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EXISTENCE OF GLOBAL SOLUTIONS AND BLOW-UP OF
SOLUTIONS FOR COUPLED SYSTEMS OF FRACTIONAL
DIFFUSION EQUATIONS

BASHIR AHMAD, AHMED ALSAEDI, MOHAMED BERBICHE, MOKHTAR KIRANE

Communicated by Jesus Idelfonso Diaz

ABSTRACT. We study the Cauchy problem for a system of semi-linear coupled
fractional-diffusion equations with polynomial nonlinearities posed in R xRN,
Under appropriate conditions on the exponents and the orders of the fractional
time derivatives, we present a critical value of the dimension N, for which
global solutions with small data exist, otherwise solutions blow-up in finite
time. Furthermore, the large time behavior of global solutions is discussed.

1. INTRODUCTION

We consider the system

CDg‘ltu—Au:f(v), t>0, ze€RY,

CDglztv —Av=g(u), t>0, zcRY,

(1.1)

subject to the initial conditions
u(0,2) = up(z), v(0,x) =vo(z), =R, (1.2)

where 0 < 71,72 < 1, for 0 < a < 1, CDS“‘tu denotes the Caputo time fractional
derivative defined, for an absolutely continuous function u, by

1 t
C na -«
Dgu)(t) = =—— t—s) " “Ou(s,-)ds, 0<a<l,

(D)) = g | (6= 90w
where A is the Laplace operator in RY. The functions f(v) and g(u) are the
nonlinear source terms that will be determined later, and ug, vy are given functions.

Before we present our results and comment on them, let us dwell on existing
results concerning the limiting case 73 = 72 = 1. Escobedo and Herrero [7] studied
the existence of global solutions, and blowing-up of solutions for the system
u—Au=", t>0, zeRY, v>0,

1.3
v—Av=ul, t>0, zeRY, u>0. (1.3)
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They showed, in particular, that for
max{p,q} + 1
pg—1

every nontrivial solution of (1.3|) blows-up in a finite time 7% = T*(||u||0o, [|V]l00)s
in the sense that

pg>1, <

b

N
2

lim sup [|u(#)||oo = limsup ||v(#)]|co = +00.
t—T* t—T*
The work [7] has been followed by works of Escobedo and Herrero in a bounded
domain, Escobedo and Levine [8] for more general nonlinear forcing terms, Uda [33],
Fila, Levine and Uda [9] for differing diffusive coefficients, Lu [18], Lu and Sleeman
[17], Mochizuki [22], Mochizuki and Huang [23], Takase and Sleeman [31], 2] ,
Samarskii et al. [29], and many other authors; see the review papers [4] [T}, 24].
Time-fractional differential equations/systems for global or blowing-up solutions
have been studied, for example, in [5] [6] 12} 14, 20} 2T}, 28 [34] 39].
Kirane, Laskri and Tatar [14] studied the more general system

CDgftU+(—A)ﬂ/2u=|v|p7 t>0, zeRY, p>1, (1.4)
1.4
“Ditv+ (=A)P0=|ul?, t>0, 2 €RY, ¢ >1,

(for the definition of (—A)?/2, 1 < ¢ < 2 see [14]) with nonnegative initial data,
and proved the non-existence of global solutions under the condition

J2 (1 - L) 2 —(1- L
Zty—(1-5) B+re-01 )

rq
Y2 Y1 ) Y1 2 ’
,qul Jr ﬂq/ ! + p/

pg > 1, Ngmax{

Bpq ol

where p+p' = pp’ and ¢+ ¢ = q¢’.

Here, we consider problem — and will give conditions relating the space
dimension N with parameters 71, 72, p, and ¢ for which the solution of —
exists globally in time and satisfies L>°-decay estimates. We also discuss blowing-
up in finite time solutions with initial data having positive average. Our study
of the existence of global solutions relies on the semigroup theory, while for the
blow-up of solutions result, we use the test function approach due to Zhang [41]
and developed by Mitidieri and Pohozaev [24], and used by several authors (see
for example [I4} [I0, B9]). Our result on blowing-up solutions improves the one
obtained in [I4]. We should mention that to the best of our knowledge there are
no global existence and large time behavior results for the time-fractional diffusion
system with two different fractional powers. The paper of Zhang et al. [40] does
not treat the case of different time fractional operators. Also in [40], the authors
do not obtain the decay rate of the solution in the space L>(R™Y).

The rest of this article is organized as follows. In section 2, we present some
preliminary lemmas. In section 3, we present the main results of this paper. Finally,
section 4 and section 5 are devoted to the proofs of small data global existence and
blow-up in finite time of the solutions of problem —.

Throughout this article, C' will denote a positive constant. The space LP(RY)
(1 < p < o0) will be equipped with the usual norm Hu||’£p(RN) = Jan |u(z)Pdx.
The space Co(RY) denotes the set of all continuous functions decaying to zero at
infinity, equipped with Chebychev’s norm ||u/]co-
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2. PRELIMINARIES

The left-sided and right-sided Riemann-Liouville integrals (see [30]), for ¥ €
LY(0,T), 0 < a < 1, are defined as

t T
IO = 5 | oo, (U300 = s [ e do

t*(j)o‘l O'*t)o‘l

respectively, I' stands for the Euler gamma function.
The left-handed and right-handed Riemann-Liouville derivatives (see [30]), for
U e AC'([0,T]), 0 < a < 1, are defined as

(D§)(6) = (5 0 T W) @), (Digr)(1) = (5 o Lz 0)(0),

respectively.
The Caputo fractional derivative for a function ¥ € AC*([0,T]) is defined by

1 t g (g
(“Dg,w)(t) = S /O ; _(J;adm

( Dt\T\IJ)(t) = _F(ll—a) /t (Ol.Iﬂ_(Utga do.

For 0 < a < 1 and ¥ € AC*(]0,77)), we have

1 90 (o

1 U (T T v (s
(D) (t) = T —a) [(T E t))a —/t (U_(t;ada]. (2.1)

The Caputo derivative is related to the Riemann-Liouville derivative by
“Dj W (t) = (Dgj,)(¥(t) — (0), for ¥ e AC([0,T1).
Let 0 < a <1, f € ACY[0,T)) and g € AC*([0,T)). Then

/f Dia)(®)dt = [ o(0C DGO de+ FTII9)(D).
If £(T) = 0, then

/f Dg9)(t) dt /OTgo( Dy f)(8) dt

!
o(t) = (1_7) , fort>0,1>2.

