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SUB-SUPER SOLUTION METHOD FOR NONLOCAL SYSTEMS
INVOLVING THE p(z)-LAPLACIAN OPERATOR

GELSON C. G. DOS SANTOS, GIOVANY M. FIGUEIREDO, LEANDRO S. TAVARES

ABSTRACT. In this article we study the existence of solutions for nonlocal
systems involving the p(z)-Laplacian operator. The approach is based on a
new sub-super solution method.

1. INTRODUCTION

In this work we are interested in the nonlocal system

— A, 0] 1) Ay oy = Fr(@, u,0) Ul 5 + g1 (@, w,0) o] A7), in
—A@, [l o) Apy 0 = fol@,u,0)|ul25)) + go(ar,u,0)[u2)) i,  (L1)

u=v=0 on J,

where (2 is a bounded domain in RY(N > 1) with C? boundary, | - |1m (s is the
norm of the space L™*) (), —Apyu 1= — div(|Vu[P(*)=2V4) is the p(x)-Laplacian
operator, 7, Di, i, Si, @, v : & — [0,00),i = 1,2 are measurable functions and
A, f1, f2,91,92 : 2 x R = R are continuous functions satisfying certain conditions.

In the previous decades there have been several works related to the p and p(x)
Laplacian operator; see for example [T1, 14, 91 [12] 25| 26], 27 28] 29| [34] 35} [38], [39] and
the references therein. Partial differential equations involving the p(z)-Laplacian
arise in several areas of Science and Technology such as nonlinear elasticity, fluid
mechanics, non-Newtonian fluids and image processing. Regarding the mentioned
applications we point out [I} [14] [36] 4T, 42].

The nonlocal term | - |pm) with the condition p(z) = r(x) = 2 was considered
in the well known Carrier’s equation

pugs — a(z, b, |ul32)Au =0

which models the vibrations of a elastic string under certain contidions. See [I1] for
more details. We also quote the applicability of such nonlocal term in Population
Dynamics, see [15, [I7]. Several works related to in the p-Laplacian case, that
is, with p(z) = p (a constant) can be found, see [10} [13] 19} 20, 23, 43] and the
references provided in such manuscripts. For example Corréa & Lopes [20] studied
the system

—Au™ = alv|§, in Q,
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—Av" = b|u|§q in Qu=v=0 on 99,

and in [I3] a related system was considered using the Galerkin method.
In [19] the authors used a theorem due to Rabinowitz [40] to study the problem
—Apu=|v|7i, inQ,
—A,,v=ul72, inQ,
u=v=0 on J.

The system
Az, [v|pr @) Au = fi(z, )‘Uﬁ;lgfz) + g1(z, u,v)|v 21(192) in Q,
A, i) A = falou DD, + ga(au D 0 0,

u=v=0 on 09,

where A : Q x R — R is a function satisfying some conditions, was considered in
[43]. The approach in such paper consists in use an abstract result involving sub
and supersolutions, whose proof is based on the Schaefer’s fixed point theorem.
Specifically, it was considered a sublinear system, a concave-convex problem and a
system of logistic equations.

The scalar version of ,

7@ inQ

A, [u] 1o ) A p(ayu = f @, w)ul 22 + g, u)|u

’ 1.2
u=0 on 09, (1.2)

was considered in [44]. The authors obtained an abstract result involving sub and
super solutions for that generalizes [43, Theorem 1]. As an application of such
result the authors generalized for the p(x)-Laplacian operator the three applications
of [43} Theorem 1].

The goal of this work is to prove [43, Theorem 2| for the p(x)-Laplacian operator
and use it in three applications of the mentioned paper. Thus, we provide a gener-
alization of [43] with respect to systems with variable exponents. Next we describe
the main differences and difficulties of this work when compared with [43].

(i) The homogeneity of the Laplacian operator (—A, H}(£2)) and the eigenfunc-
tion associated to the first eigenvalue were used in [43] for constructing a subso-
lution. Differently from the p-Laplacian (p(x) = p constant) the p(x)-Lapalcian
is not homogeneous. Besides that, it can occurs that the first eigenvalue and the
first eigenfunction of the p(x)-Laplacian operator (—A, ), Wg’p(w) (€2)) do not exist.
Even if the first eigenvalue and the associated eigenfunction exist the homogeneity,
in general, does not allows to use the first eigenfunction to construct a subsolution.
In order to avoid such difficulties we explore some arguments of [44].

(i) Some arguments of [43] were improved and weaker conditions on 4, g;, S;, o,
vi,© = 1,2 are considered here.

(iii) We generalize [43] Theorem 2] and as an application it is considered some
nonlocal problems that generalizes the three systems studied in [43].

(iv) As in [43] Theorem 2] and differently from several works that consider the
nonlocal term A(z, |u|;r=)) satisfying A(z,t) > ag > 0 (where ag is a constant),
Theorem permits us to study in the mentioned case and in situations
where A(z,0) = 0.
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(v) The abstract result involving sub and super solutions is proved by using a
different argument. It is used a theorem due to Rabinowitz that can be found in
[40] and some arguments of [43] are improved.

In this work we assume that r;, p;, ¢;, S;, @, y; satisfy

(H1) p; € CHQ), 74,4, 8 € L (€2), where
LY(Q) = {m € L>(Q) withessinf m(z) > 1}
and for i = 1,2, ay,y; € L>=(Q) and satisfy
l<p;:= ir(llfpi(x) <pi:i= stéppi(x) <N, «;(z),v(z) >0 aein.

