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GROWTH OF SOLUTIONS OF COMPLEX DIFFERENTIAL

EQUATIONS IN A SECTOR OF THE UNIT DISC

BENHARRAT BELAÏDI

Abstract. In this article, we study the growth of solutions of homogeneous
linear complex differential equation by using the concept of lower [p, q]-order

and lower [p, q]-type in a sector of the unit disc instead of the whole unit disc,

and we obtain similar results as in the case of the unit disc.

1. Introduction

In this article, we assume that readers are familiar with the fundamental results
and the standard notations of Nevanlinna’s theory in the complex plane and in the
unit disc ∆ = {z ∈ C : |z| < 1}, see [5, 6, 7, 9, 15, 23].

For k ≥ 2 consider the complex differential equation

f (k)(z) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0, (1.1)

where coefficients Aj (j = 0, 1, . . . , k− 1) are analytic functions in the unit disc ∆.
It is well-known that every solution of (1.1) is analytic in ∆, and there are exactly
k linearly independent solutions of (1.1) (see e.g. [7]). The theory of complex
differential equations in the unit disc has been developed since 1980’s, see [13].
In 2000, Heittokangas [7] firstly investigated the growth and oscillation theory of
equation (1.1) when the coefficients Aj (j = 0, 1, . . . , k−1) are analytic functions in
the unit disc ∆ by introducing the definition of the function spaces. His results also
gave some important tools for further investigations on the theory of meromorphic
solutions of equations (1.1). In 1994, Wu [17, 18] used the Nevanlinna theory in an
angle to study the order of growth of solutions of the second-order linear differential
equation in an angular region. Later Xu and Yi [22], Wu [19], Wu and Li [20], Zhang
[24] generalized some results of [17, 18] to the case of linear higher order differential
equations in angular domains by using the concepts of iterated p−order and the
spread relation. Recently, Wu in [21] developed a new investigation related to linear
differential equations with analytic coefficients in a sector of the unit disc

Ωα,β = {z ∈ C : α < arg z < β, |z| < 1},
and obtained some results about the order of growth of solutions of the differential
equation

Ak(z)f (k)(z) +Ak−1(z)f (k−1) + · · ·+A0(z)f = 0, (1.2)
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where coefficients Aj (j = 0, 1, . . . , k) are analytic functions in the sector Ωα,β .
After that, Long [11, 12], Zemirni and Beläıdi [25] obtained different results con-
cerning the growth of solutions of (1.1) and (1.2) by using the concepts of iterated
p-order and [p, q]-order in the sector Ωα,β . In this article, we continue to investigate
this new problem and study the growth of solutions of equation (1.1) when the co-
efficients Aj (j = 0, 1, . . . , k − 1) are analytic functions of [p, q]-order in the sector
Ωα,β . Before stating our main results, we give some notation and basic definitions
of meromorphic functions in the unit disc ∆ and in a sector Ωα,β of the unit disc.
The order of a meromorphic function f in ∆ is defined by

ρ(f) = lim sup
r→1−

log T (r, f)

log 1
1−r

,

where T (r, f) is the Nevanlinna characteristic function of f . If f is analytic function
in ∆, then

ρM (f) = lim sup
r→1−

log logM(r, f)

log 1
1−r

,

where M(r, f) = max|z|=r, z∈∆ |f(z)| is the maximum modulus function.

Remark 1.1. The following two statements hold [15, p. 205].
(a) If f is an analytic function in ∆, then

ρ(f) ≤ ρM (f) ≤ ρ(f) + 1.

(b) There exist analytic functions f in ∆ which satisfy ρM (f) 6= ρ(f). For
example, let µ > 1 be a constant, and set

h(z) = exp{(1− z)−µ},

where we choose the principal branch of the logarithm. Then ρ(h) = µ − 1 and
ρM (h) = µ, see [4].

In contrast, the possibility that occurs in (b) cannot occur in the whole plane C,
because if ρ(f) and ρM (f) denote the order of an entire function f in the plane C
(defined by the Nevanlinna characteristic and the maximum modulus, respectively),
then it is well-know that

ρ(f) = lim sup
r→+∞

log T (r, f)

log r
= ρM (f) = lim sup

r→+∞

log logM(r, f)

log r
.

The meromorphic function f in the unit disc can be divided into the following three
classes:

(1) bounded type if T (r, f) = O(1) as r → 1−;
(2) rational or non-admissible type if T (r, f) = O( 1

1−r ) and f does not belong

to (1);
(3) admissible in ∆ if

lim sup
r→1−

T (r, f)

log 1
1−r

=∞.

