞. (2.5)

Let X := X1 ∩X2. The space X becomes a Banach space when it is equipped with
the norm

‖x‖X := ‖x‖∞ + ‖x‖X2
, x ∈ X. (2.6)

For each t ≥ 0, the map (S(t)x)(τ) = x(t + τ), defined for τ ≥ 0, acts on X
and the family S = {S(t)}t≥0 is a strongly continuous semigroup. Moreover, for
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each t > 0 the spectrum of S(t) consists by all complex numbers z with |z| ≤ 1,

[22]. Let T(t) = e
t
2S(t), t ≥ 0. The semigroup T satisfies condition (2.4) (see for

instance [4]) although ω0(T) = 1/2. In fact, as is shown in [22], the semigroup T
is weakly-L1-stable; that is∫ ∞

0

|〈T(t)x, x′〉|dt <∞ for all x ∈ X and x′ ∈ X ′. (2.7)

The Fourier-Bohr coefficients associated to any 1-periodic continuous function
f : B→ X is given by

cn(f) :=

∫ 1

0

e2intπf(t)dt, n ∈ Z. (2.8)

Let us denote (ad-hoc) by X the space consisting of all 1-periodic continuous
functions f : B→ X for which

‖f‖1 :=
∑
n∈Z
‖cn(f)‖ <∞. (2.9)

Note that (see for example [15]) the space X endowed with the norm ‖ · ‖1 is a
nonreflexive Banach space.

For every f ∈ X , consider its Bohr-Fourier sum (with respect to the uniform
norm) defined by

sf (t) =
∑
n∈Z

e−2intπcn(f), t ∈ R. (2.10)

Clearly sf ∈ X and thus f = sf .
Let H be the set of all scalar valued functions defined on [0, 1], of class C1, with

h(0) = h(1) = 0 and having the following property

I(µ, h) :=

∫ 1

0

eiµth(t)dt 6= 0 for all µ ∈ R. (2.11)

It is easy to show that the map t 7→ h0(t) := sin(πt) : [0, 1]→ R belongs to H.
A family U = {U(t, s) : (t, s) ∈ R2, t ≥ s} of bounded linear operators acting

on X is called a 1-periodic strongly continuous evolution family if U(t, t) = I-
the identity operator on X, U(t, s)U(s, r) = U(t, r) for all reals t ≥ s ≥ r, the
map (t, s) 7→ U(t, s) is strongly continuous on the set ∆ := {(t, s) ∈ R2 : t ≥ s}
and U(t, s) = U(t + 1, s + 1) for every pair (t, s) ∈ ∆. The evolution family U is
called exponentially bounded if there exists a real number ω such that the map
(t, s) 7→ e−ω(t−s)U(t, s) is bounded in L(X) and uniformly exponentially stable if
there exists a negative ω with that property.

Throughout this article we assume that the evolution families are exponentially
bounded. Clearly, if U satisfies the convolution condition U(t, s) = U(t − s, 0) for
every (t, s) ∈ ∆ then the family T = {U(t, 0) : t ≥ 0} is a strongly continuous
semigroup that acts on X.

3. Stability result and its natural consequences

For h ∈ H and x ∈ X denote

Hxh(t) := h(t)U(t, 0)x, t ∈ [0, 1]. (3.1)

Obviously, Hxh(0) = Hxh(1). Let H̃xh be the extension by periodicity to R of Hxh.
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Theorem 3.1. Let U = {U(t, s) : (t, s) ∈ R2, t ≥ s} be a strongly continuous 1-
periodic evolution family acting on the Banach space X. With the above notation
assume that for a given x ∈ X and some h ∈ H the map H̃xh belongs to X ; that is

‖H̃xh‖1 :=

∞∑
n=1

‖cn(H̃xh)‖ <∞, (3.2)

and that there exists a positive constant M (depending only of the family U) such
that for all µ ∈ R and all t ≥ 0, one has

‖
∫ t

0

eiµsU(t, s)yds‖ ≤M‖y‖, for all y ∈ X. (3.3)

Then for each µ ∈ R and all n ∈ Z, n ≥ 1, one has

‖
n∑
j=1

e−iµjU(1, 0)jx‖ ≤ M

|I(µ, h)|
‖H̃xh‖1. (3.4)

Proof. The proof is contained in the proof of [9, Theorem 2.2] and so we omit
it. Note however that the result in [9] is stated under the stronger assumptions

that X is a Hilbert space and that the map H̃xh is α-Hölder continuous for some
α > 1/2. �

Remark 3.2. (i) If (3.2) holds for all x ∈ X, then (3.4) holds for all x ∈ X
and in turn it implies the exponential stability of the evolution family U ;
see for example [11].