Some definitions are needed to present the main results. We say that the pair
(u1,usg) is a weak solution of (1.1)), if u; € W(]l’pi(x)(Q) N L*>(€) and
<f¢(x,u1w2)luj'liiﬁfﬁ> gi(, u1, ug)|u;

‘vu pi(z)72vuivw — / Lsi(z) )@7
/Q ' Az, [uj|prie) Az, [uj|pric)

Q
for all ¢ € Wg’pi(m)(ﬂ) and 7 # j with 4,5 = 1,2. Given u,v € S(Q) we write u < v
if u(z) <wv(z) ae. in Q. If u < v we define

[u,v] == {w € () : u(z) < w(z) <v(z) ae. in Q}.

vi (@)

To simplify the next definition we denote
ﬁ(w,t,8)2f1($,t,8), §I(x7t7s):gl(x?tas)a
f’;(IIZ,t,S) :fg(l',s,t), §2(x,t,s) :92(x737t)‘
We say that the pairs (u;,%;),7 = 1,2 are a sub-super solutions for (1.1)) if u, €
WP Q) N Lo (Q), w; € WhPi@)(Q) 0 L®(Q) with u, < 7;, u; = 0 < U; on O
and for all ¢ € WO1 P "(I)(Q) with ¢ > 0 the following inequalities hold
a;(x)

i\, Ui, W) U i (x Ji Ty Uy, W) U5 |7 (2
/|v@i|pi(w)—2vgivw§/ (fz( W) Gl 1,ai(2) 9i(@, u;, w)| Gl ss ))@7
Q2 Q A(I, |w‘LT1‘(m)) A(I, |w\Lri(m))

vi(x)

(m,m, )yt | Gl w) g, o
Al [0l ) Al [l ) )9
(1.3)
for all w € [u;u;] where 7, j = 1,2 with i # j. Our main result reads as follows.

vi(x)

|V P2 Ve > /
0

Q

Theorem 1.1. Suppose that r;,pi,qi,Si,; and ~; satisfy (H1), that (u;,@;) is
a sub-super solution for with u;, > 0 a.e. in Q, that fi(z,t,s),g:(x,t,s) >
0 in Q x [0,[u1]r~] % [0, |U2|L=] and that A : Q x (0,00) — R is a continuous
function with A(z,t) > 0 in Q x [g, E], where g := min {@\Lm(z),i = 1,2}, T =
max {[0| ;.7 = 1,2}, w := min{y;,i = 1,2} and @ := max{%;,i = 1,2}. Then
has a weak positive solution (uq,usz) with u; € [u;, ), 1 = 1,2.

2. PRELIMINARIES

In this section, we present some facts regarding the spaces LP(*)(Q), W) ()
and Wy "™ (Q) that will be often used in this work. For more details see Fan-Zhang
[27] and the references therein.
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Let Q@ ¢ RY (N > 1) be a bounded domain. Given p € LY (Q2), we define the
generalized Lebesgue space

LP@(Q ={ues / Ju(z)|P® dx < oo},
where S(2) := {u : @ — R : u is measurable}. Then LP(®)(Q) is a Banach space
with the norm
[ulp(z) :==inf {A >0 / | —= |p(’”)d <1}.
Given m € L (), we define
m?T := esssup, m(z), m~ := essinfqm(x).
Proposition 2.1. Let p(u) := [, |ulP@dx. Then for u,u, € LP™*)(Q), andn € N,

the following assertions hold

(1) Let u # 0 in LP@)(Q), then |ulppw) = A < p(%) =1.

(i) If [ul o < 1 (=1, > 1), then plu) <1 (= 1, > 1).

+

(ili) If [ulppe > 1, then \UILP(m < plu) < |U|§p<z>-

(iv) If |u|pp@) < 1, then ‘U|Lr(w> < plu) < |u|1£p(z).

(V) Nun|re@ = 0 p(un) = 0, and |uy|ppe — 00 < p(uy) — 0.
Theorem 2.2. Let p,q € L"O(Q). Then the following statements hold

(i) Ifp~ > 1 and w) + p(w) =1 a.e. in §, then

1 1
|/qud:c| S (pi + qi)‘u|Lp(m)‘U|Lq(m).

(i) If q(z) < p(x) a.e. in Q and |Q| < oo, then LP®)(Q) — LI@)(Q).

We define the generalized Sobolev space as

0

WP (Q) = {u e LP@(Q) : a—“ e L’™)(Q),j=1,...,N}
Lj

with the norm
N ou
lulle = luloer + 3 5= oo -
j=1 "

The space VVO1 P (‘T)(Q) is defined as the closure of C§°(€2) with respect to the norm
-1l

Theorem 2.3. If p~ > 1, then W'?®)(Q) is a Banach, separable and reflezive
space.

Proposition 2.4. Let Q C RN be a bounded domain and p,q € C(Q). Define
the function p*(x) = J\],Vpp(x) if p(x) < N and p*(x) = oo if N > p(z). Then the
following statements hold.
(i) (Poincaré inequality) If p~ > 1, then there is a constant C > 0 such that
[l Lo < CIVuUl Lo for all w e Wy "™ (Q).
(ii)) Ifp~,q~ > 1 and q(z) < p*(x) for all x € ), then the embedding
WLP@)(Q) < LI®)(Q) is continuous and compact.
From (i) of Proposition we have that ||u|l := |Vu|pse defines a norm in
VVol’p(x)(Q) which is equivalent to the norm || - ||..
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Definition 2.5. For u,v € W'?(®)(Q), we say that —Apayu < =Apv, if
/ IVul[P®)~2vuVp < / IVo[P@ =27 uVp,
Q Q

for all p € Wol’p(z)(Q) with ¢ > 0.
The following result appears in [29, Lemma 2.2] and [26, Proposition 2.3].

