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SUB-SUPER SOLUTION METHOD FOR NONLOCAL SYSTEMS

INVOLVING THE p(x)-LAPLACIAN OPERATOR

GELSON C. G. DOS SANTOS, GIOVANY M. FIGUEIREDO, LEANDRO S. TAVARES

Abstract. In this article we study the existence of solutions for nonlocal

systems involving the p(x)-Laplacian operator. The approach is based on a
new sub-super solution method.

1. Introduction

In this work we are interested in the nonlocal system

−A(x, |v|Lr1(x))∆p1(x)u = f1(x, u, v)|v|α1(x)

Lq1(x) + g1(x, u, v)|v|γ1(x)

Ls1(x) in Ω,

−A(x, |u|Lr2(x))∆p2(x)v = f2(x, u, v)|u|α2(x)

Lq2(x) + g2(x, u, v)|u|γ2(x)

Ls2(x) in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN (N > 1) with C2 boundary, | · |Lm(x) is the

norm of the space Lm(x)(Ω), −∆p(x)u := −div(|∇u|p(x)−2∇u) is the p(x)-Laplacian
operator, ri, pi, qi, si, αi, γi : Ω → [0,∞), i = 1, 2 are measurable functions and
A, f1, f2, g1, g2 : Ω× R→ R are continuous functions satisfying certain conditions.

In the previous decades there have been several works related to the p and p(x)
Laplacian operator; see for example [1, 4, 9, 12, 25, 26, 27, 28, 29, 34, 35, 38, 39] and
the references therein. Partial differential equations involving the p(x)-Laplacian
arise in several areas of Science and Technology such as nonlinear elasticity, fluid
mechanics, non-Newtonian fluids and image processing. Regarding the mentioned
applications we point out [1, 14, 36, 41, 42].

The nonlocal term | · |Lm(x) with the condition p(x) = r(x) ≡ 2 was considered
in the well known Carrier’s equation

ρutt − a(x, t, |u|2L2)∆u = 0

which models the vibrations of a elastic string under certain contidions. See [11] for
more details. We also quote the applicability of such nonlocal term in Population
Dynamics, see [15, 17]. Several works related to (1.1) in the p-Laplacian case, that
is, with p(x) = p (a constant) can be found, see [10, 13, 19, 20, 23, 43] and the
references provided in such manuscripts. For example Corrêa & Lopes [20] studied
the system

−∆um = a|v|αLp in Ω,
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−∆vn = b|u|βLq in Ω, u = v = 0 on ∂Ω,

and in [13] a related system was considered using the Galerkin method.
In [19] the authors used a theorem due to Rabinowitz [40] to study the problem

−∆p1u = |v|α1

Lq1 in Ω,

−∆p2v = |u|α2

Lq2 in Ω,

u = v = 0 on ∂Ω.

The system

−A(x, |v|Lr1(x))∆u = f1(x, u, v)|v|α1(x)

Lq1(x) + g1(x, u, v)|v|γ1(x)

Ls1(x) in Ω,

−A(x, |u|Lr2(x))∆u = f2(x, u, v)|u|α2(x)

Lq2(x) + g2(x, u, v)|u|γ2(x)

Ls2(x) in Ω,

u = v = 0 on ∂Ω,

where A : Ω × R → R is a function satisfying some conditions, was considered in
[43]. The approach in such paper consists in use an abstract result involving sub
and supersolutions, whose proof is based on the Schaefer’s fixed point theorem.
Specifically, it was considered a sublinear system, a concave-convex problem and a
system of logistic equations.

The scalar version of (1.1),

−A(x, |u|Lr(x))∆p(x)u = f(x, u)|u|α(x)

Lq(x)
+ g(x, u)|u|γ(x)

Ls(x)
in Ω,

u = 0 on ∂Ω,
(1.2)

was considered in [44]. The authors obtained an abstract result involving sub and
super solutions for (1.1) that generalizes [43, Theorem 1]. As an application of such
result the authors generalized for the p(x)-Laplacian operator the three applications
of [43, Theorem 1].

The goal of this work is to prove [43, Theorem 2] for the p(x)-Laplacian operator
and use it in three applications of the mentioned paper. Thus, we provide a gener-
alization of [43] with respect to systems with variable exponents. Next we describe
the main differences and difficulties of this work when compared with [43].

(i) The homogeneity of the Laplacian operator (−∆, H1
0 (Ω)) and the eigenfunc-

tion associated to the first eigenvalue were used in [43] for constructing a subso-
lution. Differently from the p-Laplacian (p(x) ≡ p constant) the p(x)-Lapalcian
is not homogeneous. Besides that, it can occurs that the first eigenvalue and the

first eigenfunction of the p(x)-Laplacian operator (−∆p(x),W
1,p(x)
0 (Ω)) do not exist.

Even if the first eigenvalue and the associated eigenfunction exist the homogeneity,
in general, does not allows to use the first eigenfunction to construct a subsolution.
In order to avoid such difficulties we explore some arguments of [44].

(ii) Some arguments of [43] were improved and weaker conditions on ri, qi, si, αi,
γi, i = 1, 2 are considered here.

(iii) We generalize [43, Theorem 2] and as an application it is considered some
nonlocal problems that generalizes the three systems studied in [43].

(iv) As in [43, Theorem 2] and differently from several works that consider the
nonlocal term A(x, |u|Lr(x)) satisfying A(x, t) ≥ a0 > 0 (where a0 is a constant),
Theorem 1.1 permits us to study (1.1) in the mentioned case and in situations
where A(x, 0) = 0.
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(v) The abstract result involving sub and super solutions is proved by using a
different argument. It is used a theorem due to Rabinowitz that can be found in
[40] and some arguments of [43] are improved.

In this work we assume that ri, pi, qi, si, αi, γi satisfy

(H1) pi ∈ C1(Ω), ri, qi, si ∈ L∞+ (Ω), where

L∞+ (Ω) =
{
m ∈ L∞(Ω) with ess inf m(x) ≥ 1

}
and for i = 1, 2, αi, γi ∈ L∞(Ω) and satisfy

1 < p−i : = inf
Ω
pi(x) ≤ p+

i : = sup
Ω
pi(x) < N, αi(x), γi(x) ≥ 0 a.e in Ω .

Some definitions are needed to present the main results. We say that the pair

(u1, u2) is a weak solution of (1.1), if ui ∈W 1,pi(x)
0 (Ω) ∩ L∞(Ω) and∫

Ω

|∇ui|pi(x)−2∇ui∇ϕ =

∫
Ω

(fi(x, u1, u2)|uj |αi(x)

Lqi(x)

A(x, |uj |Lri(x))
+
gi(x, u1, u2)|uj |γi(x)

Lsi(x)

A(x, |uj |Lri(x))

)
ϕ,

for all ϕ ∈W 1,pi(x)
0 (Ω) and i 6= j with i, j = 1, 2. Given u, v ∈ S(Ω) we write u ≤ v

if u(x) ≤ v(x) a.e. in Ω. If u ≤ v we define

[u, v] :=
{
w ∈ S(Ω) : u(x) ≤ w(x) ≤ v(x) a.e. in Ω

}
.