(ii) We mention that the constant M in (3.3) is independent of the real param-
eter µ, and moreover (under assumption (i) of this Remark) it cannot be
dropped; see [4] or [29] for examples in the semigroup case.

Corollary 3.3. Let t 7→ a(t) : R → C be a continuous and 1-periodic function.
The following three statements are equivalent.

(1) For all z ∈ C and all s ∈ R the solution of the homogeneous Cauchy Problem

u′(t) + a(t)u(t) = 0, u(s) = z, t ≥ s (3.5)

is uniformly exponentially stable; that is, there exist absolute constants N
and ν such that

|U(t, s)| ≤ N exp[−N(t− s)], ∀t ≥ s, (3.6)

where

U(t, s) := exp
(
−
∫ t

s

a(r)dr
)
. (3.7)

(2) All solutions of the non-homogeneous Cauchy Problems

v′(t) + a(t)v(t) = eiµt, u(0) = 0, t ≥ 0 (3.8)

are bounded on [0,∞) uniformly with respect to the parameter µ ∈ R.
(3) One has ∫ 1

0

<[a(r)]dr > 0. (3.9)
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Proof. (1)⇒ (2). The solution of (3.8) is

v(t) =

∫ t

0

U(t, s)eiµsds

and its boundedness on [0,∞) follows from (3.6).

(2) ⇒ (3). It is sufficient to see that the continuation by periodicity (H̃) of
the function t 7→ H(t) := h2

0(t)U(t, 0) is continuously differentiable on R and its

derivative H̃ ′ is bounded. Thus, H̃ belongs to X (with X = C) and we can apply
Remark 3.2.

(3)⇒ (1). It is sufficient to see that (3.9) implies the inequality

|U(1, 0)| =
∣∣ exp

(
−
∫ 1

0

a(r)
)
dr
∣∣ < 1

and then (3.6) becomes clear. �

Let n ≥ 1 be an integer. Let Cn×n be the vector space of all n × n square
matrices with complex entries. As is well-known, Cn×n becomes a Banach algebra
when it is endowed with the usual matrix norm. For t ∈ R consider the matrix
A(t) := (aij(t))i,j∈{1,2,··· ,n} ∈ Cn×n and assume that the map t 7→ A(t) : R→ Cn×n
is 1-periodic and continuous on R. With P (t) we denote the solution of the matrix
Cauchy Problem

X ′(t) = A(t)X(t), t ∈ R, X(0) = In;

here In denotes the identity matrix in Cn×n. Let

tr(A(t)) :=
∑
i=1n

aii(t), t ∈ R,

be the trace of A(t). The next Corollary uses the Liouville Theorem in ODE’s,
asserting that

det[P (t)] = det[P (s)] exp
(∫ t

s

tr(A(r))dr
)
, t ≥ s ∈ R; (3.10)

see [16, pp.152-153].

Corollary 3.4. With the above notation and assumptions the following two state-
ments are equivalent:

(i) There exist absolute constants N and ν such that

|det[P (t)]|eνt ≤ N |det[P (s)]|eνs, ∀t ≥ s. (3.11)

(ii) One has ∫ 1

0

<[tr(A(r))]dr > 0. (3.12)

Proof. Let a(t) := tr(A(t)), t ∈ R. Thus, via (3.7) and (3.10), the evolution family
associated to the differential equation u′(t) = a(t)u(t) satisfies

U(t, s) = exp

(
−
∫ t

s

a(r)dr

)
=

det[P (s)]

det[P (t)]
.

Now we can apply Corollary 3.3. �
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Theorem 3.5. Let T = {T (t)}t≥0 be a strongly continuous semigroup acting on
the Banach space X and A : D(A) ⊆ X → X its infinitesimal generator. With the
above notation assume that the following two statements are fulfilled.

(i) For all x ∈ X and some h ∈ H the map H̃xh in (3.1) (with U(t, 0)x replaced
by T (t)x) belongs to X .