Proposition 2.6. Let u,v € Wl’p(””)(Q). If =Apyu < =Apyv and u < v on

0Q, (ie, (u—v)t € Wol’p(x)(Q)) thenu < v in Q. Ifu,v € C(Q) and S = {z €

Q:u(z) =v(z)} is a compact set of 2, then S = 0.

Lemma 2.7 ([26l Lemma 2.1]). Let A > 0 be the unique solution of the problem
—AP(I)Z)\ =\ in Q,

u=0 on 9. (2.1)

— 1 1
Define py = 2|Q]\lc If XN > po then |za|pe < C*Ar~=1, and |zx|pe < CudrT-1
N Co

if A < po. Here C* and C, are positive constants depending only on p*,p~, N, |9
and Cy, where Cy is the best constant of the embedding Wy (€2) < L%(Q)

Regarding the function z, of the previous result, it follows from [25, Theorem
1.2] and [29, Theorem 1] that zy € C1(Q2) with 25 > 0 in Q. The proof of Theorem
[I.] is mainly based on the following result by Rabinowitz:

Theorem 2.8 (J40]). Let E be a Banach space and ® : RT™ x E — E a compact
map such that ®(0,u) =0 for all w € E. Then the equation

u=®(\u)
possesses an unbounded continuum C C RT x E of solutions with (0,0) € C.

We point out that a mapping ® : E — F is compact if it is continuous and for

each bounded subset U C E, the set ®(U) is compact.

3. PROOF OF MAIN RESULTS

Proof of Theorem[I1. For i = 1,2 consider the operators T; : LP:(*)(Q) — L*°(Q)
defined by

w;(z), if 2(z) < u,(2),

Tix@) = { 2(e), i ue) < 2(2) < W),

w;(x), if z(x) > u(x).
Since T;z € [u;, ;] and u;,u; € L®(Q) it follows that the operators T; are well-
defined.

We define p)(z) = p;(z)/(pi(z) — 1) and consider the operators H; : [u;, U] x

[y, Ta] — LP:(®)(Q) given by

“@ gilw,un (@), us(@))]u

Az, [ug]pri) Az, [ug|prie)

vi()
Lsi(z)

H;(uy,u2)(z) = filw, un (), ua () |u;

where i # j with i, = 1,2, and | - | ,m() denotes the norm of the space L™®) ().
We consider in the space LP*(*)(Q) x LP2(*)(Q) with the norm

[(w,v)]12 = Ul ppr @) + [V]Lpaco -
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Since f;, gi, A are continuous functions, A(z,t) > 0 in the compact set Q x [g, 7],

T;z; € [u;,u;] for all z; € Lp’?(r)(Q), u,;, u; € L>®(Q), and |w|i(,f?m < |w ijn(m) +
\wﬁtn(z) for all w € L™®)(Q) with § € L>°(Q), it follows that there are constants

K; > 0 such that

|H1'(T121,T222)| S Kz (31)
for all (21, 20) € LP(®)(Q) x LP2(®)(Q).
By the Lebesgue Dominated Convergence Theorem, the mappings (z1,22) —
H(Ty 21, Tyzs) are continuous from LP1(®)(Q) x LP2(®)(Q) in LFi@)(Q), i = 1,2.
From [27, Theorem 4.1] the operator ® : R x LP1(#)(Q) x LP2(*)(Q) — LP1(®)(Q)x
Lr2(®)(Q) given by
q)()‘a 21, Z?) = (uh u2)7
where (uy,us) € Wol’pl(x)(Q) X Wol’pg(m)(Q) is the unique solution of
Apl(m)ul = )\Hl(lel,TQZQ) in Q7
Ap2(1)u2 = )\Hg(lel,TQZQ) in Q, (32)
u=v=0 on 99,

is well-defined.
Claim 1: @ is compact. Let (\,,z} 22) € Rt x LP1@®)(Q) x LP2(®)(Q) be a

bounded sequence and consider (ul,u?) = ®(\,, z},22). The definition of ® imply
that

/|Vufl|p"($)_2VunV<p:)\n/HZ-(le}l,ng?l)go, Yo € W()l’pi(r)(ﬂ),
Q Q

where 4, j = 1,2 blue with ¢ # j. _
Considering the test function ¢ = u?, the boundness of (A,) and inequality (3.1)),

we obtain
v <3 [ gl
Q Q

for all n € N. Here ) is a constant that does not depend on n € N.
Since p; > 1, the embedding LPi(®)(Q) < L'(2) holds. Combining such em-
bedding with the Poincaré inequality we obtain

/ Vi
Q

for all n € N. Suppose that |Vu!|; .. > 1. Thus by Proposition we have
|lut ||~ < CK; for all n € N where C is a constant that does not depend on
n. Then we conclude that (uf) is bounded in W, " i(®) (). The reflexivity of
Wy ") (Q) and the compact embedding Wo*")(Q) — LP+@)(Q) provides the

result.

pi () < C’KzHUZH»

Claim 2: ® is continuous. Consider a sequence (\,, 2}, 22) in Rt x LP1(®)(Q) x
LP2(®)(Q) converging to (), 21, 22) in Rt x LP1(*)(Q) x LP2(#)(Q). Define (ul,u?) =