Definition 1.2 ([2, 3]). Let p ≥ q ≥ 1 be integers. Let f be a meromorphic
function in ∆, the [p, q]-order of f is defined by

ρ[p,q](f) = lim sup
r→1−

log+
p T (r, f)

logq
1

1−r
,
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where log+
1 r := log+ r = max(0, log r), log+

p+1 r := log+(log+
p r), p ∈ N. For an

analytic function f in ∆, we also define

ρM,[p,q](f) = lim sup
r→1−

log+
p+1M(r, f)

logq
1

1−r
.

It is easy to see that 0 ≤ ρ[p,q](f) ≤ +∞. If f is non-admissible, then ρ[p,q](f) = 0
for any p ≥ q ≥ 1. By Definition 1.2, ρ[1,1](f) = ρ(f) is the order of f in ∆,
ρ[2,1](f) = ρ2(f) is the hyper-order of f in ∆ and ρ[p,1](f) = ρp(f) is the p-iterated
order of f in ∆.

Proposition 1.3 ([2]). Let p ≥ q ≥ 1 be integers, and let f be an analytic function
in ∆ of [p, q]-order. The following two statements hold:

(i) If p = q, then ρ[p,q](f) ≤ ρM,[p,q](f) ≤ ρ[p,q](f) + 1.
(ii) If p > q, then ρ[p,q](f) = ρM,[p,q](f).

Proposition 1.4 ([8]). Let p ≥ q ≥ 1 be integers, and let f be an analytic function
in ∆ of [p, q]-order. The following two statements hold:

(i) If p = q, then µ[p,q](f) ≤ µM,[p,q](f) ≤ µ[p,q](f) + 1.
(ii) If p > q, then µ[p,q](f) = µM,[p,q](f).

In what follows, we give some notation and definitions of a meromorphic function
in a sector in unit disc. Throughout this paper, Ω denotes the sector Ωα,β (0 ≤
α < β ≤ 2π) of the unit disc, and for any given ε ∈ (0, β−α2 ), Ωε denotes the sector

Ωα,β,ε = {z ∈ C : α+ ε < arg z < β − ε, |z| < 1}.

Wu [21] used the Ahlfors-Shimizu characteristic function to measure the order of
growth of a meromorphic function f in Ω. We recall the definition of the Ahlfors-
Shimizu characteristic function, see [5, 6]. Let f be a meromorphic function in Ω,
set

Ω(r) = Ω ∩ {z ∈ C : 0 < |z| < r < 1}
= {z ∈ C : α < arg z < β, 0 < |z| < r < 1}.

Then, the Ahlfors-Shimizu characteristic function is defined by

T0(r,Ω, f) =

∫ r

0

S(t,Ω, f)

t
dt,

where

S(r,Ω, f) =
1

π

∫∫
Ω(r)

( |f ′(z)|
1 + |f(z)|2

)2

dσ, z = reiθ, dσ = r dr dθ.

It follows by Hayman [6], Goldberg and Ostrovskii [5] that

T0(r,C, f) = T (r, f) +O(1), 0 < r < 1.

The meromorphic function f in a sector Ω of the unit disc can be divided into the
following three classes:

(1) bounded type if T0(r,Ω, f) = O(1) as r → 1−;
(2) rational or non-admissible type if T0(r,Ω, f) = O( 1

1−r ) and f does not

belong to (1);
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(3) admissible in Ω if

lim sup
r→1−

T0(r,Ω, f)

log 1
1−r

=∞.

Now, we introduce the concept of [p, q]-order and [p, q]-type of meromorphic func-
tions in a sector Ω.

Definition 1.5 ([12, 25]). Let p ≥ q ≥ 1 be integers. Let f be a meromorphic
function in Ω, the [p, q]-order of f is defined by

ρ[p,q],Ω(f) = lim sup
r→1−

log+
p T0(r,Ω, f)

logq
1

1−r
.

It is clear that 0 ≤ ρ[p,q],Ω(f) ≤ +∞. If f is non-admissible in Ω, then ρ[p,q],Ω(f) =
0. By Definition 1.5, ρ[1,1],Ω(f) = ρΩ(f) is the order of f in Ω, see [21], ρ[p,1],Ω(f) =
ρp,Ω(f) is the iterated p-order of f in Ω, see [11, 24].

Definition 1.6 ([25]). Let p ≥ q ≥ 1 be integers and f be a meromorphic function
in Ω with [p, q]-order 0 < ρ[p,q],Ω(f) < +∞. Then, the [p, q]-type of f is defined by

τ[p,q],Ω(f) = lim sup
r→1−

log+
p−1 T0(r,Ω, f)

(logq−1
1

1−r )ρ[p,q],Ω(f)
.

Now, we introduce the concept of lower [p, q]-order and lower [p, q]-type of a
meromorphic function in a sector Ω.

Definition 1.7. Let p ≥ q ≥ 1 be integers. Let f be a meromorphic function in
Ω, the lower [p, q]-order of f is defined by

µ[p,q],Ω(f) = lim inf
r→1−

log+
p T0(r,Ω, f)

logq
1

1−r
.