To simplify the next definition we denote

f̃1(x, t, s) = f1(x, t, s), g̃1(x, t, s) = g1(x, t, s),

f̃2(x, t, s) = f2(x, s, t), g̃2(x, t, s) = g2(x, s, t).

We say that the pairs (ui, ui), i = 1, 2 are a sub-super solutions for (1.1) if ui ∈
W

1,pi(x)
0 (Ω) ∩ L∞(Ω), ui ∈ W 1,pi(x)(Ω) ∩ L∞(Ω) with ui ≤ ui, ui = 0 ≤ ui on ∂Ω

and for all ϕ ∈W 1,pi(x)
0 (Ω) with ϕ ≥ 0 the following inequalities hold∫

Ω

|∇ui|pi(x)−2∇ui∇ϕ ≤
∫

Ω

( f̃i(x, ui, w)|uj |
αi(x)

Lqi(x)

A(x, |w|Lri(x))
+
g̃i(x, ui, w)|uj |

γi(x)

Lsi(x)

A(x, |w|Lri(x))

)
ϕ,

∫
Ω

|∇ui|pi(x)−2∇ui∇ϕ ≥
∫

Ω

( f̃i(x, ui, w)|uj |αi(x)

Lqi(x)

A(x, |w|Lri(x))
+
g̃i(x, ui, w)|uj |γi(x)

Lsi(x)

A(x, |w|Lri(x))

)
ϕ,

(1.3)
for all w ∈ [ujuj ] where i, j = 1, 2 with i 6= j. Our main result reads as follows.

Theorem 1.1. Suppose that ri, pi, qi, si, αi and γi satisfy (H1), that (ui, ui) is
a sub-super solution for (1.1) with ui > 0 a.e. in Ω, that fi(x, t, s), gi(x, t, s) ≥
0 in Ω × [0, |u1|L∞ ] × [0, |u2|L∞ ] and that A : Ω × (0,∞) → R is a continuous
function with A(x, t) > 0 in Ω ×

[
σ, σ

]
, where σ := min

{
|w|Lri(x) , i = 1, 2

}
, σ :=

max
{
|w|Lri(x) , i = 1, 2

}
, w := min{ui, i = 1, 2} and w := max{ui, i = 1, 2}. Then

(1.1) has a weak positive solution (u1, u2) with ui ∈ [ui, ui], i = 1, 2.

2. Preliminaries

In this section, we present some facts regarding the spaces Lp(x)(Ω), W 1,p(x)(Ω)

and W
1,p(x)
0 (Ω) that will be often used in this work. For more details see Fan-Zhang

[27] and the references therein.
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Let Ω ⊂ RN (N ≥ 1) be a bounded domain. Given p ∈ L∞+ (Ω), we define the
generalized Lebesgue space

Lp(x)(Ω) =
{
u ∈ S(Ω) :

∫
Ω

|u(x)|p(x)dx <∞
}
,

where S(Ω) :=
{
u : Ω → R : u is measurable

}
. Then Lp(x)(Ω) is a Banach space

with the norm

|u|p(x) := inf
{
λ > 0 :

∫
Ω

|u(x)

λ
|p(x)dx ≤ 1

}
.

Given m ∈ L∞(Ω), we define

m+ := ess supΩm(x), m− := ess infΩm(x).

Proposition 2.1. Let ρ(u) :=
∫

Ω
|u|p(x)dx. Then for u, un ∈ Lp(x)(Ω), and n ∈ N,

the following assertions hold

(i) Let u 6= 0 in Lp(x)(Ω), then |u|Lp(x) = λ⇔ ρ(uλ ) = 1.
(ii) If |u|Lp(x) < 1 (= 1, > 1), then ρ(u) < 1 (= 1, > 1).

(iii) If |u|Lp(x) > 1, then |u|p
−

Lp(x)
≤ ρ(u) ≤ |u|p

+

Lp(x)
.

(iv) If |u|Lp(x) < 1, then |u|p
+

Lp(x)
≤ ρ(u) ≤ |u|p

−

Lp(x)
.

(v) |un|Lp(x) → 0⇔ ρ(un)→ 0, and |un|Lp(x) →∞⇔ ρ(un)→∞.

Theorem 2.2. Let p, q ∈ L∞+ (Ω). Then the following statements hold

(i) If p− > 1 and 1
q(x) + 1

p(x) = 1 a.e. in Ω, then∣∣ ∫
Ω

uvdx
∣∣ ≤ ( 1

p−
+

1

q−
)
|u|Lp(x) |v|Lq(x) .

(ii) If q(x) ≤ p(x) a.e. in Ω and |Ω| <∞, then Lp(x)(Ω) ↪→ Lq(x)(Ω).

We define the generalized Sobolev space as

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) :

∂u

∂xj
∈ Lp(x)(Ω), j = 1, . . . , N

}
with the norm

‖u‖∗ = |u|Lp(x) +

N∑
j=1

∣∣ ∂u
∂xj

∣∣
Lp(x)

.

The space W
1,p(x)
0 (Ω) is defined as the closure of C∞0 (Ω) with respect to the norm

‖ · ‖∗.

Theorem 2.3. If p− > 1, then W 1,p(x)(Ω) is a Banach, separable and reflexive
space.

Proposition 2.4. Let Ω ⊂ RN be a bounded domain and p, q ∈ C(Ω). Define

the function p∗(x) = Np(x)
N−p(x) if p(x) < N and p∗(x) = ∞ if N ≥ p(x). Then the

following statements hold.

(i) (Poincaré inequality) If p− > 1, then there is a constant C > 0 such that

|u|Lp(x) ≤ C|∇u|Lp(x) for all u ∈W 1,p(x)
0 (Ω).

(ii) If p−, q− > 1 and q(x) < p∗(x) for all x ∈ Ω, then the embedding
W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is continuous and compact.

From (i) of Proposition 2.4, we have that ‖u‖ := |∇u|Lp(x) defines a norm in

W
1,p(x)
0 (Ω) which is equivalent to the norm ‖ · ‖∗.
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Definition 2.5. For u, v ∈W 1,p(x)(Ω), we say that −∆p(x)u ≤ −∆p(x)v, if∫
Ω

|∇u|p(x)−2∇u∇ϕ ≤
∫

Ω

|∇v|p(x)−2∇v∇ϕ,

for all ϕ ∈W 1,p(x)
0 (Ω) with ϕ ≥ 0.

The following result appears in [29, Lemma 2.2] and [26, Proposition 2.3].

Proposition 2.6. Let u, v ∈ W 1,p(x)(Ω). If −∆p(x)u ≤ −∆p(x)v and u ≤ v on

∂Ω, (i.e., (u − v)+ ∈ W 1,p(x)
0 (Ω)) then u ≤ v in Ω. If u, v ∈ C(Ω) and S =

{
x ∈

Ω : u(x) = v(x)
}

is a compact set of Ω, then S = ∅.