D\, 2L, 22) and (ul,u?) = ®(\, 21, 2?). Using the definition of ® we obtain

ny~ni~n
| v
/\Vui
Q

Pi@) =27yl Vo = /\n/ Hi(Ty2), To22)e, (3.3)
Q

pi(x)72vuivg0 = )\/ Hi(lel,TQZQ)SO (34)
Q
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for all ¢ € WP (Q) where i j = 1 2 and i 7£j
Considering ¢ = (ul, —u?) in and and subtracting (3.4) from (3.3]) we

obtain
[ (v,
Q

- / /\nH(le}I,Tzzi)(uﬁl —u') —/ )\H(lel,ngQ)](u; —ut).
Q Q

P@-2yyi vy

Pi@)=2gyt Y (ul — ul)>

Using Holder’s inequality we have

[ (v

< up, = 0|, @) A Hi(Th 23, Tozh) — NH(T1 2", T22”) | )

PO =2gyl — VP 20, V(- )|

n

and H;(TyzL Th22) — Hy(Ty2", Tpz2) in LPi(®)(Q) for i = 1,2 we have

The arguments above ensures that (u’,) is bounded in W, ” @) (). Since A, — A

| / (|Vul, [P =20l — Va2l v (ul, — )| — 0.
Q

Therefore u!, — v’ in LP#(*)(Q) for i = 1,2 which proves the continuity of ®.

Combining the fact that ®(0, 21, 29) = (0,0,0) for all (21, 29) € LP*®)(Q) x
LP2(®)(Q) with the previous claims we have by Theorem that the equation
®(\,u,v) = (u,v) possesses an unbounded continuum C C RT x LP1(*)(Q) x
LP2(*)(Q) of solutions with (0,0,0) € C.

Claim 3: C is bounded with respect to the parameter A\. Suppose that
there exists A\* > 0 such that A < A\* for all (A, u',u?) € C. For (\,u',u?) € C the
definition of ® imply that

—Ay (@yu1 = AH (Thuy, Toug)  in Q,
,Apz(x)UQ = /\HQ(Tlul,TQUQ) in Q, (35)

u; =us =0 on 0.

Using the test function u; in (3.5)) and considering (3.1)) we obtain
/ |V [P < XN Clug| oo -
Q

Suppose that |Vu;|p) > 1. Then using Proposition and the Poincaré inequal-
ity we obtain that

|u;

*
Lp(z)—/\C

Thus C is bounded in Rt x LP1(*)(Q) x LP2(*)(Q), which is a contradiction.
Considering A = 1, by (3.5) we have

(@, Thur, Toug) | Thu 7
/ |Vu; pi(w)72VuiV§0 :/ (f( i1, Tyt ]|Lq1( )90
Q Q Az, [Tjuj|pri))

/ (gz(x s Tiua, Toug) | Tu, Ls o )
2
0 Az, | Tyuslprie)

(3.6)

for all p € WP (Q) where i,j = 1,2 with i # .
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Now we claim that u; € [u;,%;] for i = 1,2. To prove the claim we define
Li(uy —ur)y = / IV, [P 2V — [Vug [P 2V, V(uy — u)).
{u,>u1}
Using the facts that Tous € [uy,Ua|, u;(x) > 0 a.e. in Q, ¢ = 1,j = 2, considering

w = Tous and ¢ = (u; — u1)+ in the first inequality of (1.3) and combining with
equation ([3.6)) we obtain

Fr(, g, Tyuz) (Jup |26 — [ Tyua| 9260
I w — u S/ La1 La1 U —u
g =)+ {u,>u1} Az, |Toug|pr ) (=)
- (w1, Toun) (sl 50 = Toal )
(>} Az, [Tous|pri) o 7

which implies that
/ (|Vu, [Pr =2V — [V [P 72V 0y, V(uy — ug)) < 0.
{u;>u1}

Therefore u; < uj. The same reasoning imply the other inequalities. Since wu; €
[u;, @;], we have T;u; = u;. Therefore the pair (u1,uz) is a weak positive solution

of (5). O

4. APPLICATIONS
In this section we apply Theorem to some nonlocal problems.

4.1. A sublinear problem: In this section, we use Theorem [I.]] to study the
nonlocal problem

Az, |U|Lr1(w>)Ap1(m)u = (uﬁl(x) + v%(x))\v\z;ffz) in 2,

— A, [ul o) Ay o = (W2 @) 4 072@) 220 i (4.1)
u=v=0 on Jf).

This problem with p;(z) = p1(2) = 2, was considered in [43]. The result in this
section generalizes [43, Theorem 6].

Theorem 4.1. Suppose that p;, qi, i, si,1 = 1,2 satisfy (H1) and «;, B; € L (),
i =1,2. Assume also that

a+ ﬁJr
0<af +9 <p; -1, 0< —— 4+ L _ <1,
ps —1 py—1
+ 4 at o ag By
0<ay; +7 <p; =1, 0< + <1

pr—1 py—1
fori=1,2. Let ag > 0 be a positive constant. Suppose that one of the following
two sets of conditions holds
A(x,t) >ag in Q x [0,00), (4.2)
or B
0< Ax,t) <ag inQx(0,00) and
lim A(x,t) = aco >0 uniformly in Q.

t—+oo

Then (4.1) has a positive solution.