T/ +

By a direct calculation, we obtain
F(l + 1) _ l—«
c a
D% — T %1 — — t>0.
t|T () F(l+1—a) ( T)+ 3 =

Now, we present some properties of two special functions. The two parameter
Mittag-Leffler function [30] is defined for z € C as

Zk

z>:kzjzof(odﬁﬂrﬂ)7

and

For later use, let

t

a,f € C, R(a) > 0.
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It satisfies

L (1" Ba,a( M) = Ean (M%) for AeC,0<a <1

The Wright type function

(—2)F
$al2) = <K (—ak +1—a)
alk + 1)) sin(r(k + 1))
T Z k! ’
for 0 < a < 1, is an entire funct1on it has the following properties:
(a) ¢a()>0for9>0andf o(0)dO = 1;
(b) [37°° 00 (0)07d6 = F(fj;)) for r>—1;

(©) [ ¢a(B)e0d0 = Eq1(—2), z € C;
(d) a [ 0¢a(0)edf = Eqo(—2), z € C.
The operator A = —A with domain
D(A) = {u € Co(RY) : Au € Co(RM)},

generates, on Co(RY), a semigroup {T'(¢)};>0, where

1 —|x|? 4t
T(t)uo(z) = . G(t,x —y)uo(y)dy, G(t,z) = e ll”/4t,
it is analytic and contractive on LI(RY) [3] and, for t > 0, x € RY, it satisfies
IT (ol o gen) < (4mt) ™= V97D flug| o e, (2.2)

for1 <g<p<+oo.
Let the operators P, (t) and S, (t) be defined by

uo / (,2504 t“@)uode t>0, ug € Oo(RN), (23)

thup = a / 000 (0)T (t*0)ugdd, t >0, up € Co(RY). (2.4)

The operators P,(t) and S,(t) acting on the space Co(RY) into itself, see [39,
Lemma 2.3, Lemma 2.4]
Consider the problem

CDO‘tu —Au=f(t,z), t>0, zeRY,
(0,.73) = UO(x)a T e RNa

where uy € Co(RY) and f € L1((0,T),Co(RYN)). If u is a solution of (2.5)), then by
[39], it satisfies

u(t, z) :Pa(t)uo(xH/O (t— $)°=18u (t — ) (s, 2) ds.

The following lemmas play an important role in obtaining the results of this paper;
their proofs are obtained by combining smoothing effect of the heat semigroup

property (2.2)) with formulas ) and . see [39])
Lemma 2.1. The operator {Pa( )}is0 has the following properties:
(a) If ug > 0,ug #0, then Py(t)uo > 0 and || Po(t)uoll L1 myy = |luollLr@mnys

(2.5)
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(b) Ifp<q<+4oo0andl/r=1/p—1/q, 1/r <2/N, then

g /LD T R
I(1— aN/(2r)) " (®%)

Lemma 2.2. For the operator family {Sq(t)}+>0, we have the following estimates:
(a) Ifup >0 and ug £ 0, then Sy (t)ug > 0 and

| Po.(t)uol| amry < (4mt™)

1
[Sa()uoll 1 @yy = @HUOHLI(RN);

(b) If p<q<+4+oc0 and 1/r=1/p—1/q, 1/r < 4/N, then
r'(1— N/(2r)) o
T(1+a—aN/(2r)) " o@D

Lemma 2.3. Let | > 1, and let the function f(t,x) satisfy

1)l < {

[Sa(t)uo]| Laany < a(4mt®) =5

Ch, 0<t<1,
Cot™@, t>1,
for some positive constants Cy, Cy and «. Then
I £(t, )]l < max{Cy,Co}(1+t)", forall0 < <a andt>0.
Proof. For 0 <t <1, we have || f(¢,)]; < C1 < C12%(1 +¢)™%, so
Pt )l < K1 +)77,

for some positive constant K > 0, and for all 0 < 5 < a.

When ¢t > 1, it follows from || f(¢,-)||; < Cat™® that there is a constant K’ > 0,
such that || f(¢, )|l < K'(14+¢)~%, and so for all 0 < 8 < « and any ¢t > 1, we have

£t < K'Q+1)77, for0<p<a.

Therefore || f(t,-)|l; < max{K, K'}(1+t)7?, forall 0 < 8 < o and t > 0. O

3. MAIN RESULTS

In this section, we state our main result. First, we present the definition of a

mild solution of problem (|1.1))-(1.2).

Definition 3.1. Let (ug,vo) € Co(RY) x Co(RM), 0 < 71,72 < 1, p,q > 1 and
T > 0. We say that (u,v) € C([0,T]; Co(RY) x Co(RY)) a mild solution of system
(1.1)-(L.2) if (u,v) satisfies the integral equations

ult, z) = Py, (tyuo + / (t— 1) 18, (¢ — 1) f(o(r, ) dr,
(3.1)

o(t,z) = Py (t)vo + / (t— 7= S0y (t — T)glu(r, ) dr.

Using the results in [39, Theorem 3.2] and [40, Theorem 3.2], the local solvability
and uniqueness of (|1.1))-(1.2) can be established.

Proposition 3.2 (Existence of a local mild solution). Given ug and vo in Co(RN),
0< 7, v <1,p, qg>1, there exist a mazimal time Ty > 0 and a unique mild
solution (u,v) € C([0, Tmax); Co(RYN) x Co(RN)) to problem (1.1)-(1.2), such that

either

(i) Twmax = 00 (the solution is global), or
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(i) Twax < 0o and lim;_7,,. (|[u(t)|lec + [|[U(t)]|eo) = 00 (the solution blows up
in a finite time).
If, in addition, ug > 0, vo > 0, ug, vo Z 0, then u(t) > 0, v(t) > 0 and
u(t) > Py, (t)ug, v(t) > Py, (t)ve fort € (0, Tmax)-
Moreover, if (ug,vo) € L*(RN) x LY(RN), then for all 51, so € (1,+00), (u,v) €
C([0, Trmax); L** (RY) x L2 (RY)).

Now, we state the first main result of this section concerning the existence of a
global solution and large time behavior of solutions of (1.1)- (L.2).

Theorem 3.3 (Existence of a global mild solution). Let N > 1, let g > p > 1, be
such that pq > 1, let (f(v),g(u)) = (E£|v|P~ v, £|ul9" ), or (£|v|P, £|u|?), and let
O<m<r<L I

(2 =P+ a2 +m

>
- 7 (pg —1)

v | a2

then, for
[[uollx + l[uolloe + llvollx + [[vollee < €0,

with some €9 > 0, there exist s1 > q, s2 > p such that problem (1.1)-(1.2) admits a
global mild solution with

u € L°°(]0,00), L=°(RN)) N L>([0, 00), L** (RM)),
v € L*([0,00), L= (RY)) N L>(]0, 00), L*2(RY)).
Furthermore, for all § > 0,

(1 S By oy, D)

Y2q(p+1)  y(p+1)’ qg+1 2q(p+1)
A=8(~v ) (1-9)( )
lu(®)lls, <O+ 1) 702 Jo(t)l < CE+1) 7T, 20,
If, in addition,
N N
b <1 and a <1,
282 281
or
N > 2 pN/(2s3) < 1 and ¢N/(2s1) > 1,
or
N>2, ¢N/(2s1)>1, pN/(2s2)>1andqg>p>1
with

1 —1
- {pq(zp++ 1)’ pg((fn Ty /P \/Z} Smsnesh
then u,v € L>([0,00), L= (RY)),
lu@®lloc < Ct+1)77, Ju(t)]loo <CE+1)77, 20,
for some constants ¢ > 0 and & > 0.
Definition 3.4 (Weak solution). Let ug,vg € LS (RY), T > 0. We say that

(u,v) € LI((0,T), Lis.(RY)) x LP((0,T), Lis.(R™Y))
is a weak solution of — if

T T T
/ / (|v|pap+ung|1Tap)dxdt:/ / u(—Agp)dmdt—k/ / uDledexdt,
o Jry o Jrw o Jrw
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T T
/ / (Jul? go—i—vth'Tap dxdt:/ / v(—Ayp) dxdt—i—/ / nglr"Tapdxdt,
RN o JrN o JrN

for every ¢ € C’if([o, T] x RY) such that supp, ¢ € RY and ¢(T,-) = 0.