It is clear that 0 ≤ µ[p,q],Ω(f) ≤ +∞. If f is non-admissible in Ω, then µ[p,q],Ω(f) =
0. By Definition 1.7, µ[1,1],Ω(f) = µΩ(f) is the lower order of f in Ω and µ[p,1],Ω(f)
= µp,Ω(f) is the lower iterated p-order of f in Ω.

Definition 1.8. Let p ≥ q ≥ 1 be integers and f be a meromorphic function in
Ω with lower [p, q]-order 0 < µ[p,q],Ω(f) < +∞. Then, the lower [p, q]-type of f is
defined by

τ [p,q],Ω(f) = lim inf
r→1−

log+
p−1 T0(r,Ω, f)

(logq−1
1

1−r )µ[p,q],Ω(f)
.

2. Main results

Several authors [2, 3, 8, 10, 16] have investigated the growth of solutions of the
equation (1.1) by using the concepts of [p, q]-order in the unit disc ∆. Long [12]
studied the growth of solutions of equation (1.2) in a sector of the unit disc with
analytic coefficients of finite [p, q]-order, and obtained the following results.

Theorem 2.1 ([12]). Let p ≥ q ≥ 1 be integers and ε ∈ (0, β−α2 ). Let E be

a set of complex numbers satisfying dens{|z| = r : z ∈ E ⊂ Ω} > 0, and let
A0(z), A1(z), . . . , Ak(z) be analytic functions in Ω such that for some real constants
satisfying 0 ≤ γ < λ, we have

T0(r,Ωε, A0(z)) ≥ expp{λ logq
( 1

1− |z|
)
},
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T0(r,Ω, Aj(z)) ≤ expp
{
γ logq

( 1

1− |z|
)}
, j = 1, 2, . . . , k

as |z| = r → 1− for z ∈ E. Then every nontrivial solution f of (1.2) satisfies
ρ[p,q],Ω(f) = +∞ and

ρ[p+1,q],Ω(f) ≥ λ.

Theorem 2.2 ([12]). Let p ≥ q ≥ 1 be integers and ε ∈ (0, β−α2 ). Let A0(z), A1(z),
. . . , Ak(z) be analytic functions in Ω. If

max
1≤j≤k

{ρ[p,q],Ω(Aj)} < ρ[p,q],Ωε(A0),

then every nontrivial solution of (1.2) satisfies

ρ[p+1,q],Ω(f) ≥ ρ[p,q],Ωε(A0).

Remark 2.3. In the Theorems 2.1 and 2.2, we note that if Ak(z) = 1, then all the
solutions of (1.2) are analytic functions. But if Ak(z) is a non-constant analytic
function, then obviously the solution f of (1.2) can be meromorphic function. The
hypotheses in Theorems 2.1 and 2.2 do not provide that a solution is meromorphic
in Ω, so it is a priori assumed that f is meromorphic.

Very recently, Zemirni and Beläıdi [25] continued the study of the growth of
solutions of equation (1.1) instead of equation (1.2) in a sector of the unit disc with
analytic coefficients of finite [p, q]-order, and obtained the following results.

Theorem 2.4 ([25]). Let p ≥ q ≥ 1 be integers and ε ∈ (0, β−α2 ). Let A0(z), A1(z),
. . . , Ak−1(z) be analytic functions in Ω. If

max
1≤j≤k−1

{ρ[p,q],Ω(Aj)} < ρ[p,q],Ωε(A0),

then every nontrivial solution of (1.1) satisfies ρ[p,q],Ω(f) = +∞ and

ρ[p,q],Ωε(A0) ≤ ρ[p+1,q],Ω(f), ρ[p+1,q],Ωε(f) ≤ ρ[p,q],Ω(A0) + 1.

Furthermore, if p > q, then

ρ[p,q],Ωε(A0) ≤ ρ[p+1,q],Ω(f), ρ[p+1,q],Ωε(f) ≤ ρ[p,q],Ω(A0).

Theorem 2.5 ([25]). Let p ≥ q ≥ 1 be integers and ε ∈ (0, β−α2 ). Let A0(z), A1(z),
. . . , Ak−1(z) be analytic functions in Ω. Suppose that

max
1≤j≤k−1

{ρ[p,q],Ω(Aj)} ≤ ρ[p,q],Ωε(A0) = ρ (0 < ρ < +∞),

and

max
1≤j≤k−1

{τ[p,q],Ω(Aj) : ρ[p,q],Ω(Aj) = ρ[p,q],Ωε(A0)}

< τ[p,q],Ωε(A0) = τ (0 < τ < +∞).

Then, every nontrivial solution of (1.1) satisfies ρ[p,q],Ω(f) = +∞ and

ρ[p,q],Ωε(A0) ≤ ρ[p+1,q],Ω(f), ρ[p+1,q],Ωε(f) ≤ ρ[p,q],Ω(A0) + 1.