(ii) All solutions of the abstract Cauchy problems

u̇(t) = A(u(t)) + eiµtx, t ∈ R+, x ∈ X, u(0) = 0 (3.13)

are bounded on R+ uniformly with respect to the real parameter µ, or equiv-
alently, for all µ ∈ R and all t ≥ 0, one has

sup
t≥0,µ∈R

‖
∫ t

0

eiµsT (t− s)yds‖ := M(y) <∞, for all y ∈ X. (3.14)

Then T is uniformly exponentially stable, that is its uniform growth bound is neg-
ative.

Proof. Clearly the family {U(t, s) : t ≥ s ≥ 0} with U(t, s) := T (t− s) is a strongly
continuous and 1-periodic evolution family on X and (3.3) is an easy consequence of
(3.14) and the uniform boundedness principle. The assertion follows via Theorem
3.1 and Remark 3.2(i). �

With any strongly continuous semigroup T = {T (t)}t≥0 and any h ∈ H we

associate the set ATh consisting of all x ∈ X with the property that the map H̃xh

belongs to X . We denote by AT the smallest linear subspace of X containing the
set ∪h∈HATh.

When X is a Hilbert space, x ∈ D(A) and h ∈ H it is easy to see that H̃xh is a
Lipschitz continuous function and then it belongs to X , (see [9, Lemma 1.3]). As
is shown below, a similar result holds for semigroups acting on Banach spaces but
only for x ∈ D(A2) and for certain functions h ∈ H. More precisely the following
result holds.

Proposition 3.6. Let T be a strongly continuous semigroup acting on complex
Banach space X and let A be its infinitesimal generator. Then AT contains D(A2).

Proof. First we prove that h2
0 ∈ H. Indeed when eiµ = 1 obviously one has that

I(µ, h2
0) 6= 0 and when eiµ 6= 1 (after elementary calculus whose details are omitted)

we obtain

I(µ, h2
0) =

2π2(eiµ − 1)

iµ(4π2 − µ2)
6= 0.

Now for m ∈ Z,m 6= 0 and x ∈ D(A2), integrating by parts two times, we obtain

cm(H̃xh2
0
) =

1

(2πim)2

∫ 1

0

e2iπmt[(2h′0(t)2 + 2h0(t)h′′0(t))T (t)x

+ 4h0(t)h′0(t)T (t)Ax+ h2
0T (t)A2x]dt.

(3.15)

Finally by passing to the norms in both sides of (3.15) we obtain

‖cm(H̃xh2
0
)‖ ≤ K

4π2m2
(4π2‖x‖+ 4π‖Ax‖+ ‖A2x‖),

where K := supt∈[0,1] ‖T (t)‖. �
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It seems that Theorem 3.5 and Proposition 3.6 can produce a new proof for
Theorem 2.1 and other results in this area. This will be analyzed in a separate
paper.

We recall that condition (2.7) does not imply the exponential stability of the
semigroup T when it acts on an (arbitrary) Banach space. However, a nice result
of Storozhuk [38] asserts that if for a given nondecreasing function φ : R+ → R+

that is positive on (0,∞) one has∫ ∞
0

φ(|〈T (t)x, x′〉|)dt ∀x ∈ X, x′ ∈ X ′ (3.16)

then the pseudo-spectral bound of its generator (i.e. s0(A)) is negative. In turn,
via the well-known Gearhart-Prüss Theorem, this implies that the semigroup is
uniformly exponentially stable when X is a Hilbert space.

Corollary 3.7. A semigroup T = {T (t) : t ≥ 0} acting on a complex Banach space
X, with AT = X, is uniformly exponentially stable if and only if for all x ∈ X and
x′ ∈ X ′, one has

sup
‖x′‖≤1

∫ ∞
0

|〈T (t)x, x′〉|dt <∞ (3.17)

Proof. It is sufficient to see that for all µ ∈ R and x ∈ X one has

‖
∫ t

0

eiµsT (s)x‖ ≤ sup
‖x′‖≤1

∫ ∞
0

|〈T (t)x, x′〉|dt

and apply the uniform boundedness principle and Theorem 3.5. �

Corollary 3.8. Let T = {T (t) : t ≥ 0} acting on a complex Banach space X, with
AT = X, and let t 7→ a(t) : R → [1,∞) be a 1-periodic and continuous map. The
1-periodic evolution family defined by

U(t, s)x = T
(∫ t

s

a(r)dr
)
x, t ≥ s, x ∈ X (3.18)

is uniformly exponentially stable if and only if for all x ∈ X and x′ ∈ X ′ the map
t 7→ |〈U(t, 0)x, x′〉| belongs to L1(R+).

