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Abstract. In this article, we define a p-generalized modified error function
as the solution to a non-linear ordinary differential equation of second order,

with a Robin type boundary condition at x = 0. We prove existence and

uniqueness of a non-negative C∞ solution by using a fixed point argument.
We show that the p-generalized modified error function converges to the p-

modified error function defined as the solution to a similar problem with a

Dirichlet boundary condition. In both problems, for p = 1, the generalized
modified error function and the modified error function are recovered. In

addition, we analyze the existence and uniqueness of solution to a problem
with a Neumann boundary condition.

1. Introduction

Ceratani et al. [5] studied a fusion Stefan problem with variable thermal con-
ductivity and a Robin boundary condition at the fixed face x = 0. They studied

ρc
∂T

∂t
=

∂

∂x

(
k(T )

∂T

∂x

)
, 0 < x < s(t), t > 0, (1.1)

k(T (0, t))
∂T

∂x
(0, t) =

h√
t
[T (0, t)− T

0
], t > 0, (1.2)

T (s(t), t) = T
f
, t > 0, (1.3)

k (T (s(t), t))
∂T

∂x
(s(t), t) = −ρlṡ(t), t > 0, (1.4)

s(0) = 0, (1.5)

where the unknown functions are the temperature T and the free boundary s sep-
arating both phases. The parameters ρ > 0 (density), l > 0 (latent heat per unit
mass), Tf (phase-change temperature), T0 > Tf (bulk temperature), h > 0 (coef-
ficient that characterizes the heat transfer at x = 0), and c (specific heat) are all
known constants.

Problem (1.1)–(1.5) is a phase-change problem known in the literature as a Stefan
problem. It corresponds to the melting of a semi-infinite material which is initially
solid at the phase-change temperature Tf . As T0 > Tf , a phase-change interface
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x = s(t), t > 0 is beginning at t = 0 with the initial position s(0) = 0. Then, the
temperature of the liquid phase is T = T (x, t) defined in the domain 0 < x < s(t),
t > 0, and the temperature of the solid phase is T = 0 defined in the domain
x > s(t), t > 0.

In [6], the thermal conductivity k is defined as

k(T ) = k0

(
1 + δ

( T − Tf
T0 − Tf

))
, (1.6)

where δ is a given positive constant and k0 is the reference thermal conductivity.
The existence of a solution to (1.1)–(1.5) when the thermal conductivity k(T ) is
defined by (1.6) has been proved through the existence of what the authors in [5]
called a generalized modified error function (GME), which is defined as the solution
to the ordinary differential

[(1 + δy(x))y′(x)]′ + 2xy′(x) = 0, 0 < x < +∞, (1.7a)(
1 + δy(0)

)
y′(0)− γy(0) = 0, (1.7b)

y(+∞) = 1, (1.7c)

where

γ = 2 Bi, Bi =
h
√
α0

k0
(generalized Biot number), (1.8)

α0 =
k0

ρc
(thermal diffusivity). (1.9)

The solution to (1.1)–(1.5) is given as a function of the solution of (1.7) through
the similarity variable x/(2

√
α0t), see [5, 6, 12]. More explanations are given in

[1, 9, 14].
Motivated by [10] we define a generalized thermal conductivity as

k(T ) = k0

(
1 + δ

( T − Tf
T0 − Tf

)p)
, p ≥ 1. (1.10)

Then the existence of a solution to (1.1)–(1.5) with k given by (1.10) will be
studied through the p-generalized modified error function (p-GME) which we define
as the solution to the nonlinear differential problem

[(1 + δyp(x))y′(x)]′ + 2xy′(x) = 0, 0 < x < +∞, (1.11a)

(1 + δyp(0))y′(0)− γy(0) = 0, (1.11b)

y(+∞) = 1 . (1.11c)

Note that when p = 1, we recover the problem studied in [4, 5] and originally
defined in [6, 12]. Others studies for p = 1 can be found in [2, 13]. In that sense, the
p-GME function constitutes a mathematical generalization of the GME function.