Lemma 2.7 ([26, Lemma 2.1]). Let λ > 0 be the unique solution of the problem

−∆p(x)zλ = λ in Ω,

u = 0 on ∂Ω.
(2.1)

Define ρ0 = p−

2|Ω|
1
N C0

. If λ ≥ ρ0 then |zλ|L∞ ≤ C∗λ
1

p−−1 , and |zλ|L∞ ≤ C∗λ
1

p+−1

if λ < ρ0. Here C∗ and C∗ are positive constants depending only on p+, p−, N, |Ω|
and C0, where C0 is the best constant of the embedding W 1,1

0 (Ω) ↪→ L
N
N−1 (Ω).

Regarding the function zλ of the previous result, it follows from [25, Theorem
1.2] and [29, Theorem 1] that zλ ∈ C1(Ω) with zλ > 0 in Ω. The proof of Theorem
1.1 is mainly based on the following result by Rabinowitz:

Theorem 2.8 ([40]). Let E be a Banach space and Φ : R+ × E → E a compact
map such that Φ(0, u) = 0 for all u ∈ E. Then the equation

u = Φ(λ, u)

possesses an unbounded continuum C ⊂ R+ × E of solutions with (0, 0) ∈ C.

We point out that a mapping Φ : E → E is compact if it is continuous and for
each bounded subset U ⊂ E, the set Φ(U) is compact.

3. Proof of main results

Proof of Theorem 1.1. For i = 1, 2 consider the operators Ti : Lpi(x)(Ω)→ L∞(Ω)
defined by

Tiz(x) =


ui(x), if z(x) ≤ ui(x),

z(x), if ui(x) ≤ z(x) ≤ ui(x),

ui(x), if z(x) ≥ ui(x).

Since Tiz ∈ [ui, ui] and ui, ui ∈ L∞(Ω) it follows that the operators Ti are well-
defined.

We define p′i(x) = pi(x)/
(
pi(x) − 1

)
and consider the operators Hi : [u1, u1] ×

[u2, u2]→ Lp
′
i(x)(Ω) given by

Hi(u1, u2)(x) =
fi(x, u1(x), u2(x))|uj |αi(x)

Lqi(x)

A(x, |uj |Lri(x))
+
gi(x, u1(x), u2(x))|uj |γi(x)

Lsi(x)

A(x, |uj |Lri(x))

where i 6= j with i, j = 1, 2, and | · |Lm(x) denotes the norm of the space Lm(x)(Ω).
We consider in the space Lp1(x)(Ω)× Lp2(x)(Ω) with the norm

|(u, v)|1,2 = |u|Lp1(x) + |v|Lp2(x) .
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Since fi, gi,A are continuous functions, A(x, t) > 0 in the compact set Ω×
[
σ, σ],

Tizi ∈ [ui, ui] for all zi ∈ Lpi(x)(Ω), ui, ui ∈ L∞(Ω), and |w|θ(x)

Lm(x) ≤ |w|θ
−

Lm(x) +

|w|θ+
Lm(x) for all w ∈ Lm(x)(Ω) with θ ∈ L∞(Ω), it follows that there are constants

Ki > 0 such that

|Hi(T1z1, T2z2)| ≤ Ki (3.1)

for all (z1, z2) ∈ Lp1(x)(Ω)× Lp2(x)(Ω).
By the Lebesgue Dominated Convergence Theorem, the mappings (z1, z2) 7→

Hi(T1z1, T2z2) are continuous from Lp1(x)(Ω)× Lp2(x)(Ω) in Lp
′
i(x)(Ω), i = 1, 2.

From [27, Theorem 4.1] the operator Φ : R+×Lp1(x)(Ω)×Lp2(x)(Ω)→ Lp1(x)(Ω)×
Lp2(x)(Ω) given by

Φ(λ, z1, z2) = (u1, u2),

where (u1, u2) ∈W 1,p1(x)
0 (Ω)×W 1,p2(x)

0 (Ω) is the unique solution of

−∆p1(x)u1 = λH1(T1z1, T2z2) in Ω,

−∆p2(x)u2 = λH2(T1z1, T2z2) in Ω,

u = v = 0 on ∂Ω,

(3.2)

is well-defined.

Claim 1: Φ is compact. Let (λn, z
1
n, z

2
n) ⊂ R+ × Lp1(x)(Ω) × Lp2(x)(Ω) be a

bounded sequence and consider (u1
n, u

2
n) = Φ(λn, z

1
n, z

2
n). The definition of Φ imply

that ∫
Ω

|∇uin|pi(x)−2∇un∇ϕ = λn

∫
Ω

Hi(T1z
1
n, T2z

2
n)ϕ, ∀ϕ ∈ W

1,pi(x)
0 (Ω),

where i, j = 1, 2 blue with i 6= j.
Considering the test function ϕ = uin, the boundness of (λn) and inequality (3.1),

we obtain ∫
Ω

|∇uin|pi(x) ≤ λKi

∫
Ω

|uin|

for all n ∈ N. Here λ is a constant that does not depend on n ∈ N.
Since p−i > 1, the embedding Lpi(x)(Ω) ↪→ L1(Ω) holds. Combining such em-

bedding with the Poincaré inequality we obtain∫
Ω

|∇uin|pi(x) ≤ CKi‖uin‖,

for all n ∈ N. Suppose that |∇uin|Lpi(x) > 1. Thus by Proposition 2.1 we have

‖uin‖p
−−1 ≤ CKi for all n ∈ N where C is a constant that does not depend on

n. Then we conclude that (uin) is bounded in W
1,pi(x)
0 (Ω). The reflexivity of

W
1,pi(x)
0 (Ω) and the compact embedding W

1,pi(x)
0 (Ω) ↪→ Lpi(x)(Ω) provides the

result.

Claim 2: Φ is continuous. Consider a sequence (λn, z
1
n, z

2
n) in R+×Lp1(x)(Ω)×

Lp2(x)(Ω) converging to (λ, z1, z2) in R+×Lp1(x)(Ω)×Lp2(x)(Ω). Define (u1
n, u

2
n) =

Φ(λn, z
1
n, z

2
n) and (u1, u2) = Φ(λ, z1, z2). Using the definition of Φ we obtain∫

Ω

|∇uin|pi(x)−2∇uin∇ϕ = λn

∫
Ω

Hi(T1z
1
n, T2z

2
n)ϕ, (3.3)∫

Ω

|∇ui|pi(x)−2∇ui∇ϕ = λ

∫
Ω

Hi(T1z
1, T2z

2)ϕ (3.4)
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for all ϕ ∈W 1,pi(x)
0 (Ω) where i, j = 1, 2 and i 6= j.

Considering ϕ = (uin−ui) in (3.3) and (3.4) and subtracting (3.4) from (3.3) we
obtain ∫

Ω

〈
|∇uin|pi(x)−2∇uin − |∇ui|pi(x)−2∇ui,∇(uin − ui)

〉
=

∫
Ω

λnH(T1z
1
n, T2z

2
n)(uin − ui)−

∫
Ω

λH(T1z
1, T2z

2)
]
(uin − ui).