Proof. For t ≥ 0 let G(t) :=
∫ t

0
a(r)dr. By a change of variables G(t) = u we obtain

‖|〈U(·, 0)x, x′〉|‖L1 =

∫ ∞
0

|〈T (u)x, x′〉| 1

a(G−1(u))
du ≥ 1

K
‖〈T (·)x, x′〉|‖L1 , (3.19)

where K := supt∈R a(t). Now, from the uniform boundedness principle and Corol-
lary 3.7, there exist absolute positive constants N and ν such that for all t ≥ s ∈ R
one has

‖U(t, s)‖ = ‖T (G(t))− T (G(s))‖ ≤ Ne−ν(F (t)−F (s)) ≤ Ne−ν(t−s).

�

Keeping in mind the assumptions of the above theorems it is important to high-
light classes of strongly continuous semigroups T for which AT = X. First we
mention that for the semigroup T in Example 2.2, we have that AT is a proper
subset of X. On the other hand, for every uniformly continuous semigroup T acting
on a Banach space X, one has AT = X. The next example shows that there exists
strongly continuous semigroups which are not uniformly continuous with AT = X.
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Example 3.9. Let (H, 〈, 〉) be a separable complex Hilbert space and let B =
{en, n = 1, 2, · · · } be an orthonormal basis of it, i.e. 〈en, em〉 = 0 when m 6= n,
‖en‖2 := 〈en, en〉 = 1 and the linear span of B is dense in H. Thus any x ∈ H can
be represented uniquely as x =

∑∞
n=1〈x, en〉en. Let (λn) be a sequence of negative

real numbers. For every t ≥ 0 and every x ∈ H let

T (t)x :=

∞∑
n=1

eλnt〈x, en〉en. (3.20)

It is well-known and is easy to prove that:

(1) The family T := {T (t) : t ≥ 0} is a strongly continuous semigroup that
acts on H;

(2) ω0(T) = supn≥1 λn;

(3) D(A) = {x ∈ H :
∑∞
n=1 |λn|2|〈x, en〉|2 <∞};

(4) Ax :=
∑∞
n=1 λn〈x, en〉en for all x ∈ D(A).

See [43].

Proposition 3.10. Let T be the semigroup in the previous Example and let m ∈ Z
with |m| ≥ 1. Then for every x ∈ H one has

‖cm(H̃xh0
)‖ ≤ 2

π2(4m2 − 1)
‖x‖. (3.21)

In particular, AT = H.

Proof. By using the well-known Euler formula sin(πt) = 1
2i (e

iπt − eiπt) we obtain

cm(H̃xh0) = π

∞∑
n=1

eλn + 1

λ2
n − λn(4mπi)− π2(4m2 − 1)

〈x, en〉en. (3.22)

Since eλn + 1 ≤ 2 and |λ2
n − λn(4mπi)− π2(4m2 − 1)|2 ≥ π4(4m2 − 1)2, (3.22) and

Bessel’s inequality yield (3.21). �

Corollary 3.11. Let T be the strongly continuous semigroup in Example 3.9. The
evolution family U = {U(t, s)} defined in (3.18) is uniformly exponentially stable
provided the series (∑

n≥1

− 1

λn

)
converges.

Proof. Since a(t) ≥ 1 for every t ≥ 0 and taking into account (3.19) it fol-
lows that the integral

∫∞
0
|〈U(t, 0)x, y〉|dt is convergent if and only if the integral∫∞

0
|〈T (t)x, y〉|dt has the same property. On the other hand a simple calculation

gives

〈T (t)x, y〉 =

∞∑
n=1

eλnt〈x, en〉〈y, en〉

and this yields∫ ∞
0

|〈T (t)x, y〉|dt ≤
∞∑
n=1

− 1

λn
|〈x, en〉〈y, en〉| ≤

∞∑
n=1

− 1

λn
‖x‖‖y‖ .

Then we obtain the conclusion. �
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4. Determined spectral growth condition for evolution semigroups

Let X be a complex Banach space and let T := {T (t)}t≥0 be a strongly contin-
uous semigroup acting on X.

