Electronic Journal of Differential Equations, Vol. 2020 (2020), No. 65, pp. 1-27.
ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

CONVERGENCE OF DELAY EQUATIONS DRIVEN BY A
HOLDER CONTINUOUS FUNCTION OF ORDER 1/3<B8<1/2

MIREIA BESALU, GIULIA BINOTTO, CARLES ROVIRA

ABSTRACT. In this article we show that, when the delay approaches zero, the
solution of multidimensional delay differential equations driven by a Holder
continuous function of order 1/3 < 8 < 1/2 converges with the supremum
norm to the solution for the equation without delay. Finally we discuss the
applications to stochastic differential equations

1. INTRODUCTION

Hu and Nualart [9] used fractional calculus to establish the existence and unique-
ness of a solution for the dynamical system

dxy = f(x) dyy,

where y is a Holder continuous function of order 1/3 < § < 1/2. They give an
explicit expression for the integral fot f(zs)dys that depends on the functions z,
y and a quadratic multiplicative functional z ® y. As an example of a path-wise
approach to classical stochastic calculus, they apply these results to solve stochastic
differential equations driven by a multidimensional Brownian motion. Using the
same approach, Besald and Nualart [2] obtained estimates for the supremum norm
of the solution and Besald et al. [I] studied delay equations with non-negativity
constraints.

The work by Hu and Nualart [9] is an extension of the previous paper of Nualart
and Réagcanu [16], where they study the dynamical systems dz; = f(z;)dy; and
the control function y is Holder continuous of order 8 > 1/2. In this case the
Riemann-Stieltjes integral fot f(zs)dys can be expressed as a Lebesgue integral using
fractional derivatives following the ideas by Zéhle [19].

All these papers have to be seen in the framework of the theory of rough path
analysis and the path-wise approach to classical stochastic calculus. This theory
has been developed from the initial paper by Lyons [I2] and has generated many
publications (see, for instance, Lyons and Qian [13], Friz and Victoir [5], Lejay [11]
or Gubinelli [8]). We refer to Coutin and Lejay [3], Friz and Victoir [6], Friz [7]
and Ledoux et al. [I4] for some applications of rough path analysis to stochastic
calculus.
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Delay differential equations rise from the need to study models that behave more
like real processes. They find their applications in dynamical systems with afteref-
fects or when the dynamics are subjected to propagation delay. Some examples are
epidemiological models with incubation periods that postpone the transmission of
disease, or neuronal models where the spatial distribution of neurons can cause a
delay in the transmission of the impulse. Sometimes the delay avoids some usual
problems, but in general, it adds difficulties and cumbersome notations.

The purpose of our paper is to consider the differential equation with delay

t t
xy =" +/ b(u,xr)du—k/ o(x]_.)dy,, te(0,T],
0 0
xy =mn, te[-r0],

where r denotes a strictly positive time delay, i : [~7, 0] — R? is a smooth function,
y is a Holder continuous function of order 3 € (3, 3) and the hereditary term b(u, z)
depends on the path {zs;, 0 < s < u}. From Hu and Nualart [9] and Besald et al.
[1] it is easy to check that there exists a unique solution to this equation. Our aim
is to prove that it converges almost surely in the supremum norm to the solution

of the differential equation without delay

t ¢
Ty =10 +/ b(u, x,,) du —|—/ o(xy) dy,, te0,T],
0 0

when the delay tends to zero. Our approach is based on the techniques of the
classical fractional calculus and it is inspired by [9]. Finally, we apply these results
to stochastic differential equations driven by Brownian motion.

The case when § > 1/2 has been studied by Ferrante and Rovira in [4]. They
proved that the solution to the delay equation converges, almost surely and in L7,
to the solution to the equation without delay and then apply the result pathwise
to fractional Brownian motion with Hurst parameter H > 1/2.

With a different approach based on a slight variation of the Young integration
theory, called algebraic integration, Leén and Tindel [I0] prove the existence of a
unique solution for a general class of delay differential equations driven by a Holder
continuous function with parameter greater than 1/2. They obtain some estimates
of the solution which allow to show that the solution to a delay differential equation
driven by a fractional Brownian motion with Hurst parameter H > 1/2 has a C°°-
density.

When § < 1/2 more difficulties appear. In the literature we find results only up
to the value 8 > 1/3, eventually extended to 8 > 1/4. In [15], Neuenkirch, Nourdin
and Tindel consider delay differential equation driven by a [-Holder continuous
function with 8 > 1/3. The authors show the existence of a unique solution for
these equations under suitable hypothesis. Then, they apply these results to a delay
differential equation driven by a fractional Brownian motion with Hurst parameter
H > 1/3. These results are extended by Tindel and Torrecilla in [I§] to the
deterministic case with 5 > 1/4 and the corresponding stochastic case with Hurst
parameter H > 1/4.

This article is organized as follows. The following section is devoted to introduce
some notation. In section |3| we define the equations and the solutions we work
with and we describe our main result. Section H contains technical estimates for
the study of the integrals. In section [5] we give some estimates for the solutions
of our equations. In section [6] we give the proof of the main theorem. In the last
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section we give an example of applications of the main theorem, studying stochastic
differential equations driven by Brownian motion.

2. PRELIMINARIES

First, we recall some definitions and results presented in Hu and Nualart [9]. Fix
a time interval [0, 7] and 0 < 3 < 1. For any function z : [0, 7] — R%, the 3-Holder
norm of x on the interval [s,t] C [0,T] will be denoted by
] e
z|gsy = Sup ———.
Bla:t) s§u<F1))§t (U - U)ﬁ
If Ap:={(s,t): 0 < s <t<T}, for any (s,t) € Ar and for any g : Ar — R? we
set
|9u,0]

= Ssu D ——
I9ll8cs.0) I e
We will also set ||z||g = ||z||s0,r) and [|z[ ¢y = [|2[ g(=r,r). Moreover, || - |ls(s,t)

will denote the supremum norm in the interval [s,t], and for simplicity ||z]e =
[ /loc(0,ry and [|Zl[co(ry = [l2]loc(=r.1)-

Hu and Nualart [9] proved an explicit formula for the integral f; f(zy) dyy, in
terms of z, y and = ® y, and transformed the dynamical system dz; = f(x;) dy;
into a closed system of equations involving only z, z ® y and z ® (y ® y). From
Lyons [12] we introduce the definition of z ® y.

Definition 2.1. We say that (z,y,z ®y) is a (d, m)-dimensional S-Hélder contin-
uous multiplicative functional if:

(1) 2:[0,7] = R? and y : [0,T] — R™ are 3-Hélder continuous functions,
(2) r®@y : Ar — R ® R™ is a continuous function satisfying the following
properties:
(a) (Multiplicative property) For all s < u <t we have
(.23 & y)s,u + (l‘ X y)u,t + (xu - st) ® (yt - yu) = (J: & y)s,t~
(b) For all (s,t) € Ar, |[(x @ y)s.s| < |t — s|?7.

We denote by M 5 m(0,T) the space of (d, m)-dimensional 5-Holder continuous
multiplicative functionals. Furthermore, we will denote by M 5 m(a,b) the obvious
extension of the definition M 5 (0,T) to a general interval [a,b]. We introduce the
following functional defined on M 5 m(0,T) for (a,b) € Ap:

Ppap)(2,9) = 12 @ Yll25a.0) + %l sa0) 19l 5at)- (2.1)
Moreover, if (z,y,z ® y) and (y, z,y ® z) belongs to Mim(O,T) we define
Pp(ab) (@, Y: 2) = 2l @)Ul 50ty 121l peat) + 121l 5@y 1T © Yll25(a,b)
+ 1%l g(a,0) 1y @ 2ll28(a,)-
From these definitions it follows that
Iz @ ). pllpan) < Pogan (@) (b —a)’,
Hx ®(y® Z)"bHZB(a,b) < K®g(ap (2, y,2)(b— a)? (2.4)

which are equations (3.29) and (3.30) in [9]. We refer to [9] and [I2] for a more
detailed presentation on S-Holder continuous multiplicative functionals.