Using Hölder’s inequality we have∣∣ ∫
Ω

〈
|∇uin|pi(x)−2∇uin − |∇u|pi(x)−2∇ui,∇(uin − u)

〉∣∣
≤ |uin − ui|pi(x)|λnHi(T1z

1
n, T2z

2
n)− λHi(T1z

1, T2z
2)|p′i(x)

The arguments above ensures that (uin) is bounded in W
1,pi(x)
0 (Ω). Since λn → λ

and Hi(T1z
1
n, T2z

2
n)→ Hi(T1z

1, T2z
2) in Lp

′
i(x)(Ω) for i = 1, 2 we have∣∣ ∫

Ω

〈
|∇uin|pi(x)−2∇uin − |∇u|pi(x)−2∇ui,∇(uin − u)

〉∣∣→ 0.

Therefore uin → ui in Lpi(x)(Ω) for i = 1, 2 which proves the continuity of Φ.
Combining the fact that Φ(0, z1, z2) = (0, 0, 0) for all (z1, z2) ∈ Lp1(x)(Ω) ×

Lp2(x)(Ω) with the previous claims we have by Theorem 2.8 that the equation
Φ(λ, u, v) = (u, v) possesses an unbounded continuum C ⊂ R+ × Lp1(x)(Ω) ×
Lp2(x)(Ω) of solutions with (0, 0, 0) ∈ C.
Claim 3: C is bounded with respect to the parameter λ. Suppose that
there exists λ∗ > 0 such that λ ≤ λ∗ for all (λ, u1, u2) ∈ C. For (λ, u1, u2) ∈ C the
definition of Φ imply that

−∆p1(x)u1 = λH1(T1u1, T2u2) in Ω,

−∆p2(x)u2 = λH2(T1u1, T2u2) in Ω,

u1 = u2 = 0 on ∂Ω.

(3.5)

Using the test function ui in (3.5) and considering (3.1) we obtain∫
Ω

|∇ui|pi(x) ≤ λ∗C|ui|Lp(x) .

Suppose that |∇ui|Lp(x) > 1. Then using Proposition 2.1 and the Poincaré inequal-
ity we obtain that

|ui|pi−1

Lpi(x)
≤ λ∗C.

Thus C is bounded in R+ × Lp1(x)(Ω)× Lp2(x)(Ω), which is a contradiction.
Considering λ = 1, by (3.5) we have∫

Ω

|∇ui|pi(x)−2∇ui∇ϕ =

∫
Ω

(fi(x, T1u1, T2u2)|Tjuj |αi(x)

Lqi(x)

A(x, |Tjuj |Lri(x))

)
ϕ

+

∫
Ω

(gi(x, T1u1, T2u2)|Tjuj |γi(x)

Lsi(x)

A(x, |Tjuj |Lri(x))

)
ϕ,

(3.6)

for all ϕ ∈W 1,pi(x)
0 (Ω) where i, j = 1, 2 with i 6= j.
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Now we claim that ui ∈ [ui, ui] for i = 1, 2. To prove the claim we define

L1(u1 − u1)+ :=

∫
{u1≥u1}

〈
|∇u1|p1(x)−2∇u1 − |∇u1|p1(x)−2∇u1,∇(u1 − u1)

〉
.

Using the facts that T2u2 ∈ [u2, u2], ui(x) > 0 a.e. in Ω, i = 1, j = 2, considering
w = T2u2 and ϕ = (u1 − u1)+ in the first inequality of (1.3) and combining with
equation (3.6) we obtain

L1(u1 − u1)+ ≤
∫
{u1≥u1}

f1(x, u1, T2u2)(|u2|
α1(x)

Lq1(x) − |T2u2|α1(x)

Lq1(x))

A(x, |T2u2|Lr1(x))
(u1 − u1)

+

∫
{u1≥u1}

g1(x, u1, T2u2)(|u2|
γ1(x)

Ls1(x) − |T2u2|γ1(x)

Ls1(x))

A(x, |T2u2|Lr1(x))
(u1 − u1),

which implies that∫
{u1≥u1}

〈
|∇u1|p1(x)−2∇u1 − |∇u1|p1(x)−2∇u1,∇(u1 − u1)

〉
≤ 0.

Therefore u1 ≤ u1. The same reasoning imply the other inequalities. Since ui ∈
[ui, ui], we have Tiui = ui. Therefore the pair (u1, u2) is a weak positive solution
of (S). �

4. Applications

In this section we apply Theorem 1.1 to some nonlocal problems.

4.1. A sublinear problem: In this section, we use Theorem 1.1 to study the
nonlocal problem

−A(x, |v|Lr1(x))∆p1(x)u = (uβ1(x) + vγ1(x))|v|α1(x)

Lq1(x) in Ω,

−A(x, |u|Lr2(x))∆p2(x)v = (uβ2(x) + vγ2(x))|u|α2(x)

Lq2(x) in Ω,

u = v = 0 on ∂Ω.

(4.1)

This problem with p1(x) ≡ p1(x) ≡ 2, was considered in [43]. The result in this
section generalizes [43, Theorem 6].

Theorem 4.1. Suppose that pi, qi, ri, si, i = 1, 2 satisfy (H1) and αi, βi ∈ L∞(Ω),
i = 1, 2. Assume also that

0 < α+
1 + γ+

1 < p−i − 1, 0 <
α+

1

p−2 − 1
+

β+
1

p−1 − 1
< 1,

0 < α+
2 + γ+

2 < p−i − 1, 0 <
α+

2

p−1 − 1
+

β+
2

p−2 − 1
< 1

for i = 1, 2. Let a0 > 0 be a positive constant. Suppose that one of the following
two sets of conditions holds

A(x, t) ≥ a0 in Ω× [0,∞), (4.2)

or
0 < A(x, t) ≤ a0 in Ω× (0,∞) and

lim
t→+∞

A(x, t) = a∞ > 0 uniformly in Ω.
(4.3)

Then (4.1) has a positive solution.
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Proof. Suppose that (4.2) holds. We will start by constructing (u, v). Let λ > 0 be a

positive number, which will be chosen later and denote by zλ ∈W 1,p1(x)
0 (Ω)∩L∞(Ω)

and yλ ∈W 1,p2(x)
0 (Ω) ∩ L∞(Ω) the unique solutions of (2.1) respectively.

For λ > 0 sufficiently large it follows from Lemma 2.7 that there is a constant
K > 1 that does not depend on λ such that

0 < zλ(x) ≤ Kλ
1

p
−
1 −1 in Ω, (4.4)

0 < yλ(x) ≤ Kλ
1

p
−
2 −1 in Ω. (4.5)

Since α+
1 + γ+

1 < p−2 − 1 and
α+

1

p−2 −1
+

β+
1

p−1 −1
< 1, it is possible to choose λ > 1 such

that (4.4), (4.5) and

1

a0
(Kβ+

1 λ

β
+
1

p
−
1 −1

+
α
+
1

p
−
2 −1 +Kγ+

1 λ

α
+
1 +γ

+
1

p
−
2 −1 ) max{|K|α

−

Lq1(x) , |K|α
+

Lq1(x)} ≤ λ (4.6)

hold. By (4.4), (4.5) and (4.6), we obtain

1

a0
(z
β1(x)
λ + wγ1(x))|yλ|α1(x)

Lq1(x) ≤ λ,w ∈ [0, yλ].

Thus for w ∈ [0, yλ] we obtain

−∆p1(x)zλ ≥
1

A(x, |w|Lr1(x))
(z
β1(x)
λ + wγ1(x))|yλ|α1(x)

Lq1(x) in Ω,

zλ = 0 on ∂Ω.