Similar to the proof in [39], we can easily obtain the following lemma asserting
that the mild solution is the weak solution.

Lemma 3.5. Assume ug, vy € Co(RY), and let (u,v) € C([0,T], Co(RY) x Co(RN)
be a mild solution of (L.1)-(L.2)), then (u,v) is a weak solution of (L.I))-(L.2).

Our next result concerns the blowing-up of solutions of (1.1)-(1.2).

Theorem 3.6 (Blow-up of mild solutions). Let N > 1,p>1,¢>1,0 < 7,7 <1,
let (f(’l})7g(u)) = (|,U|p7 |u|q>7 let Ug, Vo € CO(RN)) Uo Z 0; Vo Z 0) uo 5—'& 0 and
Vo 7_é 0. [f

N < mi
— < min
2

{(p% +71) (gn1+72) (pg(yi —72) +gnn+72) (p+ 1)}
Y (pg —1)" 71(pg — 1)’ Y1(pg — 1) " pg—1

N oo { (gn1 +72) (Pr2+m) Pg(v2 —m)+pre+n) (@+1) }

2 Y2(pg — 1) 72(pg — 1)’ Y2(pg — 1) "pg—1

then the mild solution (u,v) of (L.1] ’ blows up in a finite time.
Alsoifp=1land1 <q<1l+ 5, orl<p< l—l-% and ¢ =1, then the solution

blows-up in a finite time.

A result of blowing-up solutions can be obtained via differential inequalities. Let
x(x) = (/ ef\/W dx)ilef\/m, reRVN,
RN

which satisfies

/RN x(z)dz = 1.

In the next theorem, we take f(v) = |[v|P and g(u) = |ul?.

Theorem 3.7. Let y; = 72 = v € (0,1), ug, vo € Co(RY) and ug, vo > 0. Let
p>1,q>1 such that p < q and let (f(v),g(u)) = (|v|?,|ul?). If

Zy = /RN (up(z) + vo(x))x(x)dx > 2%,

then the solution of problem (1.1] . blows-up in a finite time. Moreover, we

have estimate of the time blowmg up tyr < [%F( +1 )]1/7.

The next lemma plays an important role in establishing lower solution for Caputo
fractional differential equation.

Lemma 3.8 ([35, Lemma 3.1]). Let u = u(t) is a solution of the ordinary differ-

ential equation
du

7 = Fw), u(0) = uo, (3:3)
where F' is a function of w such that F(0) > 0, F(u) > 0, Fy,(u) > 0 for u > 0 then
v(t) = u(?) is a lower solution of a Caputo fractional differential equation

CDg,ult) = F(u), u(0) = uo, (3.4)



8 B. AHMAD, A. ALSAEDI, M. BERBICHE, M. KIRANE EJDE-2020/110

where t = That means

e
T'(a+1) "
CD(?\tU(t) < F(v),v(0) < uo.

4. PROOFS OF MAIN RESULTS

Proof of Theorem[3.3. We proceed in three steps.
Step 1: Global existence for (u,v) in L**(RY) x L32(RY). Since ¢ > p > 1, pg > 1,
O<’y1§72<1and
N Ge—mlpgtaetmn s+l —napg—1)
2 = 7i(pg — 1) Y2(pq — 1)

)

we have
Npg—=1) _ 7+l -—mpa—-1) | mla-1)

2q(p +1) Y2(p +1) Y2(p+1)°
Note that, from

N Ge—ypgtaptyn g+l
2 - 7 (pg —1) pg—1’
we obtain
Npg—1) _g+1 (pg—1)  q+1 (pg—1)

X = >1— —— 7
2g(p+1) " pg—1 qp+1) qlp+1) Yoq(p +1)
Npg=1) _ g+1 _(pg—1)
2q(p+1) " qlp+1) q+1

From these facts, we can choose § > 0 such that
-1 -1 -1
maX{l_ (pq ),1_71(;0(1 )’1_(pq )}
Y2q(p +1) Ya(p+ 1) q+1 (4.1)
. N(pq—1)
<d<min<l,——=¢.
2q(p+1)
We set
o Ny(pg—1) ry = N7z (pg — 1)
2[v1(1 4+ 0p) + vzp(1—5)]’ 2[y2(1 4 0q) +71q(1 —98)]
1 2 1 1 2 1
1 _2p+l 1 _20g+1 (4.2)
S1 Npg—1 S9 Npg—1
(=8 +2p) _ (1=9)0O2+mn9)
[ 5 09 — .
pg—1 pg—1
Clearly, we have
12 (1-0)Mm+mrp)  20(p+1)
r1 Nm pg—1 N pg—1~
12 A-960e+me , 20(¢+1)
ra N pg—1 Npg—1°
It is easy to check that s1 > q, so > p, ps1 > S2, @S2 > S1, 81 > 71 > 1, 89 > 19 > 1,
N 1 1 N 1 1 N p 1 N ¢ 1
(= - )g<l, D= - p<l, S(E-)=6==(L -2,
271(741 Sl)q , sz(r2 82)19 : 2(52 81) 2(51 52)

pog < 1, and goy < 1. From

pee =D+ 1+gn _aretyn)—(e-1) ,  (pa—1)
[Py2 +mlq [py2 + g 72¢(p +1)
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we obtain § > % which is equivalent to

N P 1
G > 1.
(71 5 71(82 81) pU2)q
In fact, since § = §(£ — L), the above inequality gives

(M1 =0y — poz)q > —1,
_ (=9 (y2+mq)

using definition of o9 = e we obtain
1-9 +
(% oy 7p( )(72 ’qu))q > 1
pg—1

S0, we obtain

(2 +79)
(1-9) (’Yl *ppqi_l)q > -1

Therefore

—1)y1 — plys +

(1- 5)((pq )1 — (2 'qu})q 5 1
pq—1

By simplification, we obtain

(6 — 1)(w)q > -1,

pq—1
or + +
6(’}’1 p’72) > (’71 1072)q_ 1

pg—1 pqg—1

Thus
pg—1  pglye—1)+gn +1
6>1-— =
(71 4+ pr12)a (71 4+ pr12)q

Similarly, we have

N q 1
— (= =) = > 1.
(72 5 72(81 82) qo1)p

equivalent to § > w.
Y2+971)p
Let (ug,v0) € Co(RY) x Co(RYN) N L™ (RN) x L™2(RY), and let
(u,v) € C([0, Tmax); Co(RY) N L5 (RY)) x C([0, Tiax); Co(RY) N L2 (RY)).

For t € [0, Trax), from (3.1), we have

[u(@lls; < [Py (Buolls, + H/o (t=7) 7185, (t = T)u(n)Pdr|

Slda:] 1/81.

— [Py, (8o, + [/RN ’/Ot(t — S (- ) o(r)Pdr
We have

[/RN ‘/Ot(t—T)Wl—lsvl(t_T)|U(T)|pdT‘sldx} 1/51

< [/RN (\/(;(t — T)71*1|S«{1 (t — 7')|U(7-)|pd7_|>31dm} l/sl.