With the purpose of proving existence and uniqueness of the p-GME function,
i.e. a solution to (1.11), we define a convenient contracting mapping, in Section 2. In
Section 3, we study the asymptotic behavior of the p-GME function when γ →∞.
We will show that this function converges to the solution of an ordinary differential
equation that arises by changing the Robin condition at x = 0 [3] by a Dirichlet
condition. Finally, in Section 4 we change the Robin condition by a Neumann
condition in a solidification process and analyze the existence and uniqueness of a
new ordinary differential problem. In conclusion, the aim of this paper is to prove
existence and uniqueness of a solution to three ordinary differential problems that
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have been motivated by Stefan problems. This is done imposing different boundary
conditions at the fixed face x = 0: Robin, Dirichlet and Neumann conditions.

2. Existence and uniqueness of the p-GME function

Let us define

X = {h : R+
0 → R : h is a bounded and continuous real-valued function}, (2.1)

K = {h ∈ X : ‖h‖∞ ≤ 1, 0 ≤ h, h(+∞) = 1}. (2.2)

We remark that K is a non-empty closed convex and bounded subset of the
Banach space X with the norm

‖h‖∞ = sup
x∈R+

0

|h(x)| <∞;

see [7, page 2487], [8, page 152], [11, page 132].
In this section we prove existence and uniqueness of the p-GME function (prob-

lem (1.11)) by using the Banach fixed point theorem. First, we show that the
ordinary differential problem (1.11) becomes equivalent to an integral equation.
We consider that γ is a parameter for problem (1.11), and in Section 3 we will
study the asymptotic behavior when γ →∞.

Theorem 2.1. Let δ ≥ 0, γ > 0, p ≥ 1. For each γ > 0, the function yγ ∈ K
is a solution to problem (1.11) if and only if yγ is a fixed point to the operator
Tγ : K → K given by

Tγ(h)(x) =
1 + γ

∫ x
0
fh(η)dη

1 + γ
∫∞

0
fh(η)dη

, x ≥ 0, (2.3)

with

fh(x) =
1

Ψh(x)
exp

(
− 2

∫ x

0

ξ

Ψh(ξ)
dξ
)
, Ψh(x) = 1 + δhp(x). (2.4)

Proof. Notice first that for each y = yγ ∈ K we can easily obtain

exp(−η2)

1 + δ
≤ fy(η) ≤ exp

(
− η2

1 + δ

)
, (2.5)

from where it follows that

0 <
γ
√
π

2(1 + δ)
< 1 + γ

∫ ∞
0

fy(η)dη ≤ 1 +
γ
√

1 + δ
√
π

2
. (2.6)

Taking into account (2.6), Tγ(y) is a continuous function, since y ∈ X. Also,
according to (2.1)–(2.3) and (2.6), Tγ(y) ∈ K.

Through the substitution v = y′, the ordinary differential equation (1.7a) is
equivalent to

−
Ψ′y(x) + 2x

Ψy(x)
=
v′(x)

v(x)
,

from where we obtain

y(x) = y(0) + c0

∫ x

0

fy(η)dη.

Then, condition (1.7b) is satisfied if and only if c0 = γy(0). In addition, from (1.7c)
we obtain

y(0) =
(

1 + γ

∫ ∞
0

fy(η)dη
)−1

. (2.7)
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Therefore, y is a solution to problem (1.11) if and only if y is a fixed point of the
operator Tγ , i.e. y(x) = Tγ(y)(x) for all x ≥ 0. Conversely, if y is a fixed point of
the operator Tγ we obtain immediately that (1.7c) is verified, and y(0) is given by
(2.7). Then, by differentiation (1.7a) and (1.7b) hold, and then y is a solution of
(1.11). �

Remark 2.2. The notation yγ , Tγ is adopted to emphasize the dependence of the
solution to (1.11) on γ, although it also depends on p and δ. This fact is going to
facilitate the subsequent analysis of the asymptotic behavior of yγ when γ → ∞,
to be presented in Section 3.

By Theorem 2.1, we will focus on proving that Tγ is a contracting mapping on
K. For that purpose, we need the following lemmas.