Considering, if necessary, a larger λ > 0, the previous reasoning imply that

−∆p2(x)yλ ≥
1

A(x, |w|Lr2(x))
(wβ2(x) + yλ

γ2(x))|zλ|α2(x)

Lq2(x) in Ω,

yλ = 0 on ∂Ω,

for all w ∈ [0, zλ].
Now we construct (ui, vi), i = 1, 2. Since ∂Ω is C2, there is a constant δ > 0

such that d ∈ C2(Ω3δ) and |∇d(x)| ≡ 1, where d(x) := dist(x, ∂Ω) and Ω3δ := {x ∈
Ω; d(x) ≤ 3δ}. From [34, Page 12], we have that, for σ ∈ (0, δ) sufficiently small,
the function φi = φi(k, σ), i = 1, 2 defined by

φi(x) =


ekd(x) − 1 if d(x) < σ,

ekσ − 1 +
∫ d(x)

σ
kekσ

(
2δ−t
2δ−σ

) 2

p
−
i
−1 dt if σ ≤ d(x) < 2δ,

ekσ − 1 +
∫ 2δ

σ
kekσ

(
2δ−t
2δ−σ

) 2

p
−
i
−1 dt if 2δ ≤ d(x),

belongs to C1
0 (Ω), where k > 0 is an arbitrary number and that

−∆pi(x)(µφi)
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=



−k(kµekd(x))pi(x)−1
[
(pi(x)− 1) + (d(x) + ln kµ

k )∇pi(x)∇d(x) + ∆d(x)
k

]
if d(x) < σ,{

1
2δ−σ

2(pi(x)−1)

p−i −1
−
( 2δ−d(x)

2δ−σ
)[

ln kµekσ
( 2δ−d(x)

2δ−σ
) 2

p
−
i
−1∇pi(x)∇d(x)

+∆d(x)
]}

(kµekσ)pi(x)−1
( 2δ−d(x)

2δ−σ
) 2(pi(x)−1)

p
−
i
−1

−1

if σ < d(x) < 2δ,

0 if 2δ < d(x),

for all µ > 0 and i = 1, 2.
Define Aλ := max

{
A(x, t) : (x, t) ∈ Ω ×

[
0,max{|yλ|Lr1(x) |zλ|Lr2(x)}

]}
. Then

we have

a0 ≤ A(x, |w|Lr1(x)) ≤ Aλ in Ω

for all w ∈ [0, yλ]. Let σ = 1
k ln 2 and µ = e−ak where

a =
min{p−1 − 1, p−2 − 1}

max{maxΩ |∇p1|+ 1,maxΩ |∇p2|+ 1}
.

Then ekσ = 2 and kµ ≤ 1 if k > 0 is sufficiently large.
Let x ∈ Ω with d(x) < σ. If k > 0 is large enough we have |∇d(x)| = 1 and then∣∣d(x) +

ln(kµ)

k

∣∣|∇p1(x)||∇d(x)| ≤
(
|d(x)|+ | ln(kµ)|

k

)
|∇p1(x)|

≤
(
σ − ln(kµ)

k

)
|∇p1(x)|

=
( ln 2

k
− ln k

k

)
|∇p1(x)|+ a|∇p1(x)|

< p−1 − 1.

(4.7)

Note also that there exists a constant A > 0, that does not depend on k, such
that |∆d(x)| < A for all x ∈ ∂Ω3δ. Using the last inequality and the expression of
−∆p1(x)(µφ), we obtain −∆p1(x)(µφ1) ≤ 0 for x ∈ Ω with d(x) < σ or d(x) > 2δ
for k > 0 large enough. Therefore

−∆p1(x)(µφ1) ≤ 0 ≤ 1

Aλ
(µφ1)β1(x)|µφ2|α1(x)

Lq1(x)

≤ 1

Aλ
((µφ1)β1(x) + wγ1(x))|µφ2|α1(x)

Lq1(x)

for all w ∈ L∞(Ω) with w ≥ µφ2 and d(x) < σ or 2δ < d(x). Using the idea in the
proof of [34, estimate (3.10)] we obtain

−∆p1(x)(µφ1) ≤ C̃(kµ)p
−
1 −1| ln kµ|

= C̃(kµ)p
−
1 −1

∣∣ ln k

eak
∣∣ if σ < d(x) < 2δ.

(4.8)

From the proof of [44, Theorem 2] and the fact that α+
1 + γ+

1 < p−1 − 1 we obtain

lim
k→+∞

C̃kp
−
1 −1

eak(p−1 −1−(α+
1 +γ+

1 ))

∣∣ ln k

eak
∣∣ = 0. (4.9)

Note that φ1(x) ≥ 1 if σ ≤ d(x) < 2δ because φ1(x) ≥ ekσ − 1 and ekσ = 2 for
all k > 0. Thus, there is a constant C0 > 0 that does not depend on k such that
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|φ2|α1(x)

Lq1(x)(Ω)
≥ C0 if σ < d(x) < 2δ. By (4.9), we can choose k > 0 large enough

such that
C̃kp

−
1 −1

eak[(p−1 −1)−(α+
1 +β+

1 )]

∣∣ ln k

eak
∣∣ ≤ C0

Aλ
. (4.10)

Therefore from (4.8) and (4.10) we have

−∆p1(x)(µφ1) ≤ 1

Aλ
((µφ1)β1(x) + wγ1(x))|µφ2|α1(x)

Lq1(x) ,

for all w ∈ L∞(Ω) with w ≥ µφ2 and σ < d(x) < 2δ for k > 0 large enough. Thus
it is possible to conclude that

−∆p1(x)(µφ1) ≤ 1

Aλ
((µφ1)β1(x) + wγ1(x))|µφ2|α1(x)

Lq1(x) in Ω.

Fix k > 0 satisfying the above property and −∆p1(x)(µφ1) ≤ 1. For λ > 1 we

have −∆p1(x)(µφ1) ≤ −∆p1(x)zλ. Therefore µφ1 ≤ zλ. Since α+
2 + γ+

2 < p−2 − 1, a
similar reasoning imply that there is µ > 0 small enough such that

−∆p2(x)(µφ2) ≤ 1

A(x, |w|Lr2 (x))
(wβ2 + (µφ2)γ2)|µφ1|α2(x)

Lq2(x)(Ω)
in Ω

for all w ∈ L∞(Ω) with w ≥ µφ1 and that µ2φ ≤ yλ. The first part of the result is
proved.