Lemma 4.1. The operator T (t) given by

(T (t)f)(s) = T (t)f(s− t), s ∈ R, t ≥ 0, f ∈ X (4.1)

is well defined and acts on X . Moreover, the family {T (t), t ≥ 0} is a strongly
continuous semigroup on X , called the evolution semigroup associated to T on X .

Proof. Let f ∈ X and m ∈ Z. Then the map s 7→ e−2iπmsf(s) : R→ X belongs to
X and for each t ≥ 0 one has

cm(T (t)f) =

∫ 1

0

e−2iπmsT (t)f(s− t)ds

=

∫ 1−t

−t
e−2iπm(t+τ)T (t)f(τ)dτ

= e−2iπmtT (t)

∫ 1

0

e−2iπmsf(s)ds

= e−2iπmtT (t)cm(f).

(4.2)

Now, since T is exponentially bounded there exist positive constants M and ω such
that

‖T (t)f‖1 ≤
∑
m∈Z
‖T (t)‖‖cm(f)‖ ≤Meωt‖f‖1 <∞. (4.3)

Moreover, for 0 < t ≤ 1 we have ‖T (t)f‖1 ≤ S1(t) + S2(t), where

S1(t) =
∑
m∈Z
‖T (t)cm(f)− cm(f)‖,

S2(t) =
∑
m∈Z
‖cm(f)‖|1− e2iπmt|.

Since,

‖T (t)cm(f)− cm(f)‖ ≤ sup
t∈[0,1]

‖T (t)− I‖‖cm(f)‖,

‖cm(f)‖|1− e2iπmt| ≤ 2‖cm(f)‖,
the Dominated Convergence Theorem assures that S1(t) and S2(t) converge to 0
as t→ 0+; that is, the semigroup {T (t)} is strongly continuous. �

Proposition 4.2. Let T and T be the semigroups from the above Lemma 4.1.
Then ω0(T) = ω0(T ).

Proof. Using (4.2) we obtain

‖T (t)f‖1 ≤ ‖T (t)‖‖f‖1, ∀f ∈ X . (4.4)

Thus ω0(T) ≤ ω0(T ).
To establish the converse inequality let fx(t) = (h0 ⊗ x)(t) := h0(t)x. An easy

argument shows that f̃x (the continuation by periodicity of fx to the real axis)
belongs to X for each x ∈ X and moreover

cm(f̃x) =
2

π(1− 4m2)
x. ∀m ∈ Z. (4.5)
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Then (4.2) and (4.5) yield ‖T (t)fx‖1 = 4
π‖T (t)x‖ and ‖fx‖1 = 4

π‖x‖. Thus

‖T (t)‖L(X ) ≥ sup
x 6=0

4
π‖T (t)x‖

4
π‖x‖

= ‖T (t)‖. (4.6)

�

Theorem 4.3. With the above notation if

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsT (t− s)x ds‖ := M(x) <∞ ∀x ∈ X, (4.7)

then

sup
µ∈R

sup
t≥0
‖
∫ t

0

eiµsT (t− s)fds‖X := N(f) <∞ ∀f ∈ X . (4.8)

Proof. Let f ∈ X and m ∈ Z. Using [35, Lemma 2.2], one has

cm

(∫ t

0

eiµsT (t− s)fds
)

=

∫ 1

0

(∫ t

0

eiµs−2imπτT (t− s)f(τ − t+ s)ds

)
dτ

=

∫ t

0

∫ 1

0

eiµs−2imπτT (t− s)f(τ − t+ s)dτds

=

∫ t

0

∫ s−t+1

s−t
eiµs−2imπτT (t− s)f(τ − t+ s)dτds

=

∫ t

0

eiµs−2imπ(t−s)T (t− s)
(∫ s−t+1

s−t
e−2imπρf(ρ)dρ

)
ds

= eiµt
∫ t

0

e−(iµ+2imπ)rT (r)cm(f)dr.

Now (4.8) is an easy consequence of (4.7) and the uniform boundedness principle;
indeed, let M > 0 be such that

‖
∫ t

0

eiµsT (t− s)x ds‖ ≤M‖x‖ ∀t ≥ 0,∀x ∈ X,

and then

‖
∫ t

0

eiµsT (t− s)fds‖X =
∑
m∈Z
‖
∫ t

0

e−(iµ+2imπ)rT (r)cm(f)dr‖

≤M
∑
m∈Z
‖cm(f)‖

= M‖f‖X := Nf .