Lemma 2.3. Let y1, y2 ∈ K, δ ≥ 0, γ > 0, p ≥ 1 and x ≥ 0. Then, the following
estimates hold: √

π

2(1 + δ)
≤
∣∣ ∫ ∞

0

fy1(η)dη
∣∣ ≤ √1 + δ

√
π

2
, (2.8)∣∣ 1

Ψy1(η)
− 1

Ψy2(η)

∣∣ ≤ δp‖y1 − y2‖∞, (2.9)

∣∣ exp
(∫ η

0

−2ξ

Ψy1(ξ)
dξ
)
− exp

(∫ η

0

−2ξ

Ψy2(ξ)
dξ
)∣∣ ≤ 2δpη2

exp( η2

1+δ )
‖y1 − y2‖∞, (2.10)∫ x

0

|fy1(η)− fy2(η)|dη ≤
√
π

2
δp
√

1 + δ(2 + δ)‖y1 − y2‖∞, (2.11)∣∣ 1

1 + γ
∫∞

0
fy1(η)dη

− 1

1 + γ
∫∞

0
fy2(η)dη

∣∣
≤ 2(1 + δ)5/2

γ
√
π

δp(2 + δ)‖y1 − y2‖∞
(2.12)

Proof. We follow the method was developed in [4].
Inequality (2.8) follows from integrating (2.5) in (0,+∞). For inequality (2.9)

we note that from the Mean Value Theorem applied to the function r(x) = xp and
the fact that 1 ≤ Ψy(x) ≤ 1 + δ for all y ∈ K, we obtain∣∣ 1

Ψy1(η)
− 1

Ψy2(η)

∣∣ ≤ δ|yp2(η)− yp1(η)
∣∣ ≤ δp‖y2 − y1‖∞ .

For inequality (2.10), applying the Mean Value Theorem to r(x) = exp(−2x) we
have ∣∣∣ exp

(∫ η

0

−2ξ

Ψy1(ξ)
dξ
)
− exp

(∫ η

0

−2ξ

Ψy2(ξ)
dξ
)∣∣∣

≤ 2 exp
(
− η2

1 + δ

)∫ η

0

∣∣ ξ

Ψy1(ξ)
− ξ

Ψy2(ξ)

∣∣dξ
≤ 2 exp

(
− η2

1 + δ

)
η

∫ η

0

∣∣ 1

Ψy1(ξ)
− 1

Ψy2(ξ)

∣∣dξ .
Taking into account (2.9) we obtain the corresponding estimate. For inequality
(2.11), from items (2.9) and (2.10) we obtain∫ x

0

∣∣fy1(η)− fy2(η)
∣∣dη
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≤
∫ x

0

{∣∣∣fy1(η)−
exp(−2

∫ x
0

ξ
Ψy2 (ξ)dξ)

Ψy1(η)

∣∣∣+
∣∣∣exp(−2

∫ x
0

ξ
Ψy2 (ξ)dξ)

Ψy1(η)
− fy2(η)

∣∣∣}dη

≤
∫ x

0

{ 1

Ψy1(η)

∣∣∣ exp
(∫ η

0

−2ξ

Ψy1(ξ)
dξ
)
− exp

(∫ η

0

−2ξ

Ψy2(ξ)
dξ
)∣∣∣

+ exp
(∫ η

0

−2ξ

Ψy2(ξ)
dξ
)∣∣∣ 1

Ψy1(η)
− 1

Ψy2(η)

∣∣∣}dη

≤ ‖y1 − y2‖∞δp
∫ x

0

exp
( −η2

1 + δ

)
(2η2 + 1)dη

= ‖y1 − y2‖∞δp
√

1 + δ
[√π

2
(2 + δ) erf

( x√
1 + δ

)
− x
√

1 + δ exp
( −x2

1 + δ

)]
≤
√
π

2
δp
√

1 + δ(2 + δ)‖y1 − y2‖∞.

Inequality (2.12) follows immediately by using (2.6) and (2.11). �

Lemma 2.4. Let γ > 0, p ≥ 1 and

gγ(x) = xp(1 + x)3/2
[
(2 + x)

(
1 + (1 + x)3/2

)
+

2

γ
√
π

(1 + x)
]
, x ≥ 0 .

Then there exist a unique δγ > 0 such that gγ (δγ) = 1.

The above lemma follows immediately from the fact that gγ is an increasing
function, gγ(0) = 0 and limx→∞ gγ(x) = +∞. Now, we are able to formulate the
following result.