Now suppose that 0 < A(x, t) ≤ a0 in Ω× (0,∞). Let δ, σ, µ, a, λ, zλ, yλ and φi
for i = 1, 2 as before. From the previous arguments there exist k > 0 large enough
and µ > 0 small such that

−∆p1(x)(µφ1) ≤ 1, −∆p1(x)(µφ) ≤ 1

a0
((µφ1)β1(x) + wγ1(x))|µφ2|α1(x)

Lq1(x) (4.11)

in Ω for all w ∈ [µφ2, yλ], and

−∆p2(x)(µφ2) ≤ 1, −∆p2(x)(µφ2) ≤ 1

a0
(wβ2(x) + (µφ2)γ2(x))|µφ1|α2(x)

Lq2(x) (4.12)

in Ω for all w ∈ [µφ1, zλ].
Since limt→∞A(x, t) = a∞ > 0 uniformly in Ω there is a large constant a1 > 0

such that A(x, t) ≥ a∞
2 on Ω× (a1,∞). Let

mk := min
{
A(x, t) : (x, t) ∈ Ω× [min{|µφ1|Lr1(x) , |µφ2|Lr2(x)}, a1]

}
> 0

and Ak := min
{
mk,

a∞
2

}
. Then we have

A(x, t) ≥ Ak in Ω× [min{|µφ1|Lr1(x) , |µφ2|Lr2(x)},∞).

Fix k > 0 satisfying (4.11) and (4.12). Consider λ > 1 such that (4.4), (4.5) and

1

Ak

(
Kβ+

1 λ

β
+
1

p
−
1 −1

+
α
+
1

p
−
2 −1 +Kγ+

1 λ

α
+
1 +γ

+
1

p
−
2 −1

)
max{|K|α

−
1

Lq1(x) , |K|
α+

1

Lq1(x)} ≤ λ,

1

Ak

(
Kβ+

2 λ

β
+
2 +α

+
2

p
−
1 −1 +Kγ+

2 λ

γ
+
2

p
−
2 −1

+
α
+
2

p
−
1 −1

)
max{|K|α

+
2

Lq2(x) , |K|
α−2
Lq2(x)} ≤ λ,

where K > 1 is a constant that does not depend on k or λ (see Lemma 2.7).
Therefore,

−∆p1(x)zλ ≤
1

A(x, |w|Lr1(x))
(z
β1(x)
λ + wγ1(x))|yλ|α1(x)

Lq1(x) in Ω, w ∈ [µφ2, yλ].
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Arguing as before and considering a suitable choice for λ and k we obtain

−∆p2(x)yλ ≤
1

A(x, |w|Lr2(x))
(wβ2(x) + y

β2(x)
λ )|zλ|α2(x)

Lq2(x) in Ω, w ∈ [µφ1, zλ].

The comparison principle implies that µφ1 ≤ zλ and µφ2 ≤ yλ if µ is small. The
proof is complete. �

4.2. A concave-convex problem. In this section we consider the following non-
local problem with concave-convex nonlinearities

−A(x, |v|Lr1(x))∆p1(x)u = λ|u|β1(x)−1u|v|α1(x)

Lq1(x) + θ|v|η1(x)−1v|v|γ1(x)

Ls1(x) in Ω,

−A(x, |u|Lr2(x))∆p2(x)v = λ|v|β2(x)−1v|u|α2(x)

Lq2(x) + θ|u|η2(x)−1u|u|γ2(x)

Ls2(x) in Ω,

u = v = 0 on ∂Ω.

(4.13)
The scalar and local version of (4.13) with p(x) ≡ 2 and constant exponents was
considered in the famous paper by Ambrosetti-Brezis-Cerami [5] in which a sub-
supersolution argument is used. In [43], problem (4.13) was studied with p(x) ≡ 2.
The following result generalizes [43, Theorem 7].

Theorem 4.2. Suppose that ri, pi, qi, si, αi, ηi satisfy (H1) for i = 1, 2 and that
βi ∈ L∞(Ω), i = 1, 2 are nonnegative functions with 0 < α−i + β−i ≤ α+

i + β+
i <

p−i − 1, i = 1, 2. Let a0, b0 > 0 be positive numbers. Then the following assertions
hold

(1) If p+
2 −1 < η−1 +γ−1 , p+

1 −1 < η−2 +γ−2 and A(x, t) ≥ a0 in Ω× [0, b0], then
for each θ > 0 there exists λ0 > 0 such that for each λ ∈ (0, λ0), problem
(4.13) has a positive solution uλ,θ.

(2) p+
2 − 1 < η−1 + γ−1 , p+

1 − 1 < η−2 + γ−2 and

β+
1

p−1 − 1
+

α+
1

p−2 − 1
< 1,

β+
2

p−2 − 1
+

α+
2

p−1 − 1
< 1 .

Suppose that 0 < A(x, t) ≤ a0 in Ω× (0,∞) and limt→∞A(x, t) = b0 uniformly in
Ω. Then given a λ > 0, there exists θ0 > 0 such that for each θ ∈ (0, θ0), problem
(4.13) has a positive solution uλ,θ.

Proof. Suppose that (1) occurs. Consider zλ ∈ W
1,p1(x)
0 (Ω) ∩ L∞(Ω) and yλ ∈

W
1,p2(x)
0 (Ω) ∩ L∞(Ω) the unique solutions of (2.1) respectively, where λ ∈ (0, 1)

will be chosen later.
Lemma 2.7 imply that for λ > 0 small enough there exists a constant K > 1

that does not depend on λ such that

0 < zλ(x) ≤ Kλ
1

p
+
1 −1 in Ω, (4.14)

0 < yλ(x) ≤ Kλ
1

p
+
2 −1 in Ω. (4.15)

To construct ui we will prove, for each θ > 0, that there exists λ0 > 0 such that

1

a0

(
λ|zλ|β1(x)−1zλ|yλ|α1(x)

Lq1(x) + θ|w|η1(x)−1w|yλ|γ1(x)

Ls1(x)

)
≤ λ, ∀w ∈ [0, yλ], (4.16)

1

a0

(
λ|yλ|β2(x)−1yλ|zλ|α2(x)

Lq2(x) + θ|w|η2(x)−1w|zλ|γ2(x)

Ls2(x)

)
≤ λ, ∀w ∈ [0, zλ]. (4.17)
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Let

K := max
i=1,2

{
Kβ+

i |K|α
+
i

Lqi(x)
,Kβ+

i |K|α
−
i

Lqi(x)
,Kη+i |K|γ

+
i

Lsi(x)
,Kη+i |K|γ

−
i

Lsi(x)

}
. (4.18)

Since 0 < α−1 + β−1 and p+
2 − 1 < η−1 + γ−1 , there exists λ0 > 0 such that

1

a0

(
λ

p
+
1 −1+β

−
1

p
+
1 −1

+
α
−
1

p
+
2 −1K + θλ

η
−
1 +γ

−
1

p
+
2 −1 K

)
≤ λ, (4.19)

for all λ ∈ (0, λ0).