(2.2)
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To define the integral f; f(xy) dy, we use the construction of the integral given
by Hu and Nualart in [9], who were inspired by the work of Zélhe [I9] and use
fractional derivatives. We refer to Hu and Nualart in [9] for the details.

In the sequel, K denotes a generic constant that may depend on the parameters
B,a, A and T and can vary from line to line.

3. MAIN RESULT

Consider the differential equation with delay on RY,

t t
xy =1 +/ b(u,x)) du +/ ozl _.)dy,, te€l0,T],
0 0

xy =mn, te][-r0),

(3.1)

where x and y are Holder continuous functions of order 8 € ( %, %), 7 is a contin-
uous function and r denotes a strictly positive time delay. We set the following
hypotheses:

(H1) ¢ : R — RY x R™ is a bounded and continuously twice differentiable
function such that ¢’ and ¢’ are bounded and A-Holder continuous for
A>§ -2

(H2) b: [0,T] x RY — R? is a measurable function such that there exists by €
LP(0,T;R?) with p > 2 and VN > 0 there exists Ly > 0 such that:
(1) |b(t,xt) = b(t,yr)| < Ly|ze — y¢|, Vo, y such that |z¢| < N, || < N

vt € [0, 77,

(2) |b(t, z¢)| < Lo|ze] + bo(t), Vte][0,T].

(H3) o and b are bounded functions.

Conditions (H1) and (H2) are a particular case of the hypotheses for the proof
of existence and uniqueness of solution to the delay equation , while condition
(H3) is necessary to prove that the solution is bounded.

We denote by (z,y,2Qvy) € Mim(o, T') the solution to the stochastic differential
equation on R? without delay

¢ t
Ty =10+ / b(u, x,,) du + / o(xy) dy,, telo,T). (3.2)
0 0

Assuming that ¢ : R* — R? x R™ is a continuously differentiable function such
that o’ is A-Holder continuous with A > % —2, 0 and ¢’ are bounded and (y,y,y ®
y) € M,%m((), T), Hu and Nualart [9] prove the existence of a bounded solution in
M g, . (0,T) for the differential equation with b = 0. Moreover, if o is twice
continuously differentiable with bounded derivatives and ¢’ is A-Holder continuous,
with A > 4+ — 2, the solution is unique. Here the authors deal with the equation
without the hereditary term, but the results can be easily extended to the case
where the hereditary term does not vanish. If (y,y,y ® y) € Mﬁ%m((),T)7 then we
can consider

(x @ Y)st :/ (yt — yu)b(u, ) du+/ 0(xy) dy (Y@ Y).t - (3.3)

And (z,y,2Qy) € Mﬁm(O,T) will be a solution to (3.2]) for  and (z ® y) such
that (3.2) and (3.3) hold, respectively.
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On the other hand, following the ideas contained in [I], it is easy to show
that there exists a unique solution to the delay equation in M 57 m (=7 T).
It can be easily proved assuming that o and b satisfy the hypotheses (H1) and
(H2), respectively, with p > ﬁ and that (n._,,y,n.—, ® y) € M(ﬁm(O,r) and
(Yomrs ¥, Y @ y) € M (r,T). If we also assume that hypothesis (H3) is satis-
fied, we can obtain that the solution is bounded. So, (z",y,2" @ y) € Mﬁm(—r, T)

is the unique solution to (3.1]) for " such that (3.1]) holds and (2" ® y)s ¢ is defined
as follows:

e for s <t e [-r0),

t
(@ @ y)os = (1® y)os = / (vt — ya) s

e for s € [-r,0) and ¢ € [0,T7,

t
(@ @ Y)er = (18 Y)ao + / (vt — yu)blu, 27) du
0

+ / o(a7,_) du(y ©9).s + (0 — 1) © (4 — v0),
0

e for 0<s<t<T,

t t
(2" @ y)ur = / (e — ya)b(s, %) dus + / o (@) du(y ©9).s.

Let 8 € (%,%) and set 5/ = 8 — e, where ¢ > 0 is such that § —2¢ > 0 and

A > ﬁ — 2. Set rg € (0,7). The main result of this article is the following

theorem.
Theorem 3.1. Suppose that (y,y,yRy) belongs to Mﬁ,m((), T) and (Y.—r, Y, Y—r ®

y) belongs to MJ . (r,T) for all 0 < r < ro. Assume that o and b satisfy (H1)
and (H2), respectively, and both satisfy (H3). Assume also that (0.—rg, Yy N—ry &

y) € Mg)m((),ro), 171l g(=ro,0) < 00 and sup,.<,, Pg(o,r) (1. —r,y) < 00. Suppose that
|(y=y.—r)@Yll2p (r,ry = 0 and ||y.—r @ (Y —y.—1)ll2p/(r,r) = O when T tends to zero.
Then, (z,y,z ®y) € M;m(O,T) the solution to the stochastic differential equation
without delay and (z",y, 2" Qy) € Mfzm(—r, T) the solutions to the stochastic
differential equations with delay satisfy that

i [~ 2" oo =0 and lim (2 © ) ~ (27 © y)]0 = 0.

4. ESTIMATES OF INTEGRALS

In this section we will give some estimates for the integrals appearing in our
equations. We begin recalling versions of [, Propositions 3.4 and 3.9 ].

Proposition 4.1. Let (z,y,z®y) be in Mgm((), T). Assume that f : R? — R™ is q
continuous differentiable function such that f' is bounded and \-Holder continuous,
where A > % — 2. Then, for any 0 < a < b<T, we have

b
!/ Fl@a) dyu| < K|f(2a)| [9llpa,) (0 — @) + K g0, (2, 9)

X (15 oo + 17 Ml 3y (= @) (0 = @)%,
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where @54y (7,y) is defined by (2.1)).

Proposition 4.2. Suppose that (xz,y,x®y) and (y,z,y ® z) belong to Mgm(O, T).
Let f : R* — R™ be a continuously differentiable function such that f' is A-Hélder

continuous and bounded, where \ > % — 2. Then, the following estimate holds
b
[ fe) o))
< K[ f(2a)| ®p(ap) (Y, 2) (b — a)*”
K (18 e + 171812 By b — 017) @iy 1 200 — )%,
where @54, (7,y, 2) is defined in (2.2)).

The following propositions give some useful estimates for proving Theorem (3.1
First, we give an estimate for a function b that fulfills conditions (H2).

Proposition 4.3. Assume that b satisfies (H2). Let 2,7 € C(0,T;R%) such that
12]loc <N and ||Z||oc < N. Then, for0<a<b<T,

b
| / [b(u, ) — b(u, )] du| < Ly (b — a)l| — Floo(asy-

The proof of the above proposition follows easily using the Lipschitz property of
hypothesis (H2). To give some results for a function f under conditions (H1) we
need to introduce some notation. Let

Ghan(F2.39) = K[ Iylls 1 loe + (17" oo + 15 I3 e
170 (0 = ) (0. 8) + Iyl 1 50.)
oy (0, y) = K [yl 1 oo + 15"l oe (@01 (2, 9)
+ lyls 1 5ca) (b = )7
Gy (£:2) = K[ lloo + 15" o 3| a1y (b = ).
The first result corresponds to Hu and Nualart [9, Proposition 6.4].