(4.3)
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Proof. Suppose that (4.2]) holds. We will start by constructing (7, 7). Let A > O be a
positive number, which will be chosen later and denote by 2z € Wol’pl(w) (Q)NL> ()

and yy € Wol’m(x)(ﬂ) N L>°(§2) the unique solutions of (2.1)) respectively.
For A > 0 sufficiently large it follows from Lemma that there is a constant
K > 1 that does not depend on A such that

1

0<zy(z) <KAP~' in Q, (4.4)

1

0 <ya(z) < KAr2~' in . (4.5)

Since af + v < p; — 1 and

that , and

P + pﬁl < 1, it is possible to choose A > 1 such
-

1 Lo al* af +of - )
— (KPP \p -t pe - LK) pa ) max{| K|S, [ K|S} <A (4.6)

ao
hold. By (4.4)), (4.5) and (4.6]), we obtain

1 1 xT 1
%uf@+mm<mwu£&sxwemww

Thus for w € [0,y,] we obtain

1

x7|w|L7‘1(m))
zx =0 on 90.

—-A

)

(3 4w @)y

pi(z)Zx = Al Lai(@)

Considering, if necessary, a larger A > 0, the previous reasoning imply that

(2@ 4y 12@) 2,020 in Q

_A x Z
P2@Y = A (@, W] praor)

yx =0 on 09,

for all w € [0, z,].

Now we construct (u;,v;),4 = 1,2. Since 9Q is C?, there is a constant § > 0
such that d € C?(Q35) and |Vd(z)| = 1, where d(x) := dist(x,08) and Qa; := {x €
Q;d(r) < 36}. From [34, Page 12], we have that, for o € (0,6) sufficiently small,
the function ¢; = ¢;(k, o), i = 1,2 defined by

kd(z) _ if d(z) <o
2
$i(x) = { k7 — 14 [1O) peho (20=L) el —1dt it o < d(x) < 2,
2
1 [P e (2= rdt i 26 < d(x),

belongs to C3(Q), where k > 0 is an arbitrary number and that
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—k(kper @@= [(p,(x) — 1) + (d(x) + 212 Vp, () Vd(z) + 242
ifd(z) <o
{ 1 2(pi£w)—l) . (26—d(w)) {ln kuekg(%ﬁ‘z)) i 1 Vpi(x)Vd(x)

26— p -1 26—0o
2pi(@)=1)
()] o)1 (255822) e
if o <d(z) < 20,
0 if 26 <d(z),
forall p >0and i =1,2.

Define Ay := max {A(z,t) : (z,t) € @ x [0,max{|yr| ) 27| }] }. Then
we have

ag < .A(JZ, |w|Lr1(:{:)) <Ay, inQ

—ak

for all w € [0,y,]. Let 0 = £ In2 and p = e~** where

_ min{p; —1,p; — 1}
max{maxg |Vp1| + 1, maxg [Vpa| + 1}

Then e = 2 and ku < 1 if k > 0 is sufficiently large.
Let z € Q with d(x) < 0. If k > 0 is large enough we have |Vd(z)| = 1 and then

(o) + 201, () [V < () 'M“)'nvpl(a:n
- (1“—2 - M)Wm( )|+ al Vi (@)
<p — 1L

Note also that there exists a constant A > 0, that does not depend on k, such
that |[Ad(z)| < A for all € 9€35. Using the last inequality and the expression of
—Ap, (z) (), we obtain —A, () (up1) < 0 for x € Q with d(z) < o or d(x) > 20
for k > 0 large enough. Therefore

— Ay () (1) <0 —(m)ﬁﬂf o] S260)

§>

1 x x a1 (T
< (o)) 4w )| 117

for all w € L*(Q2) with w > p¢e and d(z) < o or 20 < d(x). Using the idea in the
proof of [34] estimate (3.10)] we obtain

—Apy () (1) < C(kp) ~*1In kﬂ|

- _ (4.8)
= C(ku)» _1|1n | if o < d(z) < 20.

From the proof of [44] Theorem 2] and the fact that ozf' + 7 < p; — 1 we obtain
Chrr !
lim = T T ’
k—+oo gak(py —1—(af +17)) ek

Note that ¢1(z) > 1 if o < d(x) < 26 because ¢1(x) > ek — 1 and ek? = 2 for
all £ > 0. Thus, there is a constant Cy > 0 that does not depend on k such that

; =0. (4.9)
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\qbg\zfzfg)(m > Cy if o < d(x) < 2§. By (4.9), we can choose k > 0 large enough

such that ~
Ckrr 1 k Cy
L | < S0
eakl(py —1)— (o5 +587)] eak A
Therefore from and - we have

1 w T ay(z
Apl(r)(p’¢1) < T((M¢ ),81( _|_w’Yl( ))|/1’¢ |Lq1(2)v

for all w € L*>(Q) with w > p¢e and o < d(z) < 26 for k > 0 large enough. Thus
it is possible to conclude that

1 (07 T .
B (191) < <= ((91)” ) + 0ol 0 in Q.

Fix k > 0 satisfying the above property and —A, (o)(up1) < 1. For A > 1 we
have —A,, (2)(1¢1) < —Ap, (2)2x. Therefore pg; < zy. Since af +75 <py —1,a
similar reasoning imply that there is © > 0 small enough such that

1
—-A <
p2(x) (M¢2) — A(.’E, |U) L72 (x)

for all w € L>(Q) with w > u¢; and that us¢ < yy. The first part of the result is
proved.