If necessary, we consider small λ0 > 0 such that |yλ|Lr1(x) ≤ |K|Lr1(x)λ
1

p
+
2 −1 ≤ b0

for all λ ∈ (0, λ0). Therefore A(x, |w|Lr1(x)) ≥ a0, w ∈ [0, yλ]. It follows from (4.14),
(4.15) and (4.19) that (4.16) holds. Then we can conclude that

−∆p1(x)zλ ≥
1

A(x, |w|Lr1(x))

(
λzλ

β1(x)|yλ|α1(x)

Lq1(x) + θwη1(x)|yλ|γ1(x)

Ls1(x)

)
, (4.20)

for all w ∈ [0, yλ]. Assume also that λ0 satisfies

1

a0

(
λ

p
+
2 −1+β

−
2

p
+
2 −1

+
α
−
2

p
+
1 −1K + θλ

η
−
2 +γ

−
2

p
+
1 −1 K

)
≤ λ (4.21)

and |zλ|Lr2(x) ≤ |K|Lr2(x)λ
1

p
+
1 −1 ≤ b0 for all λ ∈ (0, λ0). Therefore A(x, |w|Lr2(x))

≥ a0, w ∈ [0, zλ]. Thus from (4.14), (4.15) and (4.21) we have that (4.17) holds.
Then we can conclude that

−∆p2(x)yλ ≥
1

A(x, |w|Lr2(x))

(
λzλ

β2(x)|zλ|α2(x)

Lq2(x) + θwη2(x)|zλ|γ2(x)

Ls2(x)

)
(4.22)

for all w ∈ [0, zλ].
To construct ui consider φi, δ, σ, µ as in the proof of Theorem 4.1. Using the

inequalities α+
i + β+

i < p−i − 1, i = 1, 2 and repeating the arguments of Theorem
4.1, we have that exists a number µ > 0 such that

µφ1 ≤ zλ, µφ2 ≤ yλ, −∆p1(x)(µφ1) ≤ λ,

−∆p1(x)(µφ1) ≤ 1

A(x, |w|Lr1(x))

(
λ(µφ1)β1(x)|µφ1|α1(x)

Lq1(x) + θwη1(x)|µφ2|γ1(x)

Ls1(x)

)
,

for all w ∈ [µφ2, yλ] and

−∆p2(x)(µφ2) ≤ λ,

−∆p2(x)(µφ2) ≤ 1

A(x, |w|Lr2(x))

(
λ(µφ2)β2(x)|µφ1|α2(x)

Lq2(x) + θwη2(x)|µφ1|γ2(x)

Ls2(x)

)
,

for all w ∈ [µφ2, zλ]. Then by Theorem 1.1 we have the desired result.
Now we consider the condition (2). Let φi, δ and σi, i = 1, 2 as in the first part

of the result and let λ > 0 fixed. Since α+
i + β+

i < p−i − 1, i = 1, 2 there exists
µ > 0 depending only on λ such that

−∆pi(x)(µφi) ≤ 1, −∆pi(x)(µφ) ≤ 1

a0
λ(µφi)

βi(x)|µφj |αi(x),

for w ∈ L∞(Ω) with w ≥ µφj , i 6= j and i, j = 1, 2.

Let M > 0 that will be chosen later and assume zM ∈W 1,p1(x)
0 (Ω)∩L∞(Ω) is a

solution of

−∆p1(x)zM = M in Ω,
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zM = 0 on ∂Ω,

and yM ∈W 1,p2(x)
0 (Ω) ∩ L∞(Ω) is a solutions of

−∆p2(x)yM = M in Ω,

yM = 0 on ∂Ω .

For M large enough from Lemma 2.7, there exists a constant K > 1 that does not
depend on M such that

0 < zM (x) ≤ KM
1

p
−
1 −1 in Ω, (4.23)

0 < yM (x) ≤ KM
1

p
−
2 −1 in Ω. (4.24)

To construct ui we will show that exist θ0 > 0 depending on λ with the following
property: if we assume θ ∈ (0, θ0) then there is a constant M depending only on λ
and θ satisfying

M ≥ 1

A(x, |w|Lr1(x))

(
λzM

β1(x)|yM |α1(x)

Lq1(x) + θwη1(x)|yM |γ1(x)

Ls1(x)

)
, (4.25)

for w ∈ [µφ2, yM ], and

M ≥ 1

A(x, |w|Lr2(x))

(
λyM

β2(x)|zM |α2(x)

Lq2(x) + θwη2(x)|zM |γ2(x)

Ls2(x)

)
, (4.26)

for w ∈ [µφ1, zM ].
Since A is continuous and limt→+∞A(x, t) = b0 > 0 uniformly in Ω, there exists

a1 > 0 large enough such that A(x, t) ≥ b0
2 in Ω× (a1,+∞). Define

mλ := {A(x, t) : (x, t) ∈ Ω× [min{|µφ1|Lr1(x) , |µφ2|Lr2(x)}, a1]}

andAλ := min{mλ,
b0
2 }. ThenA(x, t) ≥ Aλ in Ω×[min{|µφ1|Lr1(x) , |µφ2|Lr2(x)},∞).

Thus Aλ ≤ A(x, |w|Lr1(x)) ≤ a0 for all w ∈ L∞(Ω) with µφ1 ≤ w or µφ2 ≤ w. Note
that from (4.23) and (4.24) the inequalities (4.25) and (4.26) hold if we have simul-
taneously the inequalities

1

Aλ

(
λKM

β
+
1

p
−
1 −1

+
α
+
1

p
−
2 −1 + θKM

η
+
1 +γ

+
1

p
−
2 −1

)
≤M,

1

Aλ

(
λKM

β
+
2

p
−
2 −1

+
α
+
2

p
−
1 −1 + θKM

η
+
2 +γ

+
2

p
−
1 −1

)
≤M,

where K is given by (4.18). To obtain such inequalities we will study the inequality

1

Aλ
(
λKMρ−1 + θKMτ−1

)
≤ 1 (4.27)

where

ρ := max
{ β+

1

p−1 − 1
+

α+
1

p−2 − 1
,

β+
2

p−2 − 1
+

α+
2

p−1 − 1

}
,

τ := max
{η+

1 + γ+
1

p−2 − 1
,
η+

2 + γ+
2

p−1 − 1

}
.

Define

Ψλ,θ(M) :=
λK

Aλ
Mρ−1 +

θK

Aλ
Mτ−1, M > 0.
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Since 0 < ρ < 1 and τ > 1 we have limM→0+ Ψλ,θ(M) = limM→+∞Ψλ,θ(M) =
+∞. Note that Ψλ,θ

′(M) = 0 if, and only if

M = Mλ,θ :=
(λ
θ

) 1
τ−ρ c, c :=

(1− ρ
τ − 1

) 1
τ−ρ

. (4.28)

From the above properties of Ψλ,µ we have that the global minimum of Ψλ,θ is
attained at Mλ,θ. The inequality (4.27) is equivalent to finding Mλ,θ > 0 such that
Ψλ,θ(Mλ,θ) ≤ 1. By (4.28), we have that Ψλ,θ(Mλ,θ) ≤ 1, if and only if

λK

Aλ
(λ
θ

) ρ−1
τ−ρ cρ−1 + θ1−( τ−1

τ−ρ ) K

Aλ
λ
τ−1
τ−ρ cτ−1 ≤ 1. (4.29)

Thus from (4.28) and (4.29), we have that given λ > 0 there exists θ0 > 0 such that
for each θ ∈ (0, θ0) there exists Mλ,θ satisfying

Mλ,θ ≥ 1 and
1

Aλ
(
λKMλ,θ

ρ−1 + θKMλ,θ
τ−1
)
≤ 1.