�

Remark 4.4. We know [29, Theorem 2] that if X is a Hilbert space then (4.7)
implies the negativeness of ω0(T) and then, via Proposition 4.2, the evolution
semigroup T is uniformly exponentially stable and (4.8) follows automatically. It
could be of some interest if the converse statement in Theorem 4.3 is true or not.
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Corollary 4.5. Let X and T as in Example 2.2 and let T the evolution semigroup
associated to T on the Banach space of functions X . Denote by G the generator of
T . Then

s0(G) < 0 ≤ ω0(T ). (4.9)

Proof. Via Proposition 4.2 one has

ω0(T ) = ω0(T) =
1

2
.

Since T satisfies (4.7), T satisfies (4.8) (via Theorem 4.3) and from Theorem 2.1
the uniform spectral bound s0(G) is negative. �

5. The discrete case revisited

Let q ≥ 2 be a integer number, X be a complex Banach space and let U =
{U(n,m) : n ≥ m ≥ 0} ⊂ L(X) be a q-periodic discrete evolution family on X,
that is U(n, n)x = x, U(m,n)U(n, r) = U(m, r) and U(n + q,m + q) = U(n,m)
hold for all nonnegative integers m,n, r with m ≥ n ≥ r and all x ∈ X. We denote
by Tq := U(q, 0) the monodromy operator associated with the evolution family U .
It is well known that the family U is uniformly exponentially stable, that is, there
exists the positive constants N and ν such that

‖U(n,m)‖L(X) ≤ Ne−ν(n−m) for all n ≥ m

if and only if the spectral radius of Tq,

r(Tq) := lim
k→∞

‖T kq ‖1/k,

is less than 1.
With any X-valued continuous and q-periodic function defined on R we associate

the Fourier-Bohr coefficients given by

cn(f) :=
1

q

∫ q

0

e−2iπnt/qf(t)dt, (5.1)

and its norm ∑
n∈Z
‖cn(f)‖ := ‖f‖1.

Let Pq(Z, X) denote the space of all X-valued and q-periodic sequences defined on
Z.

Lemma 5.1. Let w = (wm)m∈Z be a sequence in Pq(Z, X) with w0 = 0. There
exists a X-valued continuous and q-periodic function defined on R with ‖f‖1 <∞
and such that f(m) = wm for all integers m.

Proof. We highlight a function f whose Range is included in the space Y :=
span[Range(w)] which is finite dimensional so it is a Hilbert space with an equivalent
norm. Therefore the continuous and q-periodic function, defined on [0, q] by

f(t) =

{
w(t), if t ∈ [0, q] ∩ Z
linear, if t ∈ (k, k + 1), k = 0, 1, . . . , q − 1,

(5.2)

is Y -valued and Lipschitz continuous. Taking into account that cm(f) ∈ Y for
every m ∈ Z, we have that ‖f‖1 <∞ (cf. [9, Lemma 1.3]). �
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Theorem 5.2. Let q ≥ 2 be an integer, X be a complex Banach space and let
U = {U(n,m) : n ≥ m} be a q-periodic evolution family of bounded linear operators
acting on X. The discrete evolution semigroup associated to the evolution family
U on the space Pq(Z, X)) is defined by

(T (n)w)(m) := U(m,m− n)w(m− n), n ∈ Z+,m ∈ Z. (5.3)

The following three statements are equivalent:

(1) supµ∈R supn∈Z+
‖
∑n
k=0 e

iµkU(n, k)x‖ := M1(x) <∞, for all x ∈ X.

(2) supµ∈R supn∈Z+
‖
(∑n

k=0 e
iµkT (n − k)w

)
(n)‖ := M2(w) < ∞, for all w ∈

Pq(Z, X) with w0 = 0.
(3) The family U is uniformly exponentially stable.

Proof. (1)⇒ (2). Let f be a function as in the previous Lemma 5.1. Thus for each
integer m one has

wm =
∑
j∈Z

e2πijm
q cj(f), (5.4)

which yields( n∑
k=0

eiµkT (n− k)w
)

(n) =

n∑
k=0

eiµkU(n, k)wk

=

n∑
k=0

∑
j∈Z

ei(µk+2πj k
q )U(n, k)cj(f)

=
∑
j∈Z

n∑
k=0

ei(µk+2πj k
q )U(n, k)cj(f).