Using Minkowski’s integral inequality, we obtain

|:/RN (‘/Ot(t_T)’h_HS%(t_T)v(7)|pd7|)51d;§} 1/s1
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</Ot(/RN(t—T)sl(m—lHS%(t_T)|U(T)p|51dx)1/sld7
t -1 e ™"
:/0 e (/]RN S5 (t = T)o(T)[P] dx) dr

:/0 (t = 1) IS, (8 = T)o(n) Pl s dr.

Hence, for ¢ € [0, Tipax), we obtain
t
[u(@)lls; < [Py, (B)uolls, +/0 (t =) 7S5 (= D)o(n)Ps, dr, (4.3)
t
[o(®)lls2 < 1P, (H)volls, +/0 (t = 1) 7|85, (¢ = 7)u(7)| ||, dr- (4.4)
Applying lemmas [2.2] and 2.1 we obtain
Hmwml_nwmnf“*+0/‘ = )BT o) L dr, (45)
[o(®)lls2 < llvollrt ™ +C/O( e - 7)) u(r) |, dr. (46)
By using (4.6) in (4.5, we obtain

t
[u()ls; < lluollr,t™ +C/O (t— )Nt —7) 2 ar

q p
(Mﬂmt@+c/ ) (=) T E R g dr )

Hence

t {_N. (b _ 1y _
HMM&SWMMFW+CA@—ﬂ”12“% 7P gr g ||P,
+C/ A EnE ) e (- ) —eenp (4.7)

Pq
x (7 lum)ls, ) dr.
Multiplying both sides of ([4.7) by t°!, where o1 = Wijfw, we find that
t 1N (21
tﬂmu_wwn+ﬂmﬁ< =) TR TR a2,
t
+ Ot / (t — 7_)’)’1—1—%71(%—ﬁ)T("/z—%Wz(%—i)—qﬂl)p (4.8)
0

o pq
x (" lull, ) dr.

Since 1 — 1 — —71( — i) > —1, and ( - 572(5 - é) - qal)p > —1, we have
7 [ulls,
=Yy (&2 —-L)-
S ||’U,0HT1+CtUI 71 2’71(b2 51) P02H,UO||P (49)
ot MG (e TG -5~ q‘”)p( sup T‘”||U(T)||sl)pq.

o<r<t
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Note that

N (1 1
g1 = — _—— —
! 2717"1 817
N

P 1
g1 +’71*5’Yl(g75) *pO'QZO,

o1 +m - g’h(;% - i) + (72 - g%(% - i) —q01>p= 0,
o1+ — 16+ (12 — 720 — go1)p = 0.
Defining h(t) = supgc,<; 7 |u(7)|ls;, t € [0, Timax), we deduce from that
h(t) < C(lluollr, + l[voll?, + ()" (4.10)
for all t € (0, Tinax). Here C is independent of ¢. Set
A= [uollr, + llvoll?,-

Then, it follows by a continuity argument that for sufficiently small ug and vy such
that A < (2C)T % that

h(t) < 2CA, for all t € [0, Tinax)- (4.11)

Otherwise, there exists tg € (0, Tmax) such that h(tg) > 2C A; by the intermediate
value theorem, since h is continuous and h(0) = 0, there exists t; € (0, o) such that

h(t1) = 2CA. (4.12)
Using (4.12)) in (4.10), we obtain
h(t
h(t1) < C(A+ h(t)P?) = (% + Ch(t)™),
from which, we infer

h(él) < Ch(ty)P, (4.13)

using in , we obtain CA < C(2CA)P1, so
A < (2CA)PT = (2C)P1A4P4]
then it yields (2C)7P4 < AP4~1 which is equivalent to
A > (20)T5

This contradicts the choice of A. It then follows that h(t) remains bounded in all
time ¢ > 0 provided that ||ugl|, and ||vg]|., are small. Therefore

7 u(t)||s, < C, forallt>D0. (4.14)

Similarly, we obtain
t72||v(t)||s, < C, forall ¢ > 0. (4.15)

Step 2: L>-global existence estimates of (u,v) in L= (RY) x L>=(RN). Let s1, 52
be the same as in (4.2)). Since p < ¢, we have
Np _ Ng
252 - 281
We further assume for some & > g, w > p, k; > 0, k2 > 0 that u(t) € LY(RY),
v(t) € LS(RY) and
u)]w < CL+t5),  Jo)]e < C(1+1t*2) for every t € [0, Tnax).  (4.16)
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Then, by applying Lemmas [2.1] and [2.2] again to (3.1]), we obtain

t
[[u(®)lloo < [1P5, (t)uollo +/O (t—7) (T)llgdr, (4.17)
t
_ N~2g
[o()llso < Hpm(t)vollooﬂL/O (t =)= "2 [fu(r)||L.dr, (4.18)
for all ¢ € [0, Tinax). Now, if one can find £ and w such that
Np Nq

then the Lm—estimates of (u,v) can be obtained. In fact, if ]g—ép < 1, in view of

- from (4.17) we have

@) lloo < 1125 ()olloc + € max [[u(r )[[peC =3

(4.20)
< C(l + t(l )71+Pk2)
and by taking w = oo in (4.18)), we obtain
t
[o(t)]loe < [Py, ()volloo +/0 (t = 7) " ()| &dr
t
< [Pz (B)volloo +/ (t =yt (1 g B0 ) g (421)
0
< C(l + t72+[(1—%§)71+pkz]q).
These estimates show that T, = 0o and
u,v € L2 ([0, oo)- L= (RY)). (4.22)

In a similar way, we can deal with the case 51 < 1.

To find such appropriate £ and w, we note that if Nq <lor 52 <1, then (4
and - hold by taking £ = s; or w = sy. This is certalnly the case if N < 2 as
s1 > q and sg > p.

Thus it remains to deal with the case N > 2, ;VT? > 1 and é\%’ > 1. We will do
this via an iterative process. Define s} = s1, s = sa. Since sl > q and 51 > p,
using the Holder inequality and lemmas we obtain from (4.3) and (4.4) that

1

¢ 71717%(%* ) P
[u(®)lsy < 1Py, (B)uolls, +/ (t—7) 4 ()8, dr
0

! y2-1-232 (5 - ) g
[o(®)llsy < ||P72(f)00||sg+/0 (t—7) o u(m)l[, dry
where s5 and s4 are such that

E(ﬁ_i)<17 E(i—i)<1.