Theorem 2.5. Let γ > 0 and p ≥ 1. The problem (1.11) has a unique solution
yγ ∈ K if and only if 0 ≤ δ < δγ , where δγ is given by Lemma 2.4. Moreover, yγ
is a C∞ function in R+ with the following properties:

y′γ(x) > 0, y′′γ (x) < 0, ∀x ≥ 0. (2.13)

Proof. Let y1, y2 ∈ K and x ≥ 0. Taking into account Lemma 2.3, we have

|Tγ(y1)(x)− Tγ(y2)(x)|

≤
∣∣∣ 1 + γ

∫ x
0
fy1(η)dη

1 + γ
∫∞

0
fy1(η)dη

−
1 + γ

∫ x
0
fy2(η)dη

1 + γ
∫∞

0
fy1(η)dη

∣∣∣
+
∣∣∣ 1 + γ

∫ x
0
fy2(η)dη

1 + γ
∫∞

0
fy1(η)dη

−
1 + γ

∫ x
0
fy2(η)dη

1 + γ
∫∞

0
fy2(η)dη

∣∣∣
≤
γ
∫ x

0
|fy1(η)− fy2(η)|dη∣∣1 + γ
∫∞

0
fy1(η)dη

∣∣
+
∣∣∣1 + γ

∫ x

0

fy2(η)dη
∣∣∣∣∣∣ 1

1 + γ
∫∞

0
fy1(η)dη

− 1

1 + γ
∫∞

0
fy2(η)dη

∣∣∣
≤ gγ(δ)‖y1 − y2‖∞.

Then from Lemma 2.4, if 0 ≤ δ < δγ it follows that Tγ is a contracting mapping
what allows to apply the Banach fixed point theorem. Therefore, the problem
(1.11) has a unique non-negative continuous solution. Moreover, by differentiation
and easy computation the solution is a C∞ function in R+ with the useful properties
(2.13). �
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3. Asymptotic behavior of p-GME function when γ →∞

In this section if we consider the Stefan problem (1.1)–(1.5) and we change the
Robin condition (1.2) by a Dirichlet condition.

T (0, t) = T0 > 0, (3.1)

we obtain the ordinary differential problem

[(1 + δyp(x))y′(x)]′ + 2xy′(x) = 0, 0 < x < +∞, (3.2a)

y(0) = 0, (3.2b)

y(+∞) = 1 . (3.2c)

For the special case p = 1, the solution to this problem is called modified error
function (ME) and was considered in [2, 4, 5, 6, 12]. In [4] the existence and
uniqueness of the ME function was proved. Moreover, if it is considered δ = 0, the
classical error function defined by

erf(x) =
2√
π

∫ x

0

exp(−z2)dz, x > 0, (3.3)

arises as a solution.
In a similar way to the above section we can analyze the existence and uniqueness

of the p-modified error function (p-ME), which is defined as the solution to problem
(3.2) and constitutes a generalization of the ME function.

Now, let us define

K∗ = {h ∈ X : ‖h‖∞ ≤ 1, 0 ≤ h, h(0) = 0, h(+∞) = 1},
where X is given by (2.1). We remark that K∗ is a non-empty closed convex and
bounded subset of the Banach space X. We will show that the ordinary differential
problem (3.2) becomes equivalent to an integral equation.

Theorem 3.1. Let δ ≥ 0, p ≥ 1. Then the function y∗ ∈ K∗ is a solution to (3.2)
if and only if y∗ is a fixed point of the operator T ∗ : K∗ → K∗ given by:

T ∗(h)(x) =

∫ x
0
fh(η)dη∫∞

0
fh(η)dη

, x ≥ 0, (3.4)

with fh defined by (2.4).

Proof. In a similar way as in the proof of Theorem 2.1, the operator T ∗ is well
defined and it is easy to see that

y∗(x) = y∗(0) + c∗0

∫ x

0

f∗y (η)dη,

with y∗(0) = 0 and c∗0 =
( ∫∞

0
fh(η)dη

)−1
. Then, using (3.2b) and (3.2c), we obtain

(3.4). Therefore, y∗ is a solution to (3.2) if and only if y∗ is a fixed point of the
operator T ∗. �

To prove that the operator T ∗ is a contracting mapping on K∗, we enunciate
the following lemmas which proofs are analogous to Lemma 2.3 and Lemma 2.4.