Proposition 4.4. Suppose that (z,y, 2 ®y) and (T,y,Z®y) belong to Mgm (0, 7).
Assume that f satisfies (H1). Then, for0 <a<b<T,

b
| / (@) = FE)] d] < Ghay (£ 2,7 0) (0 — )% & — Flsogay

+ G (12, 7,9) (0 — )|z — Z gap)
+ Gy (T (0= a)*P||(x — T) @ yllag(ap)-
From this we can deduce the following estimate.
Proposition 4.5. Assume (z,y,zQy) and (._,,y,x._, ®y) belong to Mim(O, T),
and f satisfies (H1). Then, for 0 <a <b<T,

b
‘ / [f(xu) - f(xufr” dyu’ S G;}(a,b)(fa x,x.,r,y)(b - a’)26”x - x-fr”oo(a,b)
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+ G%(a,b)(f’ L, Z.—r, y)(b - a)QB”m - x'—T”B(a,b)
+ G?fa(a,b)(fa r._p)(b— G)Q’BH(ﬁC —ZT.p)® Z/Hzﬁ(a,b)-

The above proposition is a particular case of Proposition with Z = z._,.. Let
us introduce more useful notation:

a3, 7,2) = K1 oc® (0 (9 2)
+ (1" lloo + 1 x50,y + 1213 )) (b = @)*)
X (Pp(an) (2,9, 2) + ||5E||B(a,b)‘1’/3(a,b)(y,Z))}7
a0, F22) = K [(1F oo + 17 el T3y (b — 0)%) B0 1 (3 2)
17 oo @pa) (.9, 2) (b — @),
Ghap (7, 2) = KGhy ) (£, 0|2l pap)-
From the previous results it is possible to prove the following two propositions.

Proposition 4.6. Suppose that (z,y,x ®y), (T,y,T ®y) and (y,z,y ® z) belong
to Mcfzm(O,T). Assume that f satisfies (H1). Then, for 0 <a<b<T,

b
| / [f () = f(@u)] du(y ® 2).0] < Ghopy(fr2, 5,9, 2)(b— a)*P ||z — Flco(a)
+ Gy (fr2, T,y 2) (b — a)* ||z — Z|| g(a,p)
+ Gy (F,7,2)(b— @) [[(z = T) @ yll2(a.0)-

Proof. To simplify the proof we will assume d = m = 1. Observe that from in-

equalities (2.3) and (2.4) we obtain
(bﬁ(a,b)(xay@Z) < K(I)ﬂ(a,b)(xvyvz)(b_ a’)ﬁ7 (41)
H(Qj - 55) ® (y ® Z)"bHZB(a,b) < K(D,B(a,b) (ya Z)(b - a)ﬁHx - ‘%”ﬂ(a,b) (4 2)
+ K|zl gap) (b = @)° || (2 = Z) @ yll2p(a)-

The proof of the proposition is obtained by applying Proposition and using

inequalities (Z3), (24), (@) and ([E2). 0

Proposition 4.7. Suppose that (x,y,x @ y), (T.—p,y,Z.—r @ y) and (y,2z,y ® 2)
belong to Mgm(O,T). Assume that f satisfies (H1). Then, for0 <a <b<T,

b
| [ 1) = f@uen)] 2.0
< G%(a,b) (f7 T, T.—r,Y, Z)(b - a)Sﬁ”x - x‘—r”oo(a,b) (43)
+ Gg(a,b)(fa T, T~y Y, Z)(b - a)?’ﬁH:r - "E'*T”ﬁ(a,b)
+ Gy (fr2—r, 2)(b— )| (z = ._0) @ Yll2p(a)-

The above proposition is a particular case of Proposition [4.6| with Z = x._,. We
conclude this section with a general result on S-Hélder functions.



8 M. BESALU, G. BINOTTO, C. ROVIRA EJDE-2020/65

Lemma 4.8. Let y : [0,T] — R™ be a B-Hélder continuous function and 5/ =
B —e >0 with e >0, then

ly = y.—rllootrr) < llyllsr” (4.4)
1y = y—rllg iy < 2lyllpre. (4.5)
Proof. On the one hand,
Yyt — Ye—r|
Iy~ rllocrry = sup PEIETL 08 <y

te(r,T]
On the other hand,

(Y =y )t = (Y = y—r)s

sup ,
s<te[r,T) (t - s)ﬁ
t—s<r
— t—s)P = Ys— t—s)P 4.
B LM 7o LA ()
s<te[r,T) (t—s) (t—s) s<te[r,T) (t—s) (t—s)
t—s<r t—s<r
< 2|lyllpr*
and
sup (=)t — (Y —y.—r)s]
s<te[r,T) (t - S)ﬁl
t—s>r
|yt - yt7r| Tﬁ |ys - ysf'r| TB (47)
< sup : 7+ sup : 7
s<tejrr] TP (t—9s)P  scepr TP (t—s)p
t—s>r t—s>r
< 2[|yllpre.
The proof finishes by putting together (4.6) and (4.7). O

5. ESTIMATES OF THE SOLUTIONS

In this section we obtain some estimates on the solutions to our equations. Let
us recall that e > 0 with § — 2 >0, A > Bis —2and B8 = 8 —e. First of all, let
us introduce 7 = z7_, where 2" is the solution to (3.I). Then (Z" ® y),,; can be
expressed as follows:

e for s <tel0,r),

t
(5 @ Y)os = (s @ y)os = / (e — ya) difur, (5.1)

e for s € [0,7) and t € [r, T,

t
(57 @ Y)os = (s @ Yo + / (v — yu)blu — 7, 37) du
" (5.2)

t
+ / o(@y_) du(Yomr @) .t + (M0 — Ns—r) ® (Yt — Yr),

o for s<telrT],

t t
(@ @ y)or = / (e — )bl — 1, 30) du + / (@) du(yo—r © ).
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We will prove that the norms ||Z"|| 3 and [|[Z" ®y||2’ are bounded and their upper
bound does not depend on 7. To this aim, the following lemma will be useful.

Lemma 5.1. Let (n._,y,n._»Qy) € Mgm(O, r) and (Y.—p, Y, y.—rQY) € Mgd(r, T).
Let (2", y,2" ®y) € Mtﬁm(O,T) be the solution to (3.1). Then

12"l < 12" lgr0,m) + 12" 15y, (5.3)
12" @ yll2s < 12" @ yll2p 0.y + 12" @ Yll2p vy + I0llgr(—r o) lyller- (5.4)
Proof. On the one hand, observe that
or oo or o or or oo
”'%THﬁ’ S max( sup |xt xs/| , sup ‘xt xs/| , sup |xt xsl|),
0<s<t<r (t - S)B 0<s<r<t<T (t - S)B r<s<t<T (t - S>ﬁ
and oo ~r _ o oo
sup |xt — s| sup |$t — xs‘ +  sup ‘mt — xs|.

o<s<r<t<T (t—8)%" T rcsci<r (t—8)P  o<sciar (t—5)7

So, we easily get (5.3)).

On the other hand, observe that from the multiplicative property we obtain

@ @)
sup  ————og—
0<s<r<t<T (t - S)
< @ 9 9erl V@ @)l | @ =5 (= p,)
-_— Sup Qﬂ/ 2/8/ 25/ b
o<s<r<t<T L (t =) (t—s) (t—s)
and using the same argument as before ([5.4]) follows easily. O

Proposition 5.2. Let (n._,,y,n.—r Qy) € Mjm(O,r) and (Yo—r, Y, Y—r @ Y) €
Mp . (r,T) for all v < ro. Assume that o and b satisfy (H1) and (H2) respectively,
and both satisfy (H3). Let (z",y,2" ®y) € Mfzm(O,T) be the solution to equation

(3.1). Assume also that ||n[|g(—r,,0) < 00 and sup,.<,, [|1.— @ yll20,r) < 0. Then,
forr <1y, we have the following estimates:

12" loo(0,7++) < My, (5.5)
12" 60,747 < Kpnp,oly(1+2M,; ),
17" @ yllag 01 0r) < Kpnbohy (2 + (T +10) (K pypoehy)?), (5.7)
where K > 1 and
b =20l a=r0.0) F [blocT ™ + llo]loo + 0" lloo + 16”1, (5.8)
Ay = |lylls + max(1, [[y13 + ly @ yll26), (5.9)
My, = |no| + (T + o) (K pypohy)? +1. (5.10)

Proof. For simplicity, we assume that d = m = 1. Firstly, note that, if [|9|3(—r,,0) <
C and sup, <, |n.—r @ yll2p(0,ry < C’, with C' and C’ two positive constants, then

[0llg/(—ro,0) < C7§ and sup, <, |7 @ yll2g 0.y < C'75°
Secondly, notice that by (5.1)

| 2 (e = yu) dipur |

m.—r @ yll2g0,r) = sup
B.) s,t€[0,r) (t - 8)2ﬁ
< m-=rllpo,m 1yl 5

< lls(=ro.0) 13-
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To prove the result we will follow the ideas in [2, Theorem 4.1]. Consider the
mapping J : Mﬁl(O,T+r) — Mﬁl(O,T—l—r) given by J(Z",y, 2" ®y) = (J1,y, J2),
where J; and Jy are the right-hand sides of the definition of " and (Z" ® y),
respectively:

Ne—r for0<t<r

(@7 y, 7" @y)(t) = _ _
mo+ [T b(w,En,, ) dut [ o(@) dy, forr<t<T,
J2(Z",y, 7" @ y)(s, 1)
f( Yu) ANu—r for0<s<t<r,

( — Ns— T) (yt - yr + fr Yr — yu) dnu—r
+fT ye — yu)b(u — r,27) du

- +f:0(907 ) du(Y—r @ Y).t for0<s<r<t<T,
f:(yt —y,)b(u—7r,7") du
—i—f;a(ﬂﬂa Vdu(Y—r @Y). 1 forr <s<t<T.