2
2 \sf A

This can be verified by taking
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where 0 < 1 < 2(1 — §)/N. Observe that

1 1 2 1 1 2
— e — = Z(1-0)-7>0, ———==(1-6)—n>0, 423
N - L RUEY (4.23)
and hence s, > s} > q and s§ > s/ > p.
Next, we define the sequences {s;};,>1 and {s}};>1 iteratively as follows
1 P 2 1 q 2 )
— = . , — = — — 4, > 3. 4.24
WL Nt g T, TNt e 424
Then
1 I < 1 1 ) _ ( 1 1 )
s NS TP T
1 1 ( 1 1 ) _ ( 1 1 )
A A
Since pg > 1, in view of (4.23)), we obtain
1 1 1 1
o R e 121 (4.25)
Si Sipr S Sip
1 1 1 1
lim (7 - - ) = lim (= — ——) = +o0. (4.26)
i—>+00 S; 8i+1 i——+00 S; Si+1
Now, we ensure that there exists 7o such that
p 2 qg _ 2
— < = —_— < —. 4.27
s SN & s, N (4.27)

20

In fact, if ([4.27) is not true, that is & > 2 and < > 2 for all i > 1.
st N s’ N
Then, by ([#.24)), we sce that s/ > 0, s/ > 0 for all i > 1 and hence, by ([#.25),
K3 3
g<sy<--<si<..., p<si<-ooo<s!l<ooo.

Therefore
1 1

1 2 .
|7_ - ’gf/ — < -<2, foralli>1,
5 Siq1 S S 4

which contradicts (4.26)).
Let ig be the smallest number that satisfies (4.27)). We note that iqg > 2. Without

loss of generality, we assume that

2 2
< Tza frl<i<io-l,
K ' 4.2
952 fpi<i< (4.28)
- - or 1 1
s N =t=10

Thus (4.24) yields

s; >0 for 1 < i <,

which together with (4.25]) leads to
g<--<sj g <sj p<-

Now, from (4.24)), for all i > 2 we have
N( p 1) _q N N( q 1 )
2 \s/ | st/ =5 sy s)

Now, let us deal with the boundedness of (u(t), v(t)) in L% (RN) x L5 (RN).

s >0for1<i<ig+1,

1 1"
C <S5y < Sp41-

%
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By using Lemmas and it follows from (3.1) inductively that, for all
2 <4 < g and for all ¢ € (0, Thax),

i y—1-3 (- 1) »
[u@)ls; < 1Py, (B)uolls; +C/O (t—7) e S ()G dr
(4.29)
< Clluol|s +c/ P ()2, dr,
and
Y2 1+ ( / //)
[o(®)lls < [Py (Bvollsy +C / - EEE T e, ar
(4.30)
t
< Clloolg + € [ (6= 0D
[3 0 i—1
for 2<i<ig+1andt € (0, Tmax)-
From the Holder inequality, we have
5 o
P)1 U < U, U || oo K < 00,
[Py, (B)uolls; < [Juolls; < Sll ol g (4.31)

77 1-=7
1Pz (D)wollsy < Tleollsy < llvollsi [lvollee ™ < oo,

since ug € L** N L™ and vy € L*2 N L. From (4.29), (4.30) and (4.31)) it follows
that

ut) € LHRY),  Ju(®)]ly < COA+t*), 1< Vi<,

" (4.32)
o(t) € LY RY), o)l < CO+%), 1<V¥i<io+1,

for all t € (0, Tmax) and for some positive constants a;, b;. Since < 1, taking

sy = si , (4.19) holds; hence Tiyax = +00 and (4.22)) holds.
Step 3: First, we show the following decay estimates

[u@®)lls, <CE+D)T7 lo(@)lls, < C(E+1)772, for t >0,

25

where s; and s, are given by .

According to Lemma it suffices to prove that ||u(t)||s, < C,||v(#)|ls, < C,
for all ¢t € [0, 1].

To do this, we need to show that

lu@)lloe < C, o)l < C, fortel0,1]. (4.33)
In fact, by applying Lemmas u and - to we see that

o < 1P ()l + S<s — P u(r)|dr
<l + [ (5= /7 () e

o6Vl < 1P (vollc + [ (s = 777 u(r)
<floll + [ 5 = 7 ulr) e,
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for 0 < s <t For 0 <s<t<1, the two inequalities above give

1 P
sup [[u(s)lloo < Jluofloc + = sup_fo(7)lloc)
0<s<t Y1 No<r<t

1

< o oo + =( sup._[Jo(7)]loo)”

Y1 0<r<t

1 q
sup [[o(s) e < Jvolloo + — ( sup Jlu(r)]lc )
0<s<t Y2 No<r<t

1
< lvolles + —( sup [lu(7)lo0)?.
Y2 0<r<

77-7

Using the second inequality into first inequality, it yields that

1 1 a\p
sup.[[u(s) oo < lluoloc + — (Iolloe + = ( sup fu(r)ll)’)
0<s<t ga! Y2 No<r<t

pq
< C(Jluolloe + ol + ( sup Ju(r)le) )
0<r<t

So, arguing as in the first step by setting h(t) = supg<,<; [|u(s)]lco and A = |Jug||oo+
lvo|E,, we obtain o
h(t) < A+ ChPI(t), forallt <1,
which implies (4.33) for A small since pg > 1.
We see from (4.3)) and Lemmas [2.1] . - 2.2 that

[u@ls, < Clluolls, +C/ )" ()P |5, dr,
where s1 given explicitly by (4.2 . Therefore
0l = Clllls, +€ [ ¢ =1 o(r) o ar.
By the interpolation i lit 4 P btai
y the interpolation inequality [[v(7)[[bs, < [lv(7)]]s3 [|v(7)[[oo , we obtain

52
Sdr. (4.34)

p(1—22) [! _
[u@®)|ls, = Clluolls, +C sup [[v(7)llc " /(t—f)“ ()
T€(0,t) 0

Now, using (4.15)) and (4.33)) in (4.34), we obtain

Hmwa<cwﬂﬂ+c/ ot e,
provided that 202 < 1. On the other hand, since sjand s, satisfy
1-9 1-6
51, = ( o ty)s s (=0m+p)s
82 (pq - 1)52 S1 (pq — 1)51

we obtain vy; — %02 > 0 and consequently

lu(®)]ls; < Clluolls, + CHMTH <O, forallte [0,1].
Analogously,
lo(t)]|s, < C for all ¢ € [0,1].
From (£.14), (4.15), (4.33) and Lemma [2.3] we conclude that

(1-8)(v1+p7r2) (1=8)(v2+av1)

[u@®)lls, <CE+1)™ 7T, Ju()[ls, <CE+1)" 77T, (4.35)
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for all t > 0.
Next, we derive L°°-decay estimates. Let
(1 =9)Pr2+mn) _ (1 =0)(gm +2)
01 = , O9 = .
(pg—1) (pg—1)

If 2% <1, by taking £ = s, in ([L.I8) and using ([£.35), we obtain

N ¢ 1-Nn1 p
lu(®)]loo < Ct 2 |ugl|1 + C’/ (t—7)" 2 s T POy (4.36)
0
and
N S+ (1—-06
poy <1, P A mpd + (A = )]
2 s pqg—1
On the other hand, we have
5 1-0 N
AP +pre—-0)  mtpre N (4.37)
pq—1 pq—1 2
Then, it follows from (4.36)), (4.37) and lemma [2.3| that
Ju(t)| oo < CH=3m 4 Cp= T
Thus
(11 +71 P+ (1=8)py]
lu(t)lloe < CO+8) T (4.38)
for all ¢t > 0.