Lemma 3.2. Let y∗1 , y
∗
2 ∈ K∗, δ ≥ 0, p ≥ 1 and x ≥ 0. Then∣∣∣ 1∫∞

0
fy∗1 (η)dη

− 1∫∞
0
fy∗2 (η)dη

∣∣∣ ≤ 2(1 + δ)5/2

√
π

δp(2 + δ)‖y∗1 − y∗2‖∞.
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Lemma 3.3. Let p ≥ 1 and

g∗(x) = xp(1 + x)3/2(2 + x)
(
1 + (1 + x)3/2

)
, x ≥ 0 .

Then there exists a unique δ∗ > 0 such that g∗ (δ∗) = 1.

Theorem 3.4. Problem (3.2) has a unique solution y∗ ∈ K if and only if 0 ≤ δ <
δ∗, where δ∗ is given by Lemma 3.3. Moreover, y∗ is a C∞ function in R+.

Proof. Let y∗1 , y∗2 ∈ K∗ and x ≥ 0. Taking into account Lemmas 2.3 and 3.2 we
obtain

|T ∗(y∗1)(x)− T ∗(y∗2)(x)|

≤
∣∣∣ ∫ x0 fy∗1 (η)dη∫∞

0
fy∗1 (η)dη

−
∫ x

0
fy∗2 (η)dη∫∞

0
fy∗1 (η)dη

∣∣∣+
∣∣∣ ∫ x0 fy∗2 (η)dη∫∞

0
fy∗1 (η)dη

−
∫ x

0
fy∗2 (η)dη∫∞

0
fy∗2 (η)dη

∣∣∣
≤
∫ x

0
|fy∗1 (η)− fy∗2 (η)|dη
|
∫∞

0
fy∗1 (η)dη|

+
∣∣∣ ∫ x

0

fy∗2 (η)dη
∣∣∣∣∣∣ 1∫∞

0
fy∗1 (η)dη

− 1∫∞
0
fy∗2 (η)dη

∣∣∣
≤ g∗(δ∗)‖y∗1 − y∗2‖∞.

Then from Lemma 3.3, if 0 ≤ δ < δ∗ it follows that T ∗ is a contracting mapping
what allows to apply the Banach fixed point theorem. Therefore, the problem
(3.2) has a unique non-negative continuous solution which is also a C∞ function by
simple differentiation in R+. �

To problem (1.11), we impose a Robin boundary condition characterized by the
coefficient γ > 0 at x = 0. This condition constitutes a generalization of the
Dirichlet condition, in the sense that taking the limit when γ → ∞ in condition
(1.7b), we obtain condition (3.2b). Now, we show that the solution to problem
(1.11) converges to the solution to problem (3.2) when γ → ∞. For this purpose,
first, we need the following lemmas which proofs are immediate.

Lemma 3.5. For every p ≥ 1, when γ →∞, the following convergence results hold

(a) Tγ(h)(x)→ T ∗(h)(x) for every h ∈ K and x ≥ 0.
(b) gγ(x)→ g∗(x) for every x ≥ 0.
(c) δγ → δ∗.

In addition gγ(x) ≥ g∗(x) and δγ < δ∗ for all x ≥ 0, γ > 0.

Lemma 3.6. Let p ≥ 1 and

C(x) = 2xp(1 + x)3(2 + x), x ≥ 0. (3.5)

Then there exists a unique δ̂ > 0 such that C(δ̂) = 1.

Theorem 3.7. Let p ≥ 1 and 0 ≤ δ < min{δ̂, δγ}. Then ‖yγ − y∗‖∞ → 0 when
γ →∞. Furthermore, the order of convergence is 1/γ when γ →∞.