This mapping is well-defined because (J1,y, J2) is a real-valued S-Holder continuous

multiplicative functional for each (Z",y, 2" Q y) € M1 100, 7).
Now we bound the Hélder norms of J; and J using Proposition [4.1] and Propo-

sition [1.2] Let s < t € [0,T]. Then
e for s <tel0,r),
I Tillas.e) < Inlla=ro,0):  12ll2(s,6) < [l 8(=r0,0) 191l (5.11)
o for s <terT],
11 llgcs.)
< Iblloo(t = )77 + Kol llylls
+ K (110" oe + 10" 87— 3yt = ) @y (BT sy )(E = 5)°,
| 2ll2s(s0 (512
< [Iblloc 1ylla(t = )77 + Kllo e ® s, (4 -, y)

T (O N W ) E T e e
e for s € [0,7) and t € [r, T,

(PAE)
< |illges,ry + 11l g
<l g(=ro.0) + 1Blloo(t = )P + Kllo|loo 1yl 5

+ K (10" lloo + 10/ IAIF7 1y (E = 7)) @0 @) (E = 1),

[ T2]128s.)
< N all2g(s,ry + [192ll280m0)
< 2|nlls=ro.0)lullg + 1Blloo 1ylls(t = ) ~F + Kl|o||oc @ p(r,t) (y—rs )

K (”OJHOO 1o I 3 (t = Wﬁ) D) (T sy y) (= 7)°.
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For s <t € [r,T], we set
(/x\?n_r & y~—r)s,t = (53\ b2 y)s—r,t—r )

which following [Il, section 5] is a S-Hoélder continuous multiplicative functional.
We divide the proof into two steps.

Step 1: We find a set C? of elements (27, y, 2" ®y) € Mlﬁl(O7 T) such that J(CY) C
CY. Let us recall the definitions of p,p » and A, from (5.8) and (5.9), respectively,
and set

ﬁy = (Kpmb,aAy)_l/B.

Let CY be the set of elements (Z",y,Z" Q@ y) € M51(07T) satisfying the following
conditions:

[2" ([0 < M.y, (5.13)
sup (7" |p(s.e) < Kpnpo(lylls + 1), (5.14)
0<t—s<A,
sup |27 @ yllzp(s,e) < Kpnwo(lylls + 19115 + lly.—r @ yll2s). (5.15)
0<t—s<A,
If we take s,t € [0,T], s < t such that
t—s<A,, (5.16)
then we have
. 1
R M 7 PE1) 47
(t-s)f <Al < L (5.18)

Kpnpo(llylls + yll7 + ly—r @ yll2s)”

Suppose that (Z",y,7" ® y) € CY. Then using (5.14), (5.17) and (5.15), (5.18),
respectively, we have

(t—8)’(|Z" | gs.y < 1, (5.19)
(t—9)7)12" @ yllap(sy < 1. (5.20)
Now observe that, if s,¢ € [r,T] and s < t satisfy (5.16)), then s — r,t —r € [0,T]
also satisfy this inequality. Thus,
(t = 8)°1Z_ llps.y < 1
=)’ @y —rll2ps < 1.
From this inequality it easily follows that

(I)B(S,t) ('%’.r—ra Yo—r, y) (t - S)B
= [ch\ffrHB(Svt)Hy'frllﬁ(s,t)||yH5(Svt) + 1Yl lIZ7—r @ y—rll2ps,b) (5.21)
+ 127 gt 1Y—r @ Yll2gs.e) | (& — 8)°

< wllg + Iyl1Z + [ly.—r ® yll2-

Observe also that if s € [0,7) and ¢ € [r,T] satisfy (5.16), then t —r < A, and
all the previous inequalities are satisfied when we change the interval (s,¢) by the
interval (r,t) for ¢ € [r, T).
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From expressions ((5.11)),(5.12)) and (5.19)—(5.21)), we easily get that
1Ttllses.6y < Il g(=r0,0) + 1Bl T~ + Kllo | l1ylls
+ K (o'loc + llo’ 1) (lylls + 1) (5.22)
< Kpppolllylls +1)

and
1211261y < 2[00l 3—ro.0) 1l + 1Blloo lylls T
+ Kllolloo (Y113 + ly-—r @ yll25) (5.23)
+ K (llo"lloe + llo”l1x) Nylls + 5l + 1y @ yll26)
< Kpypo(llylls + 1913 + ly—r ©yll2)
where K > 1.

It only remains to prove that ||.J1|| o < M. Set N = [(T—&—r)&;l} +1 and define
the partition 0 = tp < t; < --- <ty =T +r, where t; :izy fori=0,...,N —1.
Estimates (5.17)) and (5.22)) imply

sup  (J1)ul < N(T)e |+ (i = tima) P Tllgeea sty < 1Tk |+ 10

wE[t;—1,ti]

Moreover,

sup [(J1)ul < sup [(J1)u| + 1,
u€[0,t;] w€[0,t;—1]

and iterating this inequality we finally obtain
sup |(J1)ul < Il + N < [no| + TA;" + 1= My,
u€[0,T]
Hence, (J1,y,J2) € CY.

Step 2: We find a bound for the Holder norms of z” and (z" ®y). We can construct
a sequence of functions "™ and (2" ® )™ such that, 2" =5y, (Z" @) =0
and

i}r(n) =7 (i,\r(n—l)’ v, (/x\r Q y)(n—l) ),
@ oy)™ = n(z0 Dy @ oy ).

Notice that (W(O),y, " ® y)(o)) € C% and, since we have proved in Step 1 that
J(C¥) C C¥, we have that (27", y, (2" ® y)™) € CY for each n. We estimate
27| 5 as follows:

~r(n) ~r(n) ~r(n) ~r(n)
i £ 3] ARIEAR]
T < sup 2T B B
I ls o<s<i<T  (t—8)8 o<s<t<T  (t—8)P
tfsgzy tfszzy (524)

< Kpypo(lylls +1) + 28, 2)270)||
< Kppp.ohy(1+2M,.,).

It implies that the sequence of functions "™ is equicontinuous and bounded in
C?(0,T) and the upper bound does not depend on r. So, there exists a subsequence
which converges in the /-Holder norm if 8/ < 8 and such that the upper bound of
the ’-Holder norm does not depend on 7.
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In a similar way we obtain the same result for (z" ®y)("™. From inequality ([5.20)
we obtain that

sup (@ @) <G @ 9) ™ lasgre oo (ti — tio1)?® < AL,
ti—1<s<t<t;

sup |(@" ®y)g,?| < N&g < Tﬁffl + 35
0<s<t<T

As we did to obtain (5.24)), we estimate ||(Z" ® )™ ||25 as follows:

1@ @y) ™28 < Kpnoollyll3 + 1ylls + ly—r @ yll2g) + TA, 1+ AP
1
< Kpyp,o Ay (2 + (T +r0)(Kpyp,oy)? )

It implies that the sequence of functions (" ® y)(") is bounded and equicontinuous
in the set of functions 23-Holder continuous on A7, and the upper bound does not
depend on r. So, there exists a subsequence which converges in the 8’-Holder norm
if 8/ < B and such that the upper bound of the #’-Holder norm does not depend
on r.