Furthermore, if p > q, then

ρ[p,q],Ωε(A0) ≤ ρ[p+1,q],Ω(f), ρ[p+1,q],Ωε(f) ≤ ρ[p,q],Ω(A0).
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Thus, the following questions arise naturally: (i) Whether the results similar to
Theorem 2.4 can be obtained in Ω if A0(z) dominates the other coefficients in the
sense of lower [p, q]-order?

(ii) If we use the lower [p, q]-type of A0(z) to dominate the other coefficients,
what can be said about µ[p+1,q],Ω(f), similar to Theorem 2.5?

In this article, we give some answers to the above questions. In fact, by using the
concept of lower [p, q]-type, we obtain some results which indicate growth estimate
of every non-trivial analytic solution of equation (1.1) by the growth estimate of
the coefficient A0(z). We mainly obtain the following results.

Theorem 2.6. Let p ≥ q ≥ 1 be integers and ε ∈ (0, β−α2 ). Let A0(z), A1(z), . . . ,
Ak−1(z) be analytic functions in Ω. If

max
1≤j≤k−1

{ρ[p,q],Ω(Aj)} < µ[p,q],Ωε(A0),

then every nontrivial solution of (1.1) satisfies

ρ[p,q],Ω(f) = µ[p,q],Ω(f) = +∞,
µ[p,q],Ωε(A0) ≤ µ[p+1,q],Ω(f) ≤ ρ[p+1,q],Ω(f),

µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0) + 1.

Furthermore, if p > q, then

µ[p,q],Ωε(A0) ≤ µ[p+1,q],Ω(f) ≤ ρ[p+1,q],Ω(f),

µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0).

Remark 2.7. Theorem 2.6 is similar to [16, Theorem 2.2 (i)] in the unit disc ∆.

Corollary 2.8. Let p ≥ q ≥ 1 be integers and ε ∈ (0, β−α2 ). Let A0(z), A1(z), . . . ,
Ak−1(z) be analytic functions in Ω. If

max
1≤j≤k−1

{ρ[p,q],Ω(Aj)} < µ[p,q],Ωε(A0) = ρ[p,q],Ωε(A0),

then every nontrivial solution of (1.1) satisfies ρ[p,q],Ω(f) = µ[p,q],Ω(f) = +∞ and

µ[p,q],Ωε(A0) ≤ µ[p+1,q],Ω(f) ≤ ρ[p+1,q],Ω(f),

µ[p+1,q],Ωε(f) ≤ ρ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0) + 1.

Furthermore, if p > q, then

µ[p,q],Ωε(A0) ≤ µ[p+1,q],Ω(f) ≤ ρ[p+1,q],Ω(f),

µ[p+1,q],Ωε(f) ≤ ρ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0).

Theorem 2.9. Let p ≥ q ≥ 1 be integers and ε ∈ (0, β−α2 ). Let A0(z), A1(z), . . . ,
Ak−1(z) be analytic functions in Ω such that

0 < µ = µ[p,q],Ωε(A0) ≤ ρ[p,q],Ωε(A0) < +∞.
Suppose that

max
1≤j≤k−1

{ρ[p,q],Ω(Aj)} ≤ µ[p,q],Ωε(A0)

and

max
1≤j≤k−1

{τ[p,q],Ω(Aj) : ρ[p,q],Ω(Aj) = µ[p,q],Ωε(A0)} < τ [p,q],Ωε(A0) < +∞.

Then, every nontrivial solution of (1.1) satisfies

ρ[p,q],Ω(f) = µ[p,q],Ω(f) = +∞,
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µ[p,q],Ωε(A0) ≤ µ[p+1,q],Ω(f) ≤ ρ[p+1,q],Ω(f),

µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0) + 1.

Furthermore, if p > q, then

µ[p,q],Ωε(A0) ≤ µ[p+1,q],Ω(f) ≤ ρ[p+1,q],Ω(f),

µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0).

Remark 2.10. Theorem 2.9 is similar to [8, Theorem 2.1] in the unit disc ∆.

Remark 2.11. We note that in Theorems 2.6 and 2.9, the growth estimate of the
solution f is expressed by the growth estimate of dominant coefficient A0 in the
terms of lower [p, q]-order on both sides.