(5.5)

Now, the conclusion is an easy consequence of the uniformly boundedness principle.
(2)⇒ (3). Is an easy consequence of the first identity in (5.5) and [11, Theorem

2].
(3)⇒ (1). This is clear. �

Remark 5.3. The equivalence between the first statement and the third one in
Theorem 5.2 was stated earlier in [2, Theorem 1] using a different approach.
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[14] C. Buşe, A. Khan, G. Rahmat, A. Tabassum; Uniform exponential stability for discrete
non-autonomous systems via discrete evolution semigroups, Bull. Math. Soc. Sci. Math.

Roumanie, Tome 57(105) (2014), No. 2, 193-205.

[15] G. Chacon, V. Montesinos, A. Octavio; A Note on the Intersection of Banach Subspaces ,
Publ. RIMS, Kyoto University, 40 (2004), 1-6.

[16] C. Chicone; Ordinary Differential Equations with Applications (2 ed.), Springer Verlag, 2006.

[17] C. Chicone, Y. Latushkin; Evolution semigroups in dynamical systems and differential equa-
tions, Mathematical Surveys and Monographs, 70, American Mathematical Society, Provi-

dence RI, 1999.

[18] S. Clark, Y. Latushkin, S. Montgomery-Smith, T. Randolph; Stability radius and internal
versus external stability in Banach spaces: an evolution semigroup approach, SIAM J. Con-

trol Optim. 38, (2000), no. 6, 1757–1793.
[19] R. F. Curtain, H. Zwart; An introduction to infinite-dimensional linear systems theory, Vol.

21 of Texts in Applied Mathematics, Springer-verlag, New-York, 1995.

[20] K. Engel, R. Nagel; One-Parameter Semigroups for Linear Evolution Equations, Graduate
Texts in Mathematics 194, Springer, 2000.

[21] L. Gearhart; Spectral theory for contraction semigroups on Hilbert spaces, Trans. Amer.

Math. Soc., 236(1978), 385-394.
[22] G. Greiner, J. Voight, M. P. Wolff; On the spectral bound of the generator of semigroups of

positive operators, J. Operator Theory, 5 (1981), no. 2, 245-256.

[23] J. S. Howland; Stationary scattering theory for time dependent Hamiltonians, Math Ann.
207 (1974), 315-335.

[24] Y. Latushkin, S. Montgomery-Smith; Evolutionary semigroups and Lyapunov theorems in

Banach spaces, J. Funct. Anal. 127 (1995), 173-197.
[25] N. Lupa, L. H. Popescu; Admissible Banach function spaces for linear dynamics with nonuni-

form behavior on the half-line, Semigroup Forum, Vol. 98, No. 1(2019), 184-208.
[26] F. Neubrander; Laplace transform and asymptotic behavior of strongly continuous semi-

groups, Houston J. Math., 12 (1986), no. 4, 549-561.
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[36] M. Reghiş, C. Buşe; On the Perron-Bellman theorem for C0-semigroups and periodic evolu-

tionary processes in Banach spaces, Ital. J. Pure Appl. Math. (1998), no. 4, 155-166.

[37] R. Schnaubelt; Well-posedness and asymptotic behaviour of non-autonomous linear evolution
equations, Evolution equations, semigroups and functional analysis (Milano, 2000), 311-338,

Progr. Nonlinear Differential Equations Appl., 50, Birkhäuser, Basel, 2002.
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Boston-Berlin, 2009.

[40] L. Weis; The stability of positive semigroups on Lp-spaces, Proceedings of the American

Mathematical Society, Vol. 123, Number 10, (1995), 3089-3094.
[41] L. Weis, V. Wrobel; Asymptotic behavior of C0-semigroups in Banach spaces, Proceedings

of the American Mathematical Society, 124(1996), 3663-3671.

[42] G. Weiss; Weak Lp-stability of linear semigroup on a Hilbert space implies exponential sta-
bility, J. Diff. Equations, 76(1988), 269-285.

[43] J. Zabczyk; Mathematical control theory: An introduction, Birkhäuser, Systems and Control,
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