Now as n tends to infinity it is easy to see that the limit is a solution, and the
limit defines a S—Holder continuous multiplicative functional (Z",y,z" ® y) and

this functional satisfies estimates (|5.5)), (5.6) and (5.7)). O
Remark 5.3. In Proposition [5.2)it is proved that [|Z"||g: < KpypoAy(1+2M, ).
Thus we have the same bound for |[2"[| (). Moreover, using the ideas in the proof

of Proposition [5.2]it is possible to prove that ||2” ® y||2s is bounded and its bound
does not depend on 7.

We are also interested in the behavior of (" —Z") when r tends to zero. We can
write (x — 2"); as follows

(z — 2" :/0 [f(u,xu) b, )] du+/0 (o) — o(a])] dya -

+ [ o) = o) do.

Following the ideas in [T, Section 4], let us write ((z —2") ® y)s’t, for s,t € [0, T):
(@-a"@y),,

_ / (e — ) [b(us ) — b, 0] du (5.26)

+ / (o) — 0(27)] duly ® ). + / [o(z]) — oa?,_,)] duly ® ).s.

It is also useful to write the following expressions:

e for s <tel0,r),

t t
(" =2") — (" —2")s = Ns—r — N—r —|—/ b(u, ) du —l—/ 0(Mu—r) Y, (5.27)
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e for s €[0,r) and t € [r, T,

t s
(" =27 — (2" = T")s =Ns—r — Mo + / b(u,xl) du — / b(u,xl) du
e 0 (5.28)

t s
+ / 0(3024) dy., — / U(nufr) dYu,
t—r 0

o fors<telrTl

t t—r
(2" —=2") — (2" —2")s = / b(u,x;) du — / b(u,x;) du
* o (5.29)

t t—r
+ ot [ ot

Finally, following the ideas in [Il, Section 4], we define
(@ —7) @), = (& @Yot — (@ D9,

that is,
o for s <t el0,r),

t t
(@ =3 0u),, = [ =) dner+ [ (= )bt du

S

t (5.30)
+ / U("?u—r) du(y ® y)'at’

e for s € [0,r) and t € [r, T
t t
(@ -3 ®y),, = / (ye = yu)blu, z7,) du + / (@) du(y @ y)-
t
s ® Y )en — / (0 — yu)b(u — 7, 7) du

t
- / (@) duymr ® ). — (o — Ther) ® (5t — v1):
o fors<terT],

(@ -2 ey),,
- / (Yusrr — Yu)blu, 27,) du + / o(@h_) du((y = y—r) ®Y) , (5.31)

+ / [o(@_) = 0(@,_.)] duy—r ® 1) 1.

The following proposition gives us a result about the behavior of (2" —Z") when
r tends to zero.

Proposition 5.4. Set 8/ = 8 — e, where ¢ > 0 is such that 8 — 2¢ > 0 and
A > Bia — 2. Suppose that (z,y,z @ y), (", y, 2" @ y), (Z",y,2" @ y) belong to
Mgm(O,T) and (y,y,y ® y) belongs to Mf . (0,T). Assume that o and b satisfy
(H1) and (H2) respectively, and both satisfy (H3). Assume also that ||n||g(—ry,0) <
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o0 and sup,<,, P, (1. —r,y) < 00 and suppose that ||(y — y.—r) @ yll2g(r1) — 0
and ||y.—r @ (y — y.—r)ll2p(r,7) — 0 when r tends to zero. Then

2" — 7| oo < KpAr?®

la” = |5 < KpAr®

[(z"—2") ® y||25, < KMpPA3r® + KMp®A%A,
where K > 1, M > 1 are constants depending on 3,5 ,r9,T, 0,y and
p= (1431 + 3oL+ T%) 4 200" oo 1+ T%) 4 30" T~

1075 (2 50 271+ 11 00) T 4 10" [T 1+ T7)

T’I‘O

+ 20" lx sup [ 3T ) (14 T9),

’I‘TQ

A = max (17 ||77||ﬂ(*7’0,0)a Sllp q)ﬁ’(O,T) (n~77‘7 y)7 q)B(O,T) (ya y)7

sup ‘I)B/(T,T) (y~—r7y) SUP D ’(0, r)( N—rs Y5 Y), sup ‘I’ﬁ'(o T)( Y,

r<ro r<ro r<rp
sup (0,1 (&") ) (14 sup 27 llarcr)) (1+ [19lls),
r<ro r<ro

Ay = max (1, sup [l2” 157 ) (I = .—+) @ Yllogr (e

T‘T’O

+ [ly—r ® (y — y~—T)||2,8’(T,T))-
Remark 5.5. Since p and A are finite (from Proposition [5.2) and A, converges to
zero when r tends to zero (by hypothesis), Proposition implies:

10

|27 — 2|0 — 0,

e PR}
[ =2 @l = 0.

Proof of Proposition 5.4 We start studying the supremum norm. On the one hand,
using Proposition [£.1] for r < rg, we obtain

12" = 2" o0y < [0l (—royr™ + [Blloor + Kl oo [yl o
+ K g 0,0) (1=, 5) (10" llo + 0" Il1m-=r 13 0.y
< {HnHﬂ(fro,O)TE"' ol T + Ko ooyl 6 T°

)‘ﬁ/)TQﬁ/

+ K®4 0,0 (-, ) (107 llco + 0" I 10130 (g 00T ) T? }7"6

where we have used that ||9]|g (—r.0) < 17llg(—ro,007° and ||yl < [lyl|sT=.
On the other hand, using Proposition [£.1] we obtain

2" = 2" loso(rr) < [bllocr + Kllo oo llyll 57"
+ K@ 0,10)(@ ) (10" loe + 10" I NZ" 13 .2y
< [||b||ooT1_B + Kllo|loollyll sT°

/\B/)TQB/
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+ K®g0.1)(T", ) (10" [|oo + 107 IA |27 13, T) T7 }Tﬁ~

Hence, we have
" = 2" ||oe < KpAr®'. (5.32)

Now we study the Holder norms. Following the proof of Lemma [5.1] we easily
obtain

e =&l < 2" = & llgrtom) + 16 = & (o) (5.33)
Ia" = 7) @ yllasr < l(a" = 7) @ Yllagriom) + (@ = 57) © yllap ()

v o (5.34)
+ 12" = 2"l 0,m lllo-

So we can study the Holder norms independently in the intervals [0,r) and [r, T).
We deal with the Holder norm of (" —Z"). By (5.27) and Proposition [4.1] we have

=" — fr“ﬁ’(o,r)
< nllsr(—r0) + [Bllocr ™" + Ko llos 1yl (0.0

+ K®s1(0.0) 01— 9) (110 lloo + 10 [ A1~ 30,0y 7 )1 (5.35)
< [Inllsro0) + BT + Kllollocllylls + K®p0.0)(1—r,v)

% (10" loo + 0 IANIR: (—g oy T )T 4] .
In the interval [r, T], observe that

(&" = 2")¢ — (2" = &")]

lz" = 2" g/ (r, 7y < max < sup

s<te[r,T] (t - 5)5’ 7
t—s<r
b~ . 5.36
@ =3 = (" =), (5:30)
v )y
s<te[r,T] (t - S)
t—s>r
On the one hand, by (5.29)) and Proposition we have
T o__ mr _ T o__ wr
wp L= o)
s<te[r,T]t—s<r (t - S)
< 2[blloor! ™ + 2K |or||oo |1y ]| 57
+ 2K (@, 9) ([0 lloo + I’ [ME 1y ™) (5.37)

< [20blloeT 7 + 2K o ooyl

+ 2K 01y (@, y) (I 0 + 110’ 2" 3T ) 75 < <,

where we have used that sup,ie(,7]¢—s<r Iyl s,y < llyllpre.
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On the other hand, with a similar computations, by Proposition [£.1] we have