3. Auxiliary lemmas

Lemma 3.1 ([14]). Let

u(z) =
(ze−iθ0)π/δ + 2(ze−iθ0)π/(2δ) − 1

(ze−iθ0)π/δ − 2(ze−iθ0)π/(2δ) − 1
, (3.1)

where 0 ≤ θ0 = α+β
2 < 2π, 0 < δ = β−α

2 < π. Then u(z) is a conformal map
of angular domain Ω (0 < β − α < 2π) onto the unit disc ∆. Moreover, for any
positive number ε satisfying 0 < ε < δ, the transformation (3.1) satisfies

u
(
{z :

1

2
< |z| < r} ∩ {z : | arg z − θ0| < δ − ε}

)
⊂ {u : |u| < 1− ε

2
π
2δ+1δ

(1− r)},

u−1({u : |u| < %}) ⊂
(
{z : |z| < 1− δ

8π
(1− %)} ∩ {z : | arg z − θ0| < δ}

)
,

where % < 1 is a constant. The inverse transformation of (3.1) is

z(u) = eiθ0
(−(1 + u) +

√
2(1 + u2)

1− u

)2δ/π

. (3.2)

Lemma 3.2 ([21]). Let f be a meromorphic function in Ω, where 0 < β−α < 2π.

For any given ε ∈ (0, β−α2 ), set δ = β−α
2 and b = ε

2π/(2δ)+1δ
. Then

T0(%,C, f(z(u))) ≤ 16π

δ
T0

(
1− δ

8π
(1− %),Ω, f(z)

)
+O(1), (3.3)

T0(r,Ωε, f(z)) ≤ 2

b
T0(1− b(1− r),C, f(z(u))) +O(1), (3.4)

where z(u) is the inverse transformation of (3.1).

Remark 3.3. By applying the formula T (r, f) = T0(r,C, f) + O(1) (0 < r < 1),
Lemma 3.2, the definition of [p, q]-order and lower [p, q]-order, we immediately
obtain that

ρ[p,q],Ωε(f(z)) ≤ ρ[p,q](f(z(u))) ≤ ρ[p,q],Ω(f(z)),

µ[p,q],Ωε(f(z)) ≤ µ[p,q](f(z(u))) ≤ µ[p,q],Ω(f(z)).



8 B. BELAÏDI EJDE-2019/98

Lemma 3.4 ([21]). Let f be a meromorphic function in Ω, where 0 < β − α < 2π
and z(u) be the inverse transformation of (3.1). Set F (u) = f(z(u)) and ψ(u) =
f (`)(z(u)) Then

ψ(u) =
∑̀
j=1

αjF
(j)(u), (3.5)

where the coefficients αj are polynomials (with numerical coefficients) in the vari-
ables V (u)(= 1

z′(u) ), V ′(u), V ′′(u), . . . . Moreover, we have

T (%, αj) = O
(

log
1

1− %

)
, j = 1, 2, . . . , `. (3.6)

For convenience of the readers, we give the statement and the proof of Lemma
3.5 [25, Lemma 3.4] with more precision.

Lemma 3.5. Suppose f 6≡ 0 is a solution of (1.1) in Ω. Then F (u) = f(z(u)) is
a solution of

F (k)(u) +Bk−1(u)F (k−1)(u) + · · ·+B0(u)F (u) = 0 (3.7)

in ∆, where

B0(u) =
1

αk
A0(z(u)) (3.8)

and for j = 1, 2, . . . , k − 1,

Bj(u) =
αj
αk

+
αj
αk

k−1∑
n=j

An(z(u)). (3.9)

Consequently,

T (%,B0) ≤ T (r,A0(z(u))) +O
(

log
1

1− %

)
, (3.10)

T (%,Bj) ≤
k−1∑
n=j

T (r,An(z(u))) +O
(

log
1

1− %

)
. (3.11)

Proof. Suppose that f 6≡ 0 is a solution of (1.1) in the sector Ω. By Lemma 3.4,
we have

f (k)(z(u)) +

k−1∑
n=1

An(z(u))f (n)(z(u)) +A0(z(u))f(z(u))

=

k∑
j=1

αjF
(j)(u) +

k−1∑
n=1

An(z(u))

n∑
j=1

αjF
(j)(u) +A0(z(u))f(z(u))

=

k∑
j=1

αjF
(j)(u) +

k−1∑
j=1

(
αj

k−1∑
n=j

An(z(u))
)
F (j)(u) +A0(z(u))f(z(u))

= αkF
(k)(u) +

k−1∑
j=1

(
αj

k−1∑
n=j

An(z(u)) + αj

)
F (j)(u) +A0(z(u))F (u).

It follows that F (u) = f(z(u)) is a solution of

F (k)(u) +Bk−1(u)F (k−1)(u) + · · ·+B0(u)F (u) = 0,
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where B0(u) = 1
αk
A0(z(u)) and

Bj(u) =
αj
αk

+
αj
αk

k−1∑
n=j

An(z(u)), j = 1, 2, . . . , k − 1.