Similarly, if q < 1, then one can find that

[vo+v248+(1—=8)qvq]

lot)]leo < CA+1t)~ pa—T , fort>0. (4.39)

At the same time, (4.38) holds as pN/(2s2) < ¢N/(2s1).
In particular, if pg > ¢ + 2, and v;¢? > 2¢ + 1, we can choose
(pg—1) | mlpg— 1)}
2qp+1) n(p+1)

and ¢ ~ max{l — ,Ygzq;i)l),l — ’W:;Q(];q+1]-) } such that ¢N/(2s1) < 1. Therefore,
estimates and hold.

It is useful to note that N < 2 implies pN/(2s2) < 1 and ¢N/(2s1) < 1 implies
pg > 2+q.
It remains to consider the following two cases:

(1) The case N > 2, éVTZ < 1and éVT‘ll > 1. Let

o =t npd+ (1= 0)pye
pg—1

5>max{1—

For a positive p such that p < min{U’ o1} and gu < 1, since N > 2 and ¢ > 1, we
can choose k > 0 such that k > q2 and qu+ qN’YQ > 7. Since s1 < ¢N/2, we have
k> s1.

Using the interpolation inequality

)|k < ||u(t)||(k751)/k||u(t)||sl/k < Ot~ b=s))/ky=ausi/k - for all ¢ > 0,

it follows from (4.14) and - ) that

lu@®)|lx < Ct™" for all t > 0.
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Whereupon,

[0(®)lloo < (155 v0||OO+C/ 7)1 () | fdr

<t ¥ gl +C / (t— e =B wgr )
0

S C( —7’72 +t72—
<Ct™“,

for all t > 0, where v = min{Z'vo, —y2 + 'Yzq + qu} > 0. From and (£.40),
we infer that

—qu)

lv@)lloo < C(1+¢)~* forallt>0.

We remark that, in the particular case p = 1, ¢ > 3 and ¢*> > max{4y2q+1,
we can choose

4y2+v1 }
Y1 ’

6>max{1— (pg —1) 1771(17‘1*1) li(pQ*l)}
2a(p+1)"" pp+1)] g+ 1
_ (¢—1) (g —1) (g—1)
_max{l 12 1 7 .1 q+1}

and § ~ max{1l — (g_l), 1-— 71(2‘1_1),1 — q 1)} such that N/(2s2) < 1. Therefore,
Y24 V2
we have the estimate (4.38|).
(2) The case: N > 2, gN/(2s1) > 1, pN/(2s2) > 1, ¢ > p > 1, and 71 < 7.
It needs a careful handling and we need to restrict further the choice of §. From

max{pq(pﬂ) pq(p+1) Y2/ D, %} <7y <7 <1 and pg > 1, we obtain

max{lf (pg—1) 1o Vl(qul)@f (qul)}
Y2q(p + 1) Y2(p+1) q+1
. (pg—1) N(pg—1)
<min<1— , .
{ 1pg(p+1)" 29(p+1) }
So, we select § > 0 such that
max{lf (pg—1) , 7%(1%1—1)’ 7(pq—1)}
Y2q(p+1) Ya(p +1) q+1
. (N(pg—1) (pg — 1)
< § < min ,1— )
{ 2q(p+1) %pq(p+1)}

We get immediately pos > 1/¢q and go; > 1/p. Further, we notice that there exist
e €(0,1) and 8 < 1 close to 1 such that
pog—e>1/q, qor—e>1/p, 1/p<f—e, 1/g<f—c. (4.41)

By taking n = 2¢(1 — §)/N, we find the integer i¢ as in the step 2, and, without
loss of generality, we assume that (4.28)) holds. We choose § in addition to (4.41))
satisfying

N .
v < %L + v, since o > 7. (4.42)

1
252‘0
As

Nlpg—1) _ Npg—1)

§<
2p+1)g ~— 2(¢g+1)p
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and # < 1, we have

(p+1)gé N (g+1)pé N
B+-—"" <14+ —, [f+——""<1+ —. 4.43
(b= 1) 2 (b~ 1) 2 (443
For 2 <i <'ig — 1, define rj,; and r},; inductively as follows:
1 1 2 1 1 2
S Spos—e(1-6)], — = — 4 —[qor —e(1—6
Tyt Rm =0 =+l —e(1-9),
1 1 2 1 1 2
=+ [B-e(1-0)], ——=——+=F—c(1-90)].
7"24—1 3;+1 N 7”§/+1 s N

It is clear that r}, v/ > 0 and 7, < s}, r)/ < s/ for all 2 < i < 45. A simple
calculation shows that 7}, )/ > 1. As s, and s/ are increasing in i for 1 < i < ip;
we have

1 1 2

:%_3+3 (1—5)+3[5—€(1—5)]

s N N N
o

from (£.43)); therefore 7/, > 1. Similarly, we can check that r/,, > 1.
From (4. 22) and (4.32]), we see that there exists a positive constant C' such that

[u(®) oo, ||v(t)||oo, [u@ ks 0@k, <C for 0 <t <1, (4.44)
for all s <k < s} , [ < k2 < sj . Furthermore, Slnce 1 —nN/2=1—¢(1-9)

and poy < 1, using , Wlth the help of ( and -, we arrive at

the estimate

lu(®lls, < 1Py, (Dol +c/ PO |y (1), dr

SCt*le(}é HUOHS +C’/( 7)71*1*71(1*5(175))7'7’)02&'

< Ot o= e =)y |, +C/ Fyn=1mn(1=e(1-8) L —paa g

< Ot poea—e(1=9))  for all ¢ > 0.

Similarly,
[o(t)||sy < Ct= @71 ==(1=0) for all t > 0.

In view of and 8 < 1, we conclude, thanks to lemma that
[u(t)|ls, < Ct=E9 lu(t)||sy < CE2P/P for all £ > 0.
An iterative argument gives
lu(®)]ls;, < Ct=nB=20=0) < or=1b/a for all t > 0,
lo(®)llsy < Ct=72(8==1=0) < 01=728/P for all t > 0.

Therefore, by (4.17) and (4.18)), we have

t
Ju®)ll < €t F ol + € [ (¢ -7)
0

Y1—1-m 2§//

o |lo(r )||Is7y0d7
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71 1-m %u

t
<CrPrjul+C [ (=) ey
0

N 1—1 2B —72 8 -
S C(t—7’)’1 +t zsio ) S Ct_a,

where ¢ = min{ & y1, 71 2% — 1 + 128} > 0 from ([{42).
i0

Since é\; 4 > 1, using similar arguments as for the case & < 1 and ﬂ > 1, we
obtain [|[u(t)||sc < Ct=°7 for some o/ > 0 and for every t > O This completes the
proof. O

Remark 4.1. In the particular case N > 2, ¢N/(2s1) > 1,pN/(2s2) > 1,g >p=1
and ¢2 < 4v,¢ + 1, using the above method, we obtain

lu(®)l|oe < CE", >0,

where ¢ = min{ % 571 25,, m—71+7(B8—e(1-9))p}. Here, e > 0 can be arbitrarily
small, and 8 can be arbltrarlly close to 1 However, since s/’ , depends on ¢ and s
is decreasing in ¢, it is not clear that ¢ is positive.

Proof of Theorem [3.6,.