' =) — (2" —Z"),
e
< 2bllosr™ + 2K]|o Iyl 577
+ 2K (1) (@, ) (10 [0 + 10 I (B0 ™)™ (5.38)
< [20blloe 7 + 26 oo 5T

+ 2K 001 @) (10'loe + 0] 13T ) T <] 7,

where we have used that sup te w1 1Yl (t—rt) < llyllpre. Then, by (5.33) and using
(5-35), (5.36)), (5.37) and it follows that

|lz" —z"|| g < KpAre. (5.39)

Finally, we study the Hélder norm ||(z" — Z") ® y||25. By definition (5.30) and
Proposition {.2] we have

(" = 2") @ yll2pr0,m)
<=l 0.0 90,0 + 190, 1blloo™ ™ + Kl ]l oc g0, (31, )
+ K (10" lloo + 10" I5M1m=+ 130,07 )@ 0,0) (0= 1 )"

. (5.40)
1111 3—r0.0) [9llsT + ylls 10l T + Koo a0,y (y: 9)T*

+ K (0" lloo + 10" I3~ 0.0 T ) @ (0,0) (1,9, )T 75]7“5
< KpAre,

where we have used that ®g:(o,)(y,y) < ®g0,7)(Ys y)r?
Now we study the Holder norm in the interval [r,T]. Let a,b € [r,T], a < b.

Then by (5.31),

(=" —2") @ yll2p(a,b)
|f Yutr — Yu)b(u, 2" du|
< !
o s<ilel[1z)1,b] (t— 5)2’8
| Lo du(ly —y—) @) |

t—s5)2F

(
’ f [ ( 7) ( )] du(y.—r ® y)',t‘
T i i~ )%
=: A; + Ay + As.

+ sup (5.41)

s<t€la,b]

Let us study Ai, A> and As. It is easy to see that

Ay < lyllg [blloT =" < Kphr=, (5.42)
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By Proposition [£:2] we have
Az < K|0]loo Par(a,p) (Y — Yomrs Y)
([0l + 10 NI W T ) 0y (F = 1 )T
= Kllylls (lolloc + (10" loc + 1o I3 13T ) 13" 15 T)
Xy =yl ey (5.43)
+ K (llolloo + (110 lloc + o’ I3 T ) 1371577 )
X (Y = y.—r) ® Yll2pr (1)
+ Klglla T (Io/lloo + 10" I 13T ) 17 & (5 = y—r)lapr

Now we estimate the norm [|Z" @ (y — y.—)||24/(a,p)- For s <t € [a,b],
¢
(aj:/r @ (y — y“’"))s,t = / (Yt = Yt—r — Yu + Yu—r)b(u — 1, 33\;) du

t
L I CARTNOREY RS I
So, by Proposition 1.2 and Lemma [4.8 we have
17" @ (Y — y-—r )28 (ap)

< K[(IIO’HOO + e Iz 13T ) (1 e lylls + 17" @ yllas ) T7
1Bl + ol Iyl ] il sr® (5.44)
+ K llolloo + ("l o’ AT 13T ) 7|5 T ]
XY= @ (¥ = yo—r) |28/ (1) -
Putting together (5.43)) and (5.44)) and inequality (4.5)) we obtain
Ay < KpAr® + Kp?A%r® + Kp?AA, + KpA, (5.45)
< Kp?A%r 4+ Kp2AA,, '

where we have used that 1 < p < p? and 1 < A < A%
Finally, by Proposition and inequalities (5.32) and (5.39) we obtain

Ay < Gty (0,77 g )T 27 — 7o
+ Gy (0.3 8y )T 2" =
+ Gy (@ T ) (0= )l ~ F) © Yllaga-ro-r) (5.46)
< Kp?A*r + Gy (0,70, y) (b — a)”
x (2" =2") @ yll2p (a—rp—r)
where we have used that G%,(T,T)(a7 TE Ly y)TP < KpA for i = 4,5. Ap-
plying the multiplicative property, it is easy to see that
(=" = 2") @ yll2gr (a—r.p—r)
< @™ =2") @ yl2p @—ra) + (2" = 27) @ yll2p @p) + 27 = Z"[| 5 lyll -
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On the one hand, by (5.39)),
2" =2 [lpr Yl < lla” = 2" |l lyllsT° < Kp*A*re.
On the other hand,
(2" = 2") @ Yllogr(aray < Kp*A*r® + Kp*AA,,

where the result is obtained considering separately the two cases a € [r,2r) and
a € [2r,T] and applying multiplicative property, inequalities (5.40)), (5.41)), (5.42),
(5.45) and that Gg,(T T)(O', ET_T,y)Tﬁl < KpA. Therefore,

12" = 3") @ Yllag (@—rp—r) < Kp*A%r" + Kp? AN, + [|(2" = Z7) @ yllagr(ap)-
Then, it follows that
Ay < (T ) (0 = ) 7 = ) © yllasray + KA + KpPAA,,

(5.47)
where we have used again that Gg, (r T)(a, ff_r,y)Tﬁl < KpA. From inequalities

(5.41), (5.42)), (5.45) and (5.47) we have
12" = 2") @ yllzpray < Chirry (0T, 9) (0= @) [|(2" = T7) @ yllapr(an)
+ Kp3A3re + KpPA2A,.,

where we have used that p” < p"*! and A" < A™*! for any n € N. Set

_ . /8
A= (2 sup G%,(T,T) (a,x._my)) . (5.48)

r<ro
Observe that, if a,b, a < b are such that b —a < ﬁ, then
(2" —2") @ Yllapr(ap) < Kp*A°r® + Kp*AA,. (5.49)

Now consider a partition r = tg < --- < tp; = T such that (t;1; —t;) < A for
1 =0...,M — 1. Then, using the multiplicative property iteratively, we have
M—1
12" =2") @yllaprry < Y @ =F) @Yllagrtatir) + (M = Dllz" =7 [l 1yl
=0
Using (5.39) and (5.49), we obtain
(2" —2") @ yllopr () < KMp>APr® + KMpPA?A, + K(M — 1)p°A*r®

5.50
< KMp2A3re + KM pPA2A,. (5.50)
Finally, putting together (5.34)), (5.39)), (5.40) and (5.50) we have
[(z" = 2") @ yll2pr < KMp*A*r® + KMpPA%A,.
So the proof is complete. O
The following definitions will be useful for the next results:
é;, = Silp Giﬁ,(oj) (o,z,2",y) i1=1,2; (5.51)
TSTo
—3 r
Gy = Silp Gg'(o,T) (o,2"); (5.52)
TSSTo

Gy = sup Gl (@2, y,y) J =45 (5.53)
TSTo
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Gy = sup GS " 5.54
g = sup Gy o 1)(0,2",y). (5.54)

r<ro

The following result gives us a bound for H(x —2") ® y||2 5 (ad) when the interval
(a,b) is small enough. Let

1 0 \1/8
Proposition 5.6. Suppose that (z,y,zRy), (", y,2" ®y) and (T",y, " Qy) belong
to Mjm(o, T), (y,y,y ®y) belongs to Mp, . (0,T) and (y.—r,y,y.—r ®y) belongs to

Mf%m(r, T). Assume that o and b satisfy (H1) and (H2) respectively. Then, for all
0<a<b<T such that (b—a) < Af,,

[ = 2") @ lly5 (0

<2[Lulylls (b — a)' =2 + Gh iy (0. 2,27, 5,9)] (b — )7 |2 — 2" || (aty
+ 2G5 0y (02,27, 9) (0 = ) |1z = 27| (0,
+2KpAGY, (4 (0,27, 3y, ) (b — a) 7 1
+ 2K pA [G%,(aﬁb)(a, ",z y,y) + Mp2A2G%/(a,b) (0,2", )] (b— a)ﬂlrs
+ 2K MpPA2GS, 4 (0,37, 9) (b — @) A,

Proof. The proposition is proved by applying first Propositions [£.3] [£.6] and [£.7] to
definition (5.26)), and then Proposition and observing that for a < b such that
(b—a) < Aé/

|~

Gg’(a,b) (07 l,r’ y) (b - a)ﬁ <

6. PROOF OF MAIN RESULTS

Proof of Theorem[3.1] We start by studying lim, o ||z — 2"||cc. As in Lemma[5.1]
we can study separately the intervals [0,7) and (r,T).
First, we study the norm in the interval [0,7). We apply Proposition and

Proposition to (5.25)) and obtain
|l — 337'||ﬁ(0,r) < Ler—ﬂH;(; — gg’"”oo(o’r) + Glﬁ(o,r) (o, 2,1 —p, y)rﬁnx _ 77_77””00(0’71)
+ GQB(O,T‘) (07 Ly 1—r, y)rﬂnz - n—r”B(O,r)
+ G%(O,r) (0, W-fr)TﬁH(x —Ner) ® Zl/H2ﬁ(0,r)-

Using that the supremum norm of x is bounded and the bound does not depend on 7,
we see that sup,.<,., Gjg (0,2, 0.—r,y) <00 =1,2and sup,,, G%(o,r)(g’ N_p) <
00. So the last expression clearly approaches zero when r tends to zero.