From the proof of Lemma 3.4, we can get that [21, p. 63]

αk = V k(u) =
( 1

z′(u)

)k
=
( ω

eiθ0

( 1− u
−(1 + u) +

√
2(1 + u2)

) 1
ω−1 (1− u)2

√
1 + u2

√
2(1 + u)− 2

√
1 + u2

)k
,

which is analytic in ∆, where θ0 = α+β
2 and ω = π

β−α . Since αk = V k(u) 6= 0 in ∆,

then B0(u) = 1
αk
A0(z(u)) and

Bj(u) =
αj
αk

+
αj
αk

k−1∑
n=j

An(z(u)), j = 1, 2, . . . , k − 1

are also analytic in ∆. Because

T (%, αj) = O
(

log
1

1− %
)
, j = 1, 2, . . . , k,

it follows from this and the properties of Nevanlinna’s characteristic function that

T (%,B0) ≤ T
(
%,

1

αk

)
+ T (%,A0(z(u))) = T (%, αk) + T (%,A0(z(u))) +O(1)

= T (%,A0(z(u))) +O
(

log
1

1− %

)
,

and for j = 1, 2, . . . , k − 1,

T (%,Bj) ≤ T
(
%,
αj
αk

)
+

k−1∑
n=j

T (%,An(z(u))) +O(1)

≤ T (%, αj) + T
(
%,

1

αk

)
+

k−1∑
n=j

T (%,An(z(u))) +O(1)

= T (%, αj) + T (%, αk) +

k−1∑
n=j

T (%,An(z(u))) +O(1)

=

k−1∑
n=j

T (%,An(z(u))) +O
(

log
1

1− %

)
.

�

Lemma 3.6 ([16]). Let p ≥ q ≥ 1 be integers. If B0(u), B1(u), . . . , Bk−1(u) are
analytic functions of [p, q]-order in the unit disc ∆, then every solution F 6≡ 0 of
(3.7) satisfies

µ[p+1,q](F ) = µM,[p+1,q](F ) ≤ max
1≤j≤k−1

{µM,[p,q](B0), ρM,[p,q](Bj)}.
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Lemma 3.7. Let p ≥ q ≥ 1 be integers. If A0(z), . . . , Ak−1(z) are analytic func-
tions of [p, q]-order in sector Ω satisfying max1≤j≤k−1{ρ[p,q],Ω(Aj)} < µ[p,q],Ωε(A0),

then for any given ε ∈ (0, β−α2 ), every solution f 6≡ 0 of (1.1) satisfies

µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0) + 1.

Furthermore, if p > q then

µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0).

Proof. Let f 6≡ 0 be a solution of equation (1.1). Then by Lemma 3.5, F (u) =
f(z(u)) is a solution of equation (3.7) and by using Remark 3.3, Proposition 1.3,
Proposition 1.4 and Lemma 3.6, we obtain

µ[p+1,q],Ωε(f) ≤ µ[p+1,q](F ) = µM,[p+1,q](F )

≤ max
1≤j≤k−1

{µM,[p,q](B0), ρM,[p,q](Bj)}

≤ max
1≤j≤k−1

{µ[p,q](B0), ρ[p,q](Bj)}+ 1

≤ max
1≤j≤k−1

{µ[p,q],Ω(A0), ρ[p,q],Ω(Aj)}+ 1

≤ max
1≤j≤k−1

{µ[p,q],Ω(A0), µ[p,q],Ωε(A0)}+ 1

= µ[p,q],Ω(A0) + 1.

If p > q, we obtain

µ[p+1,q],Ωε(f) ≤ µ[p+1,q](F ) = µM,[p+1,q](F )

≤ max
1≤j≤k−1

{µM,[p,q](B0), ρM,[p,q](Bj)}

= max
1≤j≤k−1

{µ[p,q](B0), ρ[p,q](Bj)}

≤ max
1≤j≤k−1

{µ[p,q],Ω(A0), ρ[p,q],Ω(Aj)}

≤ max
1≤j≤k−1

{µ[p,q],Ω(A0), µ[p,q],Ωε(A0)}

= µ[p,q],Ω(A0).

�

Lemma 3.8 ([7, 15]). Let f be a meromorphic function in the unit disc ∆ and let
k ∈ N. Then

m
(
r,
f (k)

f

)
= S(r, f),

where

S(r, f) = O
(

log+ T (r, f) + log
( 1

1− r
))
,

possibly outside a set F ⊂ [0, 1) with
∫
F

dr
1−r <∞.

Lemma 3.9 ([1, 7]). Let g : (0, 1)→ R and h : (0, 1)→ R be monotone increasing
functions such that g(r) ≤ h(r) holds outside of an exceptional set E ⊂ [0, 1) for
which

∫
E

dr
1−r < ∞. Then there exists a constant d ∈ (0, 1) such that if s(r) =

1− d(1− r), then g(r) ≤ h(s(r)) for all r ∈ [0, 1).
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Lemma 3.10 ([25]). Let p ≥ q ≥ 1 be integers. If A0(z), . . . , Ak−1(z) are analytic
functions of [p, q]-order in sector Ω satisfying max0≤j≤k−1{ρ[p,q],Ω(Aj)} ≤ η, then

for any given ε ∈ (0, β−α2 ), every solution f 6≡ 0 of (1.1) satisfies

ρ[p+1,q],Ωε(f) ≤ η + 1.