Case: p > 1,q > 1. The proof proceeds by contradiction. Suppose that (u,v) is
a nontrivial solution of (1.1)) which exists globally in time. We make the judicious
choice

|z
olt,2) = 91 (pa(e) = 1 (727) ®! (),
where ® € C§°(R), 0 < ®(z) <1 is such that

1 iffz] <1 (1-4)0 ift<T?
d(z) = ’ t) = T ’
(2) {0 if 2] > 2, e1lt) {0 if 4> T,

where > max{1, £ 1’)’1 — 1, ;5572 — 1}. We denote by Qr» := RY x [0, T*].

From Definition B.4, of the weak solution, we have

[ re@e @i+ 0 [ @@
Q

TA RN

(4.45)
:/ <P2($)UDZ‘1TA<P1(t)dxdt— Aps(z)p1(t)ud dt,
Qrx Qo
[ lutea@er®ded+ 70 [ ga(eyis
Qrx RN
’ (4.46)

“,

Using Hblder S inequality with exponents ¢ and ¢’ (¢ + ¢’ = q¢’), to the right-hand

sides of (| and (4.46] , we obtain

/ uapg(m)Dz‘lTAgol(t)dm dt
Q

T

<,02(:c)uDZ‘2TA p1(t)dx dt — / p1(t)Apa(z)udx dt.
Qra

TA

= / ulr (/2] ()] 757 o1 ()] 7D o1 (t)da it
A

T
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’ ’ 1y 1/q
= (/ D} 1O 1 () /o) O~ dar )

TA1
1/q
X (/ |u|q<,01<,02dxdt) ,
Qrx
and
| use@lerbizd
Qs
‘ —d/ " 1-1)g \ Y
< ([, 18ea@l [pata)| " /1ds [ fea(o] 07 ar)
RN 0
1/q
X (/ |u|qg01<p2dxdt>
Qrx
Setting

’

/ I K _ul (1-LHH)K’ 1/
Al i) = ([ IDGmaer 1 Jor (0] F 2 (@)D" ddt)

T 1

’ K’ _ 1y, 1/x'

B = ([ 8@ o] a0l D i)
T M

and gathering the above estimates, we obtain

\/QT)\

1/q
< Atna.4)( /Q ul71 (t) i dt) (4.47)

X

[o[Pior (£)pa()de dt + TAA-) / wopale)d
R

1/q
+Bad)( [ e ®padodr)
Q

T

Similarly, we obtain

/QTx

< A(wmm’)(/
Qra
L.
1/
SA(/ |u|q<p1<p2dxdt> q,

A
/QTA

1/p
< B(/ |U|p<P1<P2ddet) ,
Q

TA

|92 (z)p1 (t)dtdz + Tr1=72) /N vopa(z)dx
R
(4.48)

Poiondrdt) 1 By Poiondrdt)
[v[Pprpada + B(p,p") ; [v[Pp1padx

T

Consequently,

(0[P o1 (£) o () d dt + CTAI=) / wopa(a)da
R

and

lul?1 (t) o (@)da dt + CTNI=72) / voa () da
RN
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where

A=A, q.4) +Bla.d), B=A(v2p.0)+Bp,p).
Using inequalities (4.47) and (4.48) in the last two inequalities, we obtain

| wPereaa) dedi+ 00 [ unpaords

T RN

1

< ABl/q(/ |v\pg01<p2dxdt>ﬁ,
Q

T

/ 901 (£) o) da dt + CTA1=) / vopa()de
RN

T
< B.Al/p(/ |u]|9p1padx dt) P
Qpa

Now, applying Young’s inequality, we obtain

T)\
(pq—l)/ /R [v[Pa ()1 (t) d:cdltJrCquA“‘”“)/]R uo(z)p2(z)dz
0 N N

< (pg — 1)(ABY7)7°T,

TX
(pq — 1)/ / [u|9pa(x)p1(t) du dt + Cqum*”)/
0 RN

vo ()2 (2)dx
RN

< (pg — 1)(BAYP) 7T

At this stage, using the change of variables, x = T?y, t = T*r, with A > 0 to be
chosen later, we obtain

TA
| [ bre@ead 0 [ g
0 RN RN

1/q
< C<T7>\71+(>\+2N)§ I T74+()‘+2N)71') (/ lu| %1 (&) p2 () da dt)

T

1/
SCT#MHAHM%(/ \u|qg01¢2dxdt> e

Qra

Analogously, we have

TA
| [ ulese@dedr+ om0 [ sy
0 RN RN
<C<T7’W2+(’\+2N)i +T74+(>\+2N)§)(/

1/p
|v]Pp1pade dt)
Qo

_ oMt (2N (/

1/p
|v]Pp1padr dt)
Qo

Choosing 71 A = 4, we have

T)\
| [ re@enodzdr: 0 [ ugpa(es
0 RN

RN
< C(T—i~,2+(,\+21v)§%—4+(A+QN)$ +T—4%+(,\+2N)ﬁ—4+(%+21v)$)

a1 Y1
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1
X (/ |v|p<p1¢2dxdt) "
Q

T
and

T)\
/ / |u|q‘:02(m)<ﬂ1(t)d9:dt+CTA(lfﬂfz)/
0 RN

R
1/p
< C<T7>\72+()\+2N)ﬁ + T74+()\+2N)ﬁ> (/ |U|P<p1<p2dx dt)
A

T

voa(z)dx
N

o (Tt O+2N) 5 +T—4+(A+2N)§)T—4%+(%+2N)ﬁ

(/ |u|%p1pada dt)ﬁ
Qrax

<o
X
_ OGN GGy | G e )

pq’ +
< ( / ul%or (t) e dt) ™
Q

T

Therefore, using the e-Young inequality, we obtain

/ uo(2) s (z)dz < CT*, (4.49)
RN
/ vo(z)p2(z)dx < CT®2, (4.50)
RN
where
11 4 1. pq 4
6y =maxq(——2+ (— +2N)== —4+ (— +2N)= — (1 — 1),
! ot )Y o g1 T
4 1 4 1. pq 4
4=+ (— + — — 4+ (—+2N)= +—(m =17y,
( q (71 )p’ (71 )q’)pq 1 71(71 )}
and
4 4 1 1 4 1. pg
§o =max<{(——vs + (— +2N)= —4= + (— +2N)— + — (2 — 1),
2 {( 7172 (71 )p’ D (71 )pq’)pq—l 7 (2 -1
4 1 1 4 1. pg 4
—44(—+2N)= —4= 4 (— +2N)— + —(p-1)t.
( (71 )p’ D (71 )pq’)pq—l 71(72 )}

The condition (3.2)) leads to either d; < 0 or d3 < 0. Then as T' — oo, the right-
hand side of (resp. (4.50)) tends to zero while the left-hand side tends to
S~ uo(z)dz >0 (resp. [pn vo(x)dz > 0); a contradiction.