Now we work on the interval [r,T]. Let r < a < b < T. Applying Propositions

(4.3} .4, and we obtain
lz = 2"l gray < [Lv(b—a) =2 + Ghyay(0.2,27,)] (b — @) |2 — 27| oo(ap)
+ Gy (02" ) (0= a) |z — 2|5 (ap)
+ G (0270 a) [[(z = 27) @ Yllagr(a)
+ KpAGé/(mb) (o,2", 2", y)(b— a)ﬁ/rﬂ,
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’

+ [KpAG%,(a’b)(a, ",z y) + KpgABG%,(mb) (o,2")](b— a)? re
+ Kp* AN G () (0.77) (0 — a)”.
Set
H,
= KpA(Gé,((LT) (o,2",2",y) + QG%,(O,T) (o, xT)G%,(QT)(O', ",z y, y)Tﬁ/)TB,rﬁ,
+ {KpA(G%,(O,T)(U, 2" xy) + QG%,(O7T)(0, xr)G%,(O,T) (o,2", 2"y, y)Tﬂ/)
+ Kp*A? (G%,(O’T)(a, ")+ QG%,(O’T)(O’, mT)Gg,(O’T)(U, z", y)Tﬂ/)} T% e
+ K N2 (G0, (0,87) + 260, (0,27) Gl .y (07, ) T ) | TP A

Observe that H, converges to zero when r tends to zero. We select a and b such
that

(b—a) < Ah (6.1)
and then we apply Proposition [5.6] to obtain
l|lz — ITH,@'(a,b)
< [Ln @Iyl Gl oy (027 (0 — @) + 1) (b — a)1 =2
Gl (0.2,27y) + 26 (0 (0.3 G oy (0,27 ) (b — )|
X (b= a)” ||z = 2" oo a,n)
(6o (02,07 9) + 2G 0y (027G ) (0,27, )
x (=) | (b= )" & = 2" g0y
+ KpA(Gé,(a’b)((L ", Z"y) + 2G‘Z§,(a$b)(o, xT)G%,(ayb) (o,2", 2", y,y)
x (b—a)’)(b—a) "
+ [KpA(G%,(a)b)(a, ",z y)
+ 2G%/(a7b) (o, x’”)G%,(a,b)(a, ",z y,y)(b— a)ﬂ,)

+ Kp*A3 (G?ﬁ)/(mb) (0,2") + 2G%/(a7b) (o, xr)Gg,(a,b)(U, " y) (b —a)’ )}

x (b—a)®'r°
+ Kp3A2 (G%’(a,b) (0', /.’L'\T) + 2Gg’(a,b) (O', xT)Gg/(a’b) (0’, /$\T, y)(b — a)ﬁ )
x (b—a)’ A,

< {LN(2||y||ﬂ,G%,(a’b)(a, TP +1)7' % —I—Gé,(a)b)(o,x,xr,y)
+ 2G%,(a’b) (o, xr)G%/(a’b)(a, z,z"y,y)T" ] (b—a)? |z — " || so(a,b)

+ [G%’(a,b) (U? T, x?"’ y) + ZG%’(a,b) (0‘, -fT)G%/(a’b) (0’, x, ZCT, Y, y)TB ]
X (b — a)ﬁ ||.’E — $T||B/(a,b) —+ Hr.
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For a and b such that
, (62)

N =

[G%’(a,b) (U, x, xT7 y) —|— ZG%’(CL,Z)) (0" l.r)G%’(a,b) (0', Z, _’1’,‘7.7 Y, y)Tﬁ ] (b - a/)ﬁ S
we obtain
lz — 2" (|5 (a,b)
< 2[ L (2lyllsr Gy oy (o, +1) T2
- . , (6.3)
+ G}i’(a,b) (07 z, z’ ) y) + 2G%/(a,b) (U; "ET)G%/(a’b) (07 x, z" , Y, y)Tﬁ }
x (b—a)% ||z — 2" || so(ap) + 2H,-
On the other hand, putting
12 = 2" lloo(a) < e — 25| + (b= a)7 ||z — 2" || g1 (a,p)
in (6.3) we obtain
|z — IT”oo(a,b)
< lea — 5l + 2| Ly (2wl Gy (007 T + )T
+ Gé,(awb)(a, xz,z",y) + 2Gg,(a)b) (o, xr)G%,(aﬁb)(a, z,z",y,y)T"
x (b= a)*" & = 2" so(apy + 277 H, .
For a and b, a < b such that

2[ Lo @yl Gy oy (020 T + )T 4 Gy (02,27, ) o
+ ZG%,(a’b)(m mT)G%,(a’b) (0,2, 2", y,y)T"? }TB (b—a)? < 5
we obtain

HJI - xr”oo(a,b) < 2|33a - xg‘ + 4Tﬁ Hrv
and hence

sup |y — x| <2 sup |ay —al| + 4T H, . (6.5)
0<t<b 0<t<a

We define now Ags such that all a,b with (b—a) < Ag fulfill (6.1)), (6.2)) and (6.4),
that is

A= (16LNT' 416G, T + 4G,

—3 —4 28’ —=5 B’ —6 1/6/
+8Gy [ALN|yllg T + 4G5 T + G, TP ] + 2G5 ) .

Then, it is clear that (6.5)) holds for all @ and b such that b —a < Ag.
Now, we take a partition 0 =ty < t; < --- < tpy = T of the interval [0, 7] such
that (ti+1 — ti) < AB/. Then
sup |z —al| <2 sup |m — )| + 477 H,. (6.6)
0<t<tm=T 0<t<tm-1
Repeating the process M times we obtain
M—1

sup |zy — at| < 2M|zg — | + ( Z 2k>4T5lHT =402M - 1)T?' H,
0<t<T P
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that clearly converges to zero when r tends to zero. Following the same arguments,
obtain

lim (2 © ) — (27 @ 9)|oe = lim [[(z — 2") @ ] .

7. STOCHASTIC CASE

In this section we apply the results obtained in the deterministic case to Brownian
motion paths in order to get convergence of stochastic differential equations driven
by Brownian motion.