Furthermore, if p > q then ρ[p+1,q],Ωε(f) ≤ η.

4. Proof of main results

Proof of Theorem 2.6. Suppose that f 6≡ 0 is a solution of (1.1) in the sector Ω.
From Lemma 3.5, the function F (u) = f(z((u)) is a solution of (3.7), where z(u) is
defined by (3.2). Then, by Lemma 3.2 and the properties of characteristic function
of Nevanlinna, we have

T (%,B0(u)) = T
(
%,

1

αk
A0(z(u))

)
≥ T (%,A0(z(u)))− T (%, αk)

= T0(%,C, A0(z(u))) +O(1)− T (%, αk)

≥ b

2
T0(1− 1− %

b
,Ωε, A0(z)) +O(1)− T (%, αk).

(4.1)

By (3.3), (3.11) and the formula T (r, f) = T0(r,C, f) + O(1) (0 < r < 1), for
j = 1, 2, . . . , k − 1 we have

T (%,Bj(u)) ≤
k−1∑
n=j

T (%,An(z(u))) +O
(

log
1

1− %

)

=

k−1∑
n=j

T0(%,C, An(z(u))) +O(1) +O
(

log
1

1− %

)

≤ 16π

δ

k−1∑
n=j

T0

(
1− δ

8π
(1− %),Ω, An(z)

)
+O

(
log

1

1− %

)
.

(4.2)

Set

η = max
1≤j≤k−1

{ρ[p,q],Ω(Aj)} < µ[p,q],Ωε(A0) = µ.

Then, for any given ε(0 < 2ε < µ− η) and r → 1−, for j = 1, 2, . . . , k − 1 we have

T0(r,Ω, Aj(z)) ≤ expp
{

(η + ε) logq
1

1− r
}
. (4.3)

By the definition of lower [p, q] order

T0(r,Ωε, A0(z)) ≥ expp
{

(µ− ε) logq
1

1− r
}
. (4.4)

Now, as |u| = %→ 1−, it follows from (4.1), (4.2), (4.3) and (4.4) that

T (%,B0) ≥ b

2
T0

(
1− 1− %

b
,Ωε, A0(z)

)
+O(1)− T (%, αk)

≥ b

2
expp

{
(µ− ε) logq

( b

1− %
)}

+O(1)− T (%, αk)

= O
(

expp
{

(µ− ε) logq
( 1

1− %
)})
− T (%, αk)

(4.5)
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and for j = 1, 2, . . . , k − 1,

T (%,Bj) ≤
16π

δ
(k − j) expp

{
(η + ε) logq

( 8π

δ(1− %)

)}
+O

(
log

1

1− %
)

= O
(

expp
{

(η + ε) logq
( 1

1− %
)}

+ log
1

1− %

)
.

(4.6)

By (3.7), we can write

T (%,B0) = m(%,B0)

≤
k−1∑
j=1

m(%,Bj) +

k∑
j=1

m
(
%,
F (j)

F

)
+O(1)

=

k−1∑
j=1

T (%,Bj) +

k∑
j=1

m
(
%,
F (j)

F

)
+O(1).

(4.7)

It follows from (4.5), (4.6), (4.7) and Lemma 3.8 that

O
(

expp

{
(µ− ε) logq

( 1

1− %
)})

≤ O
(

expp

{
(η + ε) logq

( 1

1− %
)})

+O
(

log
1

1− %
)

+ T (%, αk) +O
(

log+ T (%, F ) + log
1

1− %

) (4.8)

holds for all u satisfying |u| = % /∈ E as % → 1− and E ⊂ (0, 1) is a set with∫
E

d%
1−% < +∞. By using Lemma 3.9 and (4.8), for all u satisfying |u| = %, as

%→ 1−, we obtain

expp

{
(µ− ε) logq

( 1

1− %
)}

≤ O
(

expp

{
(η + ε) logq(

1

1− %
)
})

+O
(

log
1

d(1− %)

)
+O

(
log+ T (1− d(1− %), F )

)
.

(4.9)

Thus, from (4.9) we obtain σ[p,q](F ) = µ[p+1,q](F ) = +∞ and

σ[p+1,q](F ) ≥ µ[p+1,q](F ) ≥ µ.
Then, by Remark 3.3, we obtain

ρ[p,q],Ω(f(z)) = µ[p,q](f(z)) = +∞,
ρ[p+1,q],Ω(f(z)) ≥ µ[p+1,q],Ω(f(z)) ≥ µ.