Therefore,

−∆p1(x)zM ≥
1

Aλ

(
λzM

β1(x)|yM |α1(x)

Lq1(x) + θwη1(x)|yM |γ1(x)

Ls1(x)

)
in Ω,

for all w ∈ [µφ2, yM ], and

−∆p2(x)yM ≥
1

Aλ

(
λyM

β2(x)|zM |α2(x)

Lq2(x) + µwη2(x)|zM |γw(x)

Lsw(x)

)
in Ω,

for all w ∈ [µφ1, zM ].
Since Mλ,θ → +∞ as θ → 0+ and the map θ 7−→Mλ,θ is decreasing we have

−∆p1(x)(µφ1) ≤ 1 ≤Mλ,θ0 ≤Mλ,θ, θ ∈ (0, θ0)

for θ0 small enough. Similarly, we have −∆p2(x)(µφ2) ≤ Mλ,θ0 ≤ Mλ,θ for all
θ ∈ (0, θ0), for θ0 small. The weak maximum principle imply that µφ1 ≤ zM and
µφ2 ≤ yM . The proof is complete. �

4.3. A generalization of the logistic equation. In the previous sections, we
considered at least one of the conditions A(x, t) ≥ a0 > 0 or 0 < A(x, t) ≤ a∞, t >
0. In this section we study a generalization of the classic logistic equation where
the function A(x, t) satisfies

A(x, 0) ≥ 0, lim
t→0+

A(x, t) =∞, and lim
t→+∞

A(x, t) = ±∞.

We consider the problem

−A(x, |v|Lr1(x))∆p1(x)u = λf1(u)|v|α1(x)

Lq1(x) in Ω,

−A(x, |u|Lr2(x))∆p2(x)v = λf2(v)|u|α2(x)

Lq2(x) in Ω,

u = v = 0 on ∂Ω.

(4.30)

We suppose that there are numbers θi > 0, i = 1, 2 such that the functions fi :
[0,∞)→ R satisfy the following conditions:

(H2) fi ∈ C0([0, θi],R), i = 1, 2;
(H3) fi(0) = fi(θi) = 0, fi(t) > 0 in (0, θi) for i = 1, 2.

Problem (4.30) is a generalization of the problemes studied in [16, 18, 43]. The
next result generalizes [43, Theorem 8].
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Theorem 4.3. Suppose that ri, pi, qi, αi satisfy (H1). Also that fi, i = 1, 2 satisfies
(H2), (H3) and that A(x, t) > 0 in Ω ×

(
0,max{|θ1|Lr2(x) , |θ2|Lr1(x)}

]
. Then there

exists λ0 > 0 such that (4.30) has a positive solution for λ ≥ λ0.

Proof. Consider the functions f̃i(t) = fi(t) for t ∈ [0, θi], and f̃i(t) = 0 for t ∈
R \ [0, θi], i = 1, 2. The functional

Jλ(u, v)

=

∫
Ω

1

p1(x)
|∇u|p1(x)dx− λ

∫
Ω

F̃1(u)dx+

∫
Ω

1

p2(x)
|∇v|p2(x)dx− λ

∫
Ω

F̃2(v)dx

:= J1,λ(u) + J2,λ(v),

where F̃i(t) =
∫ t

0
f̃i(s)ds is of class C1(W

1,p1(x)
0 ×W 1,p2(x)

0 (Ω),R) and W
1,p1(x)
0 (Ω)×

W
1,p2(x)
0 (Ω) is a Banach space endowed with the norm

|(u, v)| := max{|∇u|p1(x), |∇v|p2(x)}.

Since |f̃i(t)| ≤ C, t ∈ R for some constant which does not depends on i = 1, 2 we

have that J is coercive. Thus J has a minimum (zλ, wλ) ∈W 1,p1(x)
0 (Ω)×W 1,p2(x)

0 (Ω)
with

−∆p1(x)zλ = λf̃1(zλ) in Ω,

zλ = 0 on ∂Ω,
(4.31)

and
−∆p2(x)wλ = λf̃2(wλ) in Ω,

wλ = 0 on ∂Ω.
(4.32)

Note that the unique solutions of (4.31) and (4.32) are given by the minimizers of
functionals J1,λ and J2,λ respectively.

Consider a function ϕ0 ∈ W 1,pi(x)
0 (Ω), i = 1, 2 with F̃i(ϕ0) > 0, i = 1, 2. Define

(z0, w0) := (zλ̃0
, wλ̃0

), where λ̃0 satisfies∫
Ω

1

pi(x)
|∇ϕ0|pi(x)dx < λ̃0

∫
Ω

F̃i(ϕ0)dx, i = 1, 2.

We have J1,λ̃0
(z0) ≤ J1,λ̃0

(ϕ0) < 0 and that J2,λ̃0
(z0) < 0. Therefore z0 6= 0 and

w0 6= 0. Since −∆p1(x)z0 and −∆p2(x)w0 are nonnegative, we have z0, w0 > 0
in Ω. Note that by [28, Theorem 4.1] and [25, Theorem 1.2], we obtain that
z0, w0 ∈ C1,α(Ω) for some α ∈ (0, 1].

Using the test function ϕ = (z0 − θ1)+ ∈W 1,p1(x)
0 (Ω) in (4.31) we obtain∫

Ω

|∇z0|p1(x)−2∇z0∇(z0 − θ1)+dx = λ̃0

∫
{z0>θ}

f̃1(z0)(z0 − θ1)dx = 0.

Therefore,∫
{z0>θ}

〈
|∇z0|p(x)−2∇z0 − |∇θ1|p1(x)−2∇θ1,∇(z0 − θ1)

〉
dx = 0,

which imply (z0 − θ1)+ = 0 in Ω. Thus 0 < z0 ≤ θ1. A similar reasoning provides
0 < w0 ≤ θ2.

Note that there is a constant C > 0 such that |z0|α1(x)

Lq1(x) , |w0|α2(x)

Lq2(x) ≥ C. We
define

A0 = max
{
A(x, t) : (x, t) ∈ Ω× [min{|z0|Lr2(x) , |w0|Lr1(x)},
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max{|θ1|Lr2(x) , |θ2|Lr1(x)}
}

and µ0 = A0

C . Then, we have

−∆p1(x)z0 = λ̃0f1(z0)

=
1

A0
λ̃0µ0f1(z0)|w0|α1(x)

Lq1(x)

A0

µ0|z0|α1(x)

Lq1(x)

≤ 1

A0
λ̃0µ0f1(z0)|w0|α1(x)

Lq1(x) .

Thus for each λ ≥ λ0 := λ̃0µ0 and w ∈ [w0, θ2], we obtain

−∆p1(x)z0 ≤
1

A(x, |w|Lr1(x))
λf1(z0)|w0|α1(x)

Lq1(x) .

If necessary, we can consider a larger λ0 > 0 such that

−∆p2(x)w0 ≤
1

A(x, |w|Lr2(x))
λf2(w0)|z0|α2(x)

Lq2(x) ,

for all λ ≥ λ0 and w ∈ [z0, θ1].
Since fi(θi) = 0, i = 1, 2, we have that (z0, θ1) and (w0, θ2) are sub-super

solutions pairs for (4.30). The proof is complete. �

We remark that is possible to use the functions φi from the proof of Theorem
4.1 for problem (4.30). However, more restrictions on the functions pi, fi, i = 1, 2
are needed.
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