We repeat the same argument for y2A = 4 to conclude the proof of Theorem [3.6]

Case p=1,q > 1 (the case p > 1,¢q = 1 is treated similarly). We still use the weak
formulation of the solution and argue by contradiction. Let us set

T T 1/q
I:/ /vgodxdt, J = (/ /uqapdxdt) .
0 Jo 0 JQ

Then, applying Holder’s inequality as above, we obtain

T
T+ / / uoDzllTap dedt < J(A+ B), (4.51)
0o Jo
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/ 1/q
/ / -7 |A<p|q da:dt q, = / / |DZ|1T<p|q d:cdt) ! ;
T+ / /U() DZ‘ITgodxdt< )\/ /vgodxdt—i—/ /vDZl'”’Tgodxdt (4.52)

<(\+¢e)I

where

thanks to the e-Young inequality and where we have chosen ¢ as a the first eigen-
function of the spectral problem

—Ap =Ap,z € Br(0), ¢,, =0,

where (2 = Br(0) C RY is the ball centered in zero and of radius 7' and 99 is the
boundary of Q). Adding equation (4.52) to (A+¢) times equation (4.51)), we obtain

T
T+ A+e) / /uODtldexdt—&—/ /voszTapd:vdtg()\—i—e)j(A—i-B),
0o Ja

whereupon,

TN <A+B.
Replacing () by ¢(F) and passing to the new variables y = T 'z and 7 =T ¢,
and then letting 7' go to infinity, we obtain a contradiction whenever ¢ < 1+ % O

Proof of Theorem [3.7 Let ug,vo € Co(RY) be nonnegative and (u, v) be the corre-
sponding solution of —. We proceed by contradiction. Assume that (u,v)
exists globally in time, that is (u,v) exists in (0, t.(ug,vo)), for all t.(ug,ve) > 0.
Let T € (0, t«(uo, vo)) be arbitrarily fixed.

Taking y as test-function and setting

X(t) = /]RN u(t,x)x(x)dzx, Y(t):= /]RN u(t, z)x(z)dx
Z(t) = /Qx(u(t,x) +o(t,x))dx, Zy= /]RN (up + vo)x () dx.
It follows from — that
CDgu /]RN u(t, z)x(x)dx — /]RN ulAx(z)de = /RN [, z)|Px(x)dz, t € (0,T),

CDOW‘t/RN v(t,z)x(x)dx — /RN vAx(x)dr = /RN lu(t, z)|"x(z)dz, t € (0,T),

(4.53)
supplemented with the initial conditions

X(0) = /]RN ug(z)x(z)dz, Y(0)= /]RN vo(z)x(z)dx. (4.54)
From —, we have
D”/

312 = Zal)(0) ~ [ (ult,z) + olt, ) Ax()do
RY (4.55)

= /RN(|U(t,x)|p + |u(t, )| x(z)dz, te(0,T).
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We observe that
/ vz, t)x(z)dx = / v(x, t)x% (ac)xl_%(ac) dx.
RN RN

Since the function x satisfies fRN x(z) dx = 1, then it yields by Hélder’s inequality
that "
P
[ vox@de < ([ o olx o)
RN RN
So
P

[ ewipx@dez ([ o dn)’ =vre. s

RN RN

Similarly, we obtain
q
[ i@ ae > ([ i)’ =xow. @y
RN RN
Using estimates (4.56), (4.57) in (4.55) and the fact that the funtion y satisfies
Ax > —x, it yields
Dg‘t([Z —Zo)) + Z(t) > YP(t)+ X9(¢), te(0,T). (4.58)
By adding Z(t) to the two members of (4.58)), we obtain
Do (12 (1) = Zol) +22(1) = YP(1) + X(t) + X () + Y (#)
>YP(t)+ X9(t) + X(t).
We assume that ¢ > p, by using the fact that X(¢) + X (¢) > XP(¢) and
(a+b)" <2 a"+b"), a,b>0,r>1,

we obtain

D’Y

o ([Z(t) = Zo]) +2Z(t) > 21 7P Z(1)". (4.59)

We put F(y) = 2'7Py? — 2y, the function F is convex on (0,00) (since F €
C?(0,4c0), F”" > 0).

Writing 9y(k * [Z — Zo])(t) instead of Dglt
(4.59), we obtain

([Z(t) = Zo]) with k(1) = pf=; in

Bu(k +[Z — Zo])(t) > F(Z(t)), te (0,T). (4.60)

It is clear that F(y) > 0 and F'(y) > 0 for all y > 25°T 1= qy.
Suppose now that Zy > «1. We claim that (4.60) implies that Z(t) > aq for all
t € (0,T7). In fact, for Z(0) = Zy > a3, we have by continuity of Z, there exists
0 € (0,T] such that Z(t) > «y for all t € (0,0). This implies that F'(Z(t)) > 0 for
all t € (0,0).
By the comparison principle, it follows that Z(t) > Z; for all t € (0,6). Setting
01 :=sup{s € (0,T): Z(t) > Zy t € (0,5)},
then §; > 0. We want to show that §; = T. 3
Indeed, if §; < T, then by setting s =t — 6y for t € (61,7) and Z(s) = Z(s+ 1),
s € (0,T — &1), it follows from positivity of Z — Zy on (0,61) and k being non-
increasing that
Os(k % [Z — Zo))(s) > 0y(k % [Z — Zo|) (s + 61), se€ (0, —6,). (4.61)

From (4.60) and (4.61)) we deduce that
Os(k % [Z — Zo))(s) > F(Z(s)), se (0,T—6y).
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This time-shifting property can be already found in [34]. So we may repeat the
argument from above to see that there exists & € (0,7 — &;] such that Z(s) > Zy
for all s € (0,8). This leads to a contradiction with the definition of d;.

Hence, the assumption §; < T" was not true. This proves the claim. Knowing
that Z(t) > Zy > ay for all t € (0,T) it follows from that

OD},Z(t) = Ok [Z — Zo))(t) > F(Z()) >0, forallte (0,T).  (4.62)

Therefore the function Z(t) satisfying (4.62)) is an upper solution of the problem

CD’Y

Ly =F) =2 — 2y, y(0) = 2, (4.63)

we have by comparison principle Z(t) > y(t) (see [I5, Theorem 2.3],[16, Theorem
4.10.)).
On the other hand, since F(0) > 0, F(y) > 0 and F'(y) > 0, for all y > Zy >

27°1. It then follows from Lemma that v(t) = w(l“('iill)) is a lower solution

for (4.63) (which means

CDgltv < F(v) =27PoP — 20, v(0) = Zy < Zy),

where w(t) solves the ordinary differential equation
dw
dt
By the comparison principle (see [I5, Theorem 2.3],[16, Theorem 4.10.]), we obtain
y(t) > v(t). So, by solving the Cauchy problem (4.64)), which is equivalent to

= F(w) = 2" Pw? — 2w, w(0) = Z,. (4.64)

%(emw) = 217P2(=PIt(26)P | p(0) = Z(0),

in which the explicit blow-up solution is

e2(-p)t _q I
w(t) = (g + 2 e

_ 1-p
which blows up in finite time ¢,, = %. By the comparison principle (see

[15, Theorem 2.3],[16, Theorem 4.10.]), we conclude that

Y (62(1—11)“;11) -1

1
1-p\T-p —2_tT _

— + ZO ) e “Th+D
2p

ﬂwzmeNﬂ:w%w+U

which in turn leads to Z(¢) blows-up in finite time at #,, < [%F(W—i— D).

Thus the same holds for the solution (u,v) of (1.1)-(1.2]), which in turn leads to a
contradiction. O

Remark 4.2. Similar results were obtained in [40, Theorem 3.5] using another
method, while the authors did not address the estimation of the time blow up.
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