On the other hand, by Lemma 3.7 we have µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0) + 1, and if
p > q, we have µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0). �

Proof of Corollary 2.8. By using Theorem 2.6 and Lemma 3.10, we easily obtain
Corollary 2.8. �

Proof of the Theorem 2.9. Suppose that f 6≡ 0 is a solution of (1.1) in the sector
Ω. From Lemma 3.5, the function F (u) = f(z((u)) is a solution of (3.7), where
z(u) is defined by (3.2). If ρ[p,q],Ω(Aj) < µ[p,q],Ωε(A0) = µ for all j = 1, . . . , k − 1,
then Theorem 2.9 reduces to Theorem 2.6. Thus, we assume that at least one of
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Aj (j = 1, . . . , k− 1) satisfies ρ[p,q],Ω(Aj) = µ[p,q],Ωε(A0) = µ. So, there exists a set
I ⊆ {1, . . . , k − 1} such that for j ∈ I we have ρ[p,q],Ω(Aj) = µ[p,q],Ωε(A0) = µ and

τ1 = max
j∈I
{τ[p,q],Ω(Aj) : ρ[p,q],Ω(Aj) = µ[p,q],Ωε(A0)} < τ [p,q],Ωε(A0) = τ < +∞

and for j ∈ {1, . . . , k − 1}\I, we have

b = max
j∈
{

1,...,k−1}\I
{ρ[p,q],Ω(Aj)

}
< µ[p,q],Ωε(A0) = µ.

Then, for any given ε (0 < 2ε < min{µ − b, τ − τ1}) and for r → 1−, and j ∈
{1, . . . , k − 1}\I, we have

T0(r,Ω, Aj(z)) ≤ expp
{

(b+ ε) logq
1

1− r
}
≤ expp

{
(µ− ε) logq

1

1− r
}

(4.10)

and for j ∈ I, we obtain

T0(r,Ω, Aj(z)) ≤ expp−1

{
(τ1 + ε)

(
logq−1

1

1− r

)µ}
. (4.11)

By the definition of lower [p, q]-type, for r → 1− we have

T0(r,Ωε, A0(z)) ≥ expp−1

{
(τ − ε)

(
logq−1

1

1− r

)µ}
. (4.12)

Then, by (4.1) and (4.12), as |u| = %→ 1−,

T (%,B0(u)) = T
(
%,

1

αk
A0(z(u))

)
≥ b

2
T0

(
1− 1− %

b
,Ωε, A0(z)

)
+O(1)− T (%, αk)

≥ b

2
expp−1

{
(τ − ε)

(
logq−1

b

1− %

)µ}
+O(1)− T (%, αk)

= O
(

expp−1

{
(τ − ε)(logq−1

1

1− %
)µ
})
− T (%, αk).

(4.13)

Also, by (4.2), (4.10) and (4.11), for j = 1, 2, . . . , k − 1,

T (%,Bj) ≤
16π

δ

k−1∑
n=j

T0

(
1− δ

8π
(1− %),Ω, An(z)

)
+O

(
log

1

1− %

)
≤ O

(
expp

{
(µ− ε) logq

8π

δ(1− %)

})
+O

(
expp−1

{
(τ1 + ε)

(
logq−1

8π

δ(1− %)

)µ})
+O

(
log

1

1− %

)
= O

(
expp−1

{
(τ1 + ε)(logq−1

1

1− %
)µ
}

+ log
1

1− %

)
.

(4.14)

It follows from (4.7), (4.13), (4.14) and Lemma 3.8 that

O
(

expp−1

{
(τ − ε)

(
logq−1

1

1− %

)µ})
≤ O

(
expp−1

{
(τ1 + ε)

(
logq−1

1

1− %

)µ})
+O

(
log

1

1− %

)
+ T (%, αk) +O

(
log+ T (%, F ) + log

1

1− %

) (4.15)
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holds for all u satisfying |u| = % /∈ E as % → 1−, where E ⊂ (0, 1) is a set with∫
E

d%
1−% < +∞. By using Lemma 3.9 and (4.15), for all u satisfying |u| = % → 1−,

we obtain

expp−1

{
(τ − ε)

(
logq−1

1

1− %

)µ}
≤ O

(
expp−1

{
(τ1 + ε)

(
logq−1

1

d(1− %)

)µ})
+O

(
log

1

d(1− %)

)
+O

(
log+ T (1− d(1− %), F )

)
.

(4.16)

Thus, from this inequality we obtain ρ[p,q](F ) = µ[p,q](F ) = +∞ and

ρ[p+1,q](F ) ≥ µ[p+1,q](F ) ≥ µ.
Then, by Remark 3.3, we obtain

ρ[p,q],Ω(f(z)) = µ[p,q](f(z)) = +∞, ρ[p+1,q],Ω(f(z)) ≥ µ[p+1,q],Ω(f(z)) ≥ µ.
On the other hand, by Lemma 3.7 we have µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0) + 1, and if
p > q, we have µ[p+1,q],Ωε(f) ≤ µ[p,q],Ω(A0). �
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