Proof. First let us note that if 0 ≤ δ < min{δ̂, δγ}, then as δγ < δ∗, we obtain that
yγ and y∗ are well defined because of Theorems 2.5 and 3.4. Then for x ≥ 0 we
have

|yγ(x)− y∗(x)|

=
∣∣∣ (1 + γ

∫ x
0
fyγ (η)dη

)( ∫∞
0
fy∗(η)dη

)
−
( ∫ x

0
fy∗(η)dη

)(
1 + γ

∫∞
0
fyγ (η)dη

)(
1 + γ

∫∞
0
fyγ (η)dη

)( ∫∞
0
fy∗(η)dη

) ∣∣∣
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≤
∣∣∣[ ∫ ∞

0

fy∗(η)dη + γ
( ∫ x

0

fyγ (η)dη
)( ∫ ∞

0

fy∗(η)dη
)
−
∫ x

0

fy∗(η)dη

− γ
( ∫ x

0

fy∗(η)dη
)( ∫ ∞

0

fyγ (η)dη
)]/[(

1 + γ

∫ ∞
0

fyγ (η)dη
)( ∫ ∞

0

fy∗(η)dη
)]∣∣∣

=
∣∣∣[ ∫ ∞

x

fy∗(η)dη + γ
( ∫ x

0

fyγ (η)dη
)( ∫ ∞

0

fy∗(η)dη
)

− γ
( ∫ x

0

fy∗(η)dη
)( ∫ ∞

0

fyγ (η)dη
)]/[(

1 + γ

∫ ∞
0

fyγ (η)dη
)( ∫ ∞

0

fy∗(η)dη
)]∣∣∣

≤
∣∣∣[ ∫ ∞

0

fy∗(η)dη + γ
( ∫ x

0

fyγ (η)dη
)( ∫ ∞

0

fy∗(η)dη −
∫ ∞

0

fyγ (η)dη
)

+ γ
( ∫ ∞

0

fyγ (η)dη −
∫ x

0

fy∗(η)dη
)( ∫ ∞

0

fyγ (η)dη
)]

÷
[(

1 + γ

∫ ∞
0

fyγ (η)dη
)( ∫ ∞

0

fy∗(η)dη
)]∣∣∣

≤
[√

1 + δ

√
π

2
+ γ
√

1 + δ

√
π

2

( ∫ ∞
0

|fy∗(η)− fyγ (η)|dη
)

+ γ
√

1 + δ

√
π

2

( ∫ x

0

|fy∗(η)− fyγ (η)|dη
)]/[ γ

√
π

2(1 + δ)

√
π

2(1 + δ)

]
≤
√

1 + δ
√
π

2 + 2γ
√

1 + δ
√
π

2

∫∞
0
|fy∗(η)− fyγ (η)|dη

γπ
4(1+δ)2

≤ 4(1 + δ)2

γπ

(√
1 + δ

√
π

2
+ γ

π

4
δp(1 + δ)(2 + δ)||yγ − y∗||∞

)
≤ 2(1 + δ)5/2

γπ
+ 2(1 + δ)3δp(2 + δ)‖yγ − y∗‖∞ .

The above inequalities are obtained by applying Lemma 2.3, and they lead to

(1− C(δ))‖yγ − y∗‖∞ ≤
1

γ

(2(1 + δ)5/2

√
π

)
,

with C defined by (3.5). Finally, the desired convergence and order of convergence

in Theorem 3.7 are obtained by noting that if 0 ≤ δ < δ̂, then 0 ≤ C(δ) < 1 because
of Lemma 3.6. �

4. Existence and uniqueness considering a Neumann condition

In this section we consider a solidification Stefan problem with a Neumann con-
dition at the fixed face x = 0, given by

ρc
∂T

∂t
=

∂

∂x

(
k(T )

∂T

∂x

)
, 0 < x < s(t), t > 0, (4.1)

k(T (0, t))
∂T

∂x
(0, t) =

q0√
t
, t > 0, (4.2)