Suppose that B = {B; = (B}, BZ,...,B/"), t > 0} is a m-dimensional Brownian
motion. Fix a time interval [0,T]. Then, for s,¢t € [0,7] and ¢,5 € {1,...,m}, we
consider the following tensor products:

t
i j i 7 o j 1
(B B = [ (Bl BB - 5t~ iimyy.

t
(BB )= [ (B~ B)EBL,.

where the stochastic integral is a Stratonovich integral (see Russo and Vallois [17]).
In [15] the authors show that we can choose a version (B®B._,.); ¢ in such a way that
(B._r, B, B® B._,) constitutes a -Holder continuous multiplicative functional, for

a fixed 8 € (3,3). On the other hand, from Hu and Nualart [9] it follows that

(B, B, B ® B) is also a 8-Holder continuous multiplicative functional.
As an application of Theorem we deduce the convergence when the delay
goes to zero of the solutions for the stochastic differential delay equations

X" (t) =n(0)+ /Ot b(u, X)) du + /Ot o(X)_.)dB,, te€(0,T],
Xr(t) = 77(75)7 te [7T7 O]a

where the stochastic integral is a pathwise integral which depends on B and (B®B).
Set X = XY the solution without delay and fix 8 € (3, 1). Then the theorem reads
as follows:

Theorem 7.1. Assume that o and b satisfy (H1) and (H2) respectively, and both
satisfy (H3). Assume also that (n._r,, B,n.—py @ B) € Mjm(o, r0); [1nll(=ro,0) < 00
and sup,.<,., g0, (n.—r, B) < 00 a.s. Then,

lim | X = X"|eo =0 a.s. and lim (X ®B)— (X"®B)|loo =0 a.s.
r—0 r—0
Applying Theorem [3.1] pathwise, the proof of Theorem [7.1]is an obvious conse-
quence of (|7.2)) and (|7.3)) of the following lemma.
Lemma 7.2. We have

|B® (B—B._)|l2g(rm) = 0 a.s. when r tends to 0, (7.1)
|B.—r @ (B~ B._)|l2g/(r,ry = 0 a.s. when r tends to 0, (7.2)
(B —B._;) ® Bllagr(r,7y = 0 a.s. when r tends to 0. (7.3)

Proof. Let us recall first that || B||g < oo a.s. We begin estimating (7.1)) when i # j
(we will consider the case i = j at the end). By definition,

[B® (B - B~fr>||2ﬁ’(r,T)
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1 o ) ) L ) )
= sup W‘ / (B,IZL — B;) doBiir — / (B; - B;) dOBgL
s,t€[r,T] ( - S) s s
Assume first that ¢t — s > r. Applying integration by parts, we have

|B® (B — B.—)ll2p:(r1)

= sup ———5ar
s,ter,T] (t - 8)26
t—s>r

t
(Bi — BI)(Bl_, ~ Bl,)— / (B, - Bl_)dB.

t . )
+/ (B), — B)d°Bi, — (Bj - B)(B - BI)

< L \(Bi- BB, - B )| (74)
> Sup o t — Ps -
s,t€lr,T] (t - 8)26 ! ! !
t—s>r
+ _ / t(Bj Bl )d°B:
sup 7 u  Pu—r u
s,t€[r,T] (t - 3)2ﬂ s
t—s>r
= A; + As.

On the one hand, by (4.4)),

B} - B}
A< sw ||Bly BB
s,t€[r,T] (t - 3)
t—s>r

1
——5|1Bllg||B— B
s,ter,T] (t - 8)'8 7 >
t—s>r

< sup

B
r

———5 | BI3T® < ||BI[FT"r*
s,t€[r,T] (t - S)ﬂ b p
t—s>r

< sup

that approaches zero when r tends to zero. On the other hand, we have that

' — B)_ )d°B! is a continuous martingale, so it can be represented as a time-
(B}~ Bl_,)d°Bi, t tingal t can b ted as a t
changed Brownian motion: tipi_pi 24, where W is a Brownian motion. Now
h d B i ti Wf (Bi—B) 2 qu> Where WisaB i tion. N

we choose a € (0, %) such that 22%:_215 < a < 28 — 2. Applying Holder property of
the Brownian motion, we have

1
Ay = sup ————=
s,ter,T] (t - 3)25
t—s>r

Wf;(Bf;fBj )? du‘

u—r

C
< sup a,T

s,t€[r,T] (t - 8)25/
t—s>r

< sup Co||BIFr0(t — )"
s,t€[r,T]
t—s>r

< Cor||BIF v+,

t . a
JRCEr

that clearly appraoches zero as r tends to zero.
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Now assume that ¢ — s < r. By integration by part formula, we have
[B® (B —B.—)ll2p 1)
< sup B; _B;)(Bgfr_Bgfr”

s,te[r,T]
t—s<r

1 L . )
+ sup ————sr ‘/ (B)_,—B)_,)d°B,
s,te[r,T] (t - 5)2'6 s
t—s<r

1
T

+ sup —=zr
s,t€[r,T] (t - S)Qﬁ
t—s<r

=Vi+Ve+Vs.

t
| B~ Bys;

The first term is easy to bound. Indeed,
|Bi —Bi| |Bl_, —Bl_,| (t—s)?*

Vl = sup . s—rl . . < HBHZ 28
seefrr) (t—s)P t—s)P  (t—5%
t—s<r

For the other two terms we use inequality (5.8) of Hu and Nualart [9]. It states
that there exists a random variable Z such that, almost surely, for all s,¢ € [0, 7]
we have
1
‘/ — B)d°B] < 2t = s|log =
—s
Set M/ = f (B._, —B!_)d°B.. Since the process {M],t € [s, T]} is a continuous
martingale, we can follow the ideas in [9] to get that there exists a random variable

Z' such that, almost surely, for all s,¢ € [0,T] we have

t
, A , 1
| [ Bl =By B < 27— sllog =
s — S

Hence

! ’ 1
Vo < Z'(t—s)"% log < Z'ri=2 log;

1
(t—s)
and V5 goes to zero when r tends to zero. V3 can be studied using the same
arguments.

It only remains to prove the case where i = j. To simplify the notation we will
not write the supra-index i.

For t — s < r, we apply again the integration by parts formula and we obtain
that

IB® (B = B.—y)llagr(ryry < Vi + V3 + V5 + Vi,
where V/, V4 and V4 are the terms defined in (7.5) with ¢ = j and
1 Vo 3
1 / 1
Vi= sup =|t—s/'7F < 3"

s,t€r,T]
t—s<r

1-3

So it only remains to study the terms V{, Vj and VJ. Easily, for V/ we can repeat
the same arguments used for V; and we also obtain that V{ < [|B||3r>*. If we focus
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in the second term, it can be written as
t 1 t

/ (Buf'r - Bsfr)dBu + 5/ Du(Bufr - Bsfr)du )
S S

Vo= sup ———
2 s,te[r,T] (t - 8)26

t—s<r
where D,, denotes the de Malliavin derivative. It is easy to check that this Malliavin

derivative is zero. So, V4 is now a martingale and proceeding as in the case i # j

we obtain that
/ 1
Vy < Cri=27 log ~.
r
Finally, for the last term we have
1 1

/ 2 2 2
V3 < sup ]W(Bt = Bs)” < S lIBlizr™.

s,ter, T
t—s<r

Therefore, when t — s < r, the three terms tend to zero when r tends to zero.
For the case t — s > r, by integration by parts formula we have

B @ (B — B.—)ll2p(r1)

1

= a2z |(Be = Bs)(Bi—r — B
B Sﬁiﬁ?,ﬂ (t — )27 }( t ) (B¢ t)|
t—s>r

/:(Bu — Bu_,)d°B, — %(t - s)(.

1

+ sup ——
s,telr,T] (t - 5)26
t—s>r

The first term is analogous to the term A; defined in (7.4), so it is bounded by
IIB H%TETE .
For the second term, we can use the relation between Stratonovich and Itd

integrals,

t t
/ (By — By_)d°B, = / (By — By_y) dBy + %(t —s).

fSt(Bu —By_,)dB,. Fixed s, the process {M/',t € [s,T]} is a continuous

Set M| =
martingale. So following the ideas used for A5, we obtain

1 ¢ 1
e B, — By_,)d°B, — =(t —

s,tselg?T] (t— S>2'8' /S ( u u ) u 2( 5)
t—s>r

t
/ (By — Bu—r)dBy

< SUp oz
s, t€[r,T] (t - S)Qﬁ
t—s>r
< o[BI+
where a € (0, 3) such that 22%;215 < a < 28 — 2¢. Thus we obtain that |B ® (B —

B'*T)HQ,B/(T,T) — 0 as we wish.
Inequality (|7.2]) can be proved with similar computations and the proof of (|7.3))

follows immediately from the fact that
(B~ B._;)® Bllagr) < Vo + Vs.
O
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