Now suppose that 0 < A(x,t) < ag in Q x (0,00). Let 6,0, u,a,\, 2z, yx and ¢;
for i = 1,2 as before. From the previous arguments there exist k£ > 0 large enough
and p > 0 small such that

- Am(z) (M(bl) <1, _Apl(ac) (/~L¢)

in Q for all w € [uga,y,], and

(4.10)

)(w +(u¢2)”)|u¢1|mz<><m i ©

1
ao

(11)P1 @) D) ugho|220) (4.10)

1 xT xT (o7 xT
= Dpy)(1d2) <1, —Ap, ) (Hg2) < a—o(wﬂ2( + (1) 2 @) g |22 (4.12)
in 2 for all w € [ud1, 2)].
Since lim;—, 00 A(2,t) = aoo > 0 uniformly in Q there is a large constant a; > 0

such that A(z,t) > %= on Q x (ay,00). Let
my :=min {A(z,t) : (z,t) € QX [min{|ud1|pm @), |ud2]praw},a1]} >0

and Ay := min {mk, ‘%"} Then we have
A(l‘ t) > A, in Q x [min{lﬂ¢1|Lrl(z)7 |M¢2‘Lr2(z)} OO)

Fix k > 0 satisfying (4.11]) and ( - Consider A > 1 such that ( . and

st of o 1y

1
L(Kﬁf)\pf—l-i_% -1 _|_K’Y1 A\ P21 )max{|K|
k

af
Lai(z)> ‘K|Lq1(m)} S )\)

2y v af

KA | AT T ) ma (K LK% Y < A
Ak X Laz2(x)> Laz(x) S = 7%

where K > 1 is a constant that does not depend on k or A (see Lemma [2.7)).
Therefore,

—Ap ()2 < (0 w210 i Q, w € [ug, ).

A(l’, |w|L7‘1(z))
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Arguing as before and considering a suitable choice for A\ and k& we obtain

1
—Ap,()Un < wP2@) 4 2@y az@j in Q, w e [up1, 2]
p2(x) A(x, |w‘LT2(x)>( A )l |L 2 () (1, 2]
The comparison principle implies that pgp; < z) and pes < y, if p is small. The
proof is complete. O

4.2. A concave-convex problem. In this section we consider the following non-
local problem with concave-convex nonlinearities

— Az, |v ulo] 225 4 0o @ Lyl 2 in g,

—A(@, [l o) Ay v = Al 2O Lpfu] 2200 4 gl @ ufu 20 in @,

u=v=0 on Jf).

z)—1

L) Ay ayu = Alu|

(4.13)
The scalar and local version of with p(z) = 2 and constant exponents was
considered in the famous paper by Ambrosetti-Brezis-Cerami [5] in which a sub-
supersolution argument is used. In [43], problem was studied with p(z) = 2.
The following result generalizes [43, Theorem 7).

Theorem 4.2. Suppose that i, p;, qi, i, @i, 1; satisfy (H1) for i = 1,2 and that
Bi € L>=(), i = 1,2 are nonnegative functions with 0 < o + B; < o + B <
p; —1,1i=1,2. Let ag,by > 0 be positive numbers. Then the following assertions
hold
(1) Ifpg =1 <ny +71, pf =1 <ny +75 and A(z,t) > ag in Q x [0,bo], then
for each 6 > 0 there exists Ao > 0 such that for each A € (0, ), problem
(4.13) has a positive solution uy g.
(2) p3 —1<n +9,pf —1<n; +7 and
B ad B a
pr —1 py—1 ps —1 py—1

<1.

Suppose that 0 < A(z,t) < ag in Q x (0,00) and lim;_,o A(z,t) = by uniformly in
Q. Then given a X > 0, there exists 0y > 0 such that for each 6 € (0,0y), problem
(4.13]) has a positive solution uy.g.

Proof. Suppose that (1) occurs. Consider zy € Wol’pl(x)(Q) N L>*(Q) and yy €
Wg’pZ(w)(Q) N L>(Q) the unique solutions of respectively, where A € (0,1)
will be chosen later.

Lemma imply that for A > 0 small enough there exists a constant K > 1
that does not depend on A such that

1

0<zx(z) < KA1 inQ, (4.14)
1

0<yx(z) <KAX2~' inQ. (4.15)

To construct w; we will prove, for each 8 > 0, that there exists Ag > 0 such that

1 B e N
;O(MZ)\‘BI(I) IZA‘yﬂL}zE(l)ﬁ +0|w|7ll( ) 1w|y>\

zg(jl)) <A, Ywe [0,y (4.16)

1 _ as(x z)—
;0<A\yx|ﬁ2(m) 1yz\|ZA|L2;§(2) + 0w [ w2y

) <A Vwelom) (417)
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Let

— + - + -
K |K‘Lq (m))KT]i |K ﬂ[/jsi(z)7Kni K ’Lyllsi(z)}' (4'18)

qu(l) 7
Since 0 < al_ + B and pj — 1 < ] +7;, there exists Ao > 0 such that

1 p1+71+ﬂ1*+ oy ny +v1

— (A A TSR I R) < (4.19)
ao

for all A € (0, \p).

1
If necessary, we consider small Ao > 0 such that |yx|pr @) < |K|Lr1(m>x\"§r*‘ < by
for all A € (0, Ag). Therefore A(z, |w|r ) > ag, w € [0,y5]. It follows from (4.14)),

(4.15) and (4.19) that (4.16]) holds. Then we can conclude that

1 o xr xr
e )WW”W WO o @), (420

Z\ >
p1(x) .A(x, |w\Ln<z) La1(@) Ls1(@)

for all w € [0,yx]. Assume also that Ao satisfies

1 Py —1485 | ay ny vy

7(,\ ST Y N F) <A (4.21)
ag

and |2x]pre@) < |K\Lr2(z))\p1 -1 < bO for all A€ 0 )\0) Therefore A(z, |w|pr@))

> ag,w € [0,2x]. Thus from ([£.14), (£.15) and ( we have that (£.17) holds.