T (s(t), t) = T
f
, t > 0, (4.3)

k(T (s(t), t))
∂T

∂x
(s(t), t) = ρlṡ(t), t > 0, (4.4)

s(0) = 0, (4.5)
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where the unknown functions are the temperature T and the free boundary s sep-
arating both phases. The parameters ρ > 0 (density), l > 0 (latent heat per unit
mass), Tf (phase-change temperature), q0 > 0 (characterizes the heat flux on the
fixed face x = 0 of the face-change material which can be determined experimen-
tally) and c > 0 (specific heat) are all known constants. In this case, the thermal
conductivity k is defined as

k(T ) = k0

(
1 + δ

( T
Tf

)p)
, p ≥ 1, (4.6)

where δ is a given positive constant and k0 is the reference thermal conductivity.
In a similar way as in previous sections, this Stefan problem leads us to the study

the ordinary differential problem

[(1 + δyp(x))y′(x)]′ + 2xy′(x) = 0, 0 < x < +∞, (4.7a)

(1 + δyp(0))y′(0) = γ∗, (4.7b)

y(+∞) = 1 , (4.7c)

where

γ∗ = 2 Bi∗ with Bi∗ =
q0
√
α0

k0Tf
. (4.8)

In a similar way to the above sections we can state the following results:

Theorem 4.1. Let δ ≥ 0, p ≥ 1 and 0 < γ∗ ≤ 2√
π(1+δ)

. Then yγ∗ ∈ K is a

solution to (4.7) if and only if yγ∗ is a fixed point of the operator Tγ∗ : K → K
given by

Tγ∗(h)(x) = 1− γ∗
∫ +∞

x

fh(η)dη, x ≥ 0, (4.9)

with fh defined by (2.4) and K given by (2.2).

Proof. Given yγ∗ ∈ K and taking into account (2.5), we obtain

0 <
γ∗ erfc(x)

1 + δ
≤ γ∗

∫ ∞
x

fy(η)dη <
γ∗
√

1 + δ
√
π

2
≤ 1. (4.10)

Note that from (4.9) we have that Tγ∗(yγ∗) is an analytic function, since yγ∗ ∈ X.
Also, according to (4.9) and (4.10), Tγ∗(yγ∗) ∈ K.

In a similar way as in the proof of Theorem 2.1, yγ∗ is a solution to (4.7) if and
only if yγ∗ is a fixed point of the operator Tγ∗ . �

Theorem 4.2. Let p ≥ 1, δ > 0 and 0 < γ∗ ≤ 2√
π(1+δ)

. Then (4.7) has a unique

C∞ solution yγ∗ ∈ K if and only if δ < δγ∗ where δγ∗ is the unique solution to the
equation g(x) = 1, with

g(x) = x
p√
π

[
(1 + x)

(√
1 + x exp(−1

4
) +
√
π
)

+
√
π
]
.

Proof. Let y1γ∗ , y2γ∗ ∈ K and x ≥ 0. Taking into account (2.9) and (2.10) we
obtain

|Tγ∗(y1γ∗ )(x)− Tγ∗(y2γ∗ )(x)|

≤ ‖y1 − y2‖∞δpγ∗
[
(1 + δ)3/2

( x√
1 + δ

exp
(
− x2

1 + δ

)
+

√
π

2

)
+
√

1 + δ

√
π

2

]
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≤ δ p√
π

[
(1 + δ)

(√
1 + δ exp(−1

4
) +
√
π
)

+
√
π
]
‖y1γ∗ − y2γ∗ ‖∞

≤ g(δ)‖y1γ∗ − y2γ∗‖∞.

Since g is an increasing function such that g(0) = 0 and g(+∞) = +∞, there exists
a unique δγ∗ > 0 with g(δγ∗) = 1.

Then, if 0 ≤ δ < δγ∗ it follows that Tγ∗ is a contracting mapping what allows to
apply the Banach fixed point theorem. Therefore, the problem (4.7) has a unique
non-negative continuous solution which is also a C∞ function. �

Conclusion. In this article, the ordinary differential problems studied in [4, 5]
have been generalized by defining what we call the p-GME function and the p-ME
function corresponding to the case when a Robin or Dirichlet boundary condition
are imposed at x = 0, respectively. In both problems, existence and uniqueness of
C∞ solution has been proved by defining convenient contracting mappings. In ad-
dition it has been studied the behavior of the p-GME function when the coefficient
γ that characterizes the Robin condition goes to infinity, obtaining its convergence
to the p-ME function with an order of convergence of the type 1/γ when γ → ∞.
Finally, existence and uniqueness of a solution to a solidification problem with a
Neumann condition has been studied.
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