Then we can conclude that

- A

Ls2(z)

(AZAM‘T) |2al728E)) + 0w ()2

> 72(2) ) 1,99
@Y 2 e Tl (4.22)

for all w € [0, z,].

To construct u; consider ¢;,d, 0, u as in the proof of Theorem Using the
inequalities aj + ﬁ:r < p; —1,%=1,2 and repeating the arguments of Theorem
we have that exists a number p > 0 such that

pdr < za, po2 SYn,  —Ap ) (k1) <A,

( (u¢1)ﬂl(@)|u¢1|w< )+ 0w ) gy

—Ap, () (He1) < Zle(m))

.A($, |w|L7‘1(z))

for all w € [up2, yx] and
_Apz(ar) (N¢2) <A

1
A B2(=) az(z) + Qw2 (®)
A(-'L'7 |’U} L7'2(£)) ( (H¢2) |#¢1|Lq2(z> w |'u¢1

_Apz(w)(,ud)Z) < Zi(j(z))

for all w € [u¢2, zx]. Then by Theorem we have the desired result.

Now we consider the condition (2). Let ¢;,0 and o;,i = 1,2 as in the first part
of the result and let A > 0 fixed. Since aj' + ,BZT" < p; — 1,1 = 1,2 there exists
© > 0 depending only on A such that

1 ) )
Ay (i) <1, =Dy () () < %A(M¢i)61(w)|ﬂ¢j|al(:€)a

for w € L>(Q) with w > p¢;, i # j and 4,5 =1,2.
Let M > 0 that will be chosen later and assume zy; € Wol’pl(w)(Q) NL>®(Q)is a
solution of

_Apl(fr)ZM =M in Q,
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zy =0 on 99,

and yy € W&’m(x)(ﬁ) N L>(Q) is a solutions of
7Ap2($)yM =M in Q,
yrvy =0 on 0N).

For M large enough from Lemma [2.7] there exists a constant K > 1 that does not
depend on M such that

1

0<zy(z) < KMr—' inQ, (4.23)

0<ym(z)<KMr2~* in Q. (4.24)

To construct u; we will show that exist 8y > 0 depending on A with the following
property: if we assume 6 € (0, 6p) then there is a constant M depending only on A
and 0 satisfying

1 ) N )
M= W(AZM’“WW&E%& + 0w Oy 1257, ), (4.25)
9 1 (z
for w € [u¢27 yM]a and
M 2 e (o OG0 + 00Ol 20), (426)

for w € [ue1, zpm].
Since A is continuous and lim;_, 4 A(z,t) = by > 0 uniformly in 2, there exists

a1 > 0 large enough such that A(x,t) > %0 in Q x (ay, +00). Define

my = {A(mvt) : (‘T7t) €N x [min{|/‘¢1 Lri(®), |;U'¢2 L"2(z)}7a1]}
and Ay := min{m,, 2}. Then A(z,t) > Ay in Qx [min{|ué1|r ), |[1@2]ra) }, 00).
Thus Ay < A(z, |w|pm @) < ap for all w € L>(2) with pug1 < w or uge < w. Note
that from and the inequalities and hold if we have simul-
taneously the inequalities
ﬁ;r ot nfr+71+

1

(AFMPH st 4 KM 2 ) <M,

1

Ay
1

Ay

where K is given by (4.18)). To obtain such inequalities we will study the inequality
1

Ay

of | ef ng g

(AFMP&IVH L ORM i ) < M,

(AKMP'+0KM™ 1) <1 (4.27)

where
+ + + +
(6% 8%
p = max { —1 L _52 —2
p; —1 pp —1 py =1 p —1

Ay o+
{p,_ —> 1.

b

T = max

)

1 p;

Define L o
A\K 0K
Uy o(M) =M1 —

M™1, M >o.
Ay Ay
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Since 0 < p < 1 and 7 > 1 we have limy; g+ Uy (M) = limpy 100 Up (M) =
+00. Note that W, »'(M) = 0 if, and only if

A 1—p\7s
M=M= (5)7 re, ci= (7‘—1) . (4.28)

From the above properties of ¥y , we have that the global minimum of W) ¢ is
attained at M) g. The inequality (4.27) is equivalent to finding M} ¢ > 0 such that
\If)\vg(M)vg) <1 By 428 , we have that Uy g(M)\ 9) < 1, if and only if

AK A o1
)T P Pl 1-(=
Ax ( ) 0 A

Thus from (4.28]) and (4.29)), we have that given A > 0 there exists 6y > 0 such that
for each 6 € (0, 6p) there exists M) ¢ satisfying

K e < 1. (4.29)

Myp>1 and AL)\()\?MMQP*I Jrg?M/\’eTq) <1
Therefore,
Onem 2 A% (Aen™ g 525 + 0w Oy 252, in 2,
for all w € (g2, ynm], and

az(x)

1
—Bpy(@)ynm = A*/\(A?JM 2020|920 4 pw™ @ |2y

Yw (:E) :
Lsmz)) in €2,

for all w € [ud1, zar]-
Since M)y g — +oo as # — 07 and the map 6 — M, g is decreasing we have

—Ap (@) (1) <1< Myg, < Myg, 6€(0,0)

for 6y small enough. Similarly, we have —APZ(I)(M(bQ) < Mg, < Myyg for all
6 € (0,6p), for 6y small. The weak maximum principle imply that pu¢; < zp; and
uoo < ypr. The proof is complete. O

4.3. A generalization of the logistic equation. In the previous sections, we
considered at least one of the conditions A(z,t) > ag > 0 or 0 < A(z,t) < oo, t >
0. In this section we study a generalization of the classic logistic equation where
the function A(z,t) satisfies

A(z,0) >0, lim A(z,t) =00, and lim A(zx,t) = foo.
t—0t

t——+oo

We consider the problem

Az, [0] ) Ay (yu = A1 ()]0 22 in €,

— A, [u] o) D pyayv = Mo (0)[ul325) in Q, (4.30)
u=v=0 on 0.
We suppose that there are numbers 6; > 0, i = 1,2 such that the functions f; :
[0,00) — R satisfy the following conditions:
(H3) fl(O) = fl(t%) =0, fz(t) >0 in (0,91) for ¢ = 1,2.
Problem (4.30) is a generalization of the problemes studied in [16] [I8] [43]. The
next result generalizes [43, Theorem 8].
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Theorem 4.3. Suppose that i, p;, ¢, ; satisfy (H1). Also that f;, i = 1,2 satisfies
(H2), (H3) and that A(z,t) > 0 in Q x (0,max{|01]Lrs), 02| pri }]. Then there
exists Ao > 0 such that (4.30) has a positive solution for A > X.

Proof. Consider the functions f;(t) = f;(t) for t € [0,6;], and fi(t) = 0 for t €
R\ [0,6;], i = 1,2. The functional

J)\(U,U)
1 ~ 1 ~
:/ |Vu|p1(m)dz—)\/ Fl(u)dx—F/ 7|Vv|p2(m)dz—)\/ Fy(v)dz
o pi(z) Q o p2(7) Q
= Jl’)\(’u,) + JQ’)\(’U)7
where Fj(t) = fot fi(s)ds is of class C’l(Wol’pl(m) X W&’pZ(I)(Q), R) and Wol’pl(x)(Q) X

Wol’p"’(z)(ﬂ) is a Banach space endowed with the norm

|(uvv)‘ = maX{|vu|p1(ac)a |vv|p2(£z)}'

Since | fi(t)| < C, t € R for some constant which does not depends on i = 1,2 we

have that J is coercive. Thus J has a minimum (zy,wy) € Wol’pl(x) (Q) XW()l’M(x)(Q)
with _

—Apl(m)Z)\ = )\fl(Z)\) m Q, (431)
zy =0 on 09,

and B
—Ap,@wx = Afa(wy) in Q,

wy =0 on IN.

Note that the unique solutions of (4.31)) and (4.32)) are given by the minimizers of
functionals Ji x and J ) respectively.

Consider a function ¢q € W&’pi(z)(Q), i =1,2 with Fy(po) > 0, i = 1,2. Define
(20, wo) := (z5,, w5, ), Where Ao satisfies

1 ~ -
/ [Vepo P d < /\0/ Fi(po)dz, i=1,2.
o pi(z) Q

We have J; 5 (20) < J; 5,(¢0) < 0 and that J, 5 (z0) < 0. Therefore z # 0 and
wo # 0. Since —A, (20 and —A,, ;) wp are nonnegative, we have zp,wg > 0
in Q. Note that by [28, Theorem 4.1] and [25, Theorem 1.2], we obtain that
20, wg € CH*(Q) for some « € (0,1].

Using the test function ¢ = (29 — 61)" € Wol’pl(x)(ﬂ) in we obtain

(4.32)

/ ‘VZo‘pl(ﬁ)_QVZOV(ZQ - 91)+dl‘ = XQ/ fl(Zo)(ZQ — Gl)dx =0.
Q

{z0>0}

Therefore,
/ <‘v20‘p($)72v20 — |V91|p1($)*2v91, V(ZO — 01)>d$ = 0,
{z0>0}

which imply (2o — 01)+ = 0 in Q. Thus 0 < zp < 6;. A similar reasoning provides
0 < wy < by

Note that there is a constant C' > 0 such that |zo|zfszl),>, |w0|‘zi£fz)) > C. We
define

Ap = max {A(a:,t) (2, 1) € Q x [min{|20] race), [wol fri @) },
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max{|01|pra \92|Lr1(m>}}
and po = %. Then, we have

_Apl(:v)ZO = 3\iC'fl (ZO)
1
= AO

0y a1 (x AO
Notto f1 (z0)|wo| 20 — )
M0|ZO|L{11(.7:)

1 ~ ai(z
< A—O/\ouof1(20)|wo|L§f<z)>-

Thus for each A > )\ := XoMo and w € [wo, O], we obtain

D70 < G M1 (z0)wo 517

s|wlpr@)

If necessary, we can consider a larger A > 0 such that

~Bpyo < 7o Afa(uwo) ol 245

’ |w|LT2(1))
for all A > Mg and w € [z, 01].

Since f;(6;) = 0, ¢ = 1,2, we have that (z9,601) and (wp,fs) are sub-super
solutions pairs for . The proof is complete. O

We remark that is possible to use the functions ¢; from the proof of Theorem
for problem (4.30). However, more restrictions on the functions p;, f;,i = 1,2
